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1 Introduction

In our work in Project 10, Task 1, we are investigating howragecan help teams
to better perform their allocated tasks. Our work to dated@gloped models that
construct plans for the members of a team, plans that allentem to reach some
specified team goal, and then extract from this the indiidatons that team members
have to perform. A key element of our work has been factonrig the plans, and
the model that constructs the plans, the need for commimicain particular, we
recognise that because the members of a team only have a aigl piew of the
team’s progress, team members will often be uncertain aht their best next step
is and that appropriate and timely communication to resthiigekind of ambiguity has
the potential to greatly improve team performance.

The models that we have developed to date (for example [&B haen symbolic
models, adapted from the literature of non-determinisimping. Here we take an
additional step, moving from the world of non-determirdgtlanning to the world
of decision-theoretic planning, and in particular deveigpa model for planning the
actions and the communications of a team using Markov D&tiBrocessesDPs).

2 MDP model

Following the literature on decision theoretic planning43 we can define an MDP
as atuple
M= (P,S, A, Pr,R)



where
e P =Pg x P4 is afinite set of propositions;
e S =2Ps isthe set of all possible states;
e A = 2P4 is the finite set of actions;

Pr is a probability distribution orf conditional onS x A so thatPr,(s, s’),
wherea € A ands,s’ € S, is the probability of an agent arriving in staté
when it takes action in states; and

R is a reward distribution oi$' conditional onS x A so thatR,(s, s’) where

a € Aands, s’ € S is the immediate reward the agent gets when it is in state
s and takes the action and ends up in state. The reward can be further
decomposed into

Ra,(sv 5/) = Ua(sa 5/) - Ca(sv S/)
where

— U,(s,s') is the immediate utility an agent gets when it is in statend
takes the action, resulting in being in state’; and

— C,(s,s") is the cost to the agent of taking actiafin s to get tos’.

We diverge a little from the standard MDP model here in intigda propositional
language as part of the model. We need this because we arg tgouseMDPS to
describe both the actions of an agent in the world, and theraof an agent in terms
of communication, and the propositional language will\allos to relate these two
models together.

3 Policies

3.1 Whatis a policy?

We solvembP models to get olicy, a description of what to do in each state of the
model. In particular, we consider a policy to be a set of séatéon pairs,

™= {(si,a;)}
wheres; € S anda; € A(s) with
A(s) = {a|3s'Pu(s,s") # 0}

The usual notion of a policy, as in [3] includes one actiondach state, so the choice
of action in that state is easy. Because of our focus on phanior teams, we think
of policies being constructed in terms of what we tgaimt actions in other words



actions specify what is done by every member of the fgand which can then be
decomposed to give actions for each individual agent.

A fundamental difference between our work and other workhis arrea is that
although we assume that in each state there is at most oti@gtion in the policy, it
may not be the case that each agent has a unique action fostelof the team as
whole. In other words an agent that, for example is takingipaa flanking operation,
might not be able to distinguish between several team stateghich it has different
actions — states in which it should attack immediatel antestan which it should
wait before attacking for example. This occurs because inynsituations an agent
only has local knowledge of its own state, and without infation from other agents
cannot resolve the ambiguity about which action to perfdmeffect, then, the policy
for the team — what we will call thgoint policy — specifies more than one action
for a given agent for a given state of that agent. We call acpdhat does thision-
deterministic

In general, a policyr is a non-deterministic iff there is a statesuch thatr pre-
scribes more than one action. When non-determinism presedtho way to resolve
it, agents choose each actionqrwith equal probability. By overloading the notation,
7(s) is used to represent the set of actions associatedsviithr

w(s) = {al|({s,a) € 7}.

Moreover,r(s,a) is used to represent the action selection probability:

In the case whenm is deterministic in the state 7 (s, a) = 1. Below we will consider
at length how to use communication to handle non-detertigrpslicies.

A historyis a sequence of state-action pairs that ends with a stateexample,
h=s1,a1,...,8,-1,0an_1, Sy IS @ history. A historyh = sy, a1,...,8,-1,an_1, Sn
can be induced from a policy, denoted by: € induced(r), if every pair(s;, a;) € h
is also inm and Prq, (s;, si+1) > 0. Given the Markov property,

n—1
Pro(h=s1,a1,...,8,) = H Pro,(si,a;) - 7(s;, a;).
=1
The reward of a history is defined as follows
n—1 .
R(h=s1,01,...,5,) = Z Y R, (siya;)
=1

wherey € [0, 1] is the discount factor (which guarantees convergence tate feward
even though the policy execution may be infinite).

1These actions do not necessarily involve team members perfgrparts of a larger action — like
helping to lift a heavy object — merely they involve team memiadirbaving a specified thing to do, which
may, of course, be “do nothing”.



The goal of policy planning is then looking for a poligythat can maximize the ex-
pected long term utility for the system for all possible bigssy, a1, ..., ss iNduced
from 7 in:

argmaxs, Z Pr.(h) - R(h)
heinduced()

Two special cases of policy planning are

e Given a start statey, produce a policyr(sg) such that the execution structure
underm has the maximum expected utility

Ry (s0) = Max, > (Pry(h) - R(h))

heinduced(m),h=[sq...]

e Given a set of start states), produce a policyr(Sp) such that the execution
structure underr has the maximum expected utility over all the start states
So

Ry(So) = Mazr > Pr(s)Prz(h)R(h)
s€Sy

3.2 The execution structure

One view of a policy is that it is th&bP equivalent of a plan — a choice of actions
to be executed, though a plan that, because there is an éatievery possible state,
covers every possible eventuality. Another way to think gbécy is in terms of the
states that it connects through the nominated actions. I¢aés us to the concepts of
transition graphandexecution structure

Definition 1 The transition graph of ambr M = (P, S, A, Pr, R) under a policyr
is a graphTr = (S, E) where

¢ S are the nodes of the graph, each of which corresponds to a stahemDP.
e F are the edges in the graph,each of which corresponds to e-state transition
enabled by the policy.
Each edg€s, s') € Eis labeled by a set of triple§(a, pr, ) } with each element
(a, prq,rq) Specified as follows
— a € Ais an action that satisfieBr,(s,s’) # 0 and(s,a) € 7,
— pry = Pry(s, s') is the corresponding probability, and
— rq = R,(s,s') is the corresponding reward.

Combining the concepts afbps and the execution structure of non-deterministic state
transitions we have:

Definition 2 The execution structure of ambp M = (P, S, A, Pr, R) under a policy
7 is a graphX = (S, E) where



e S are the nodes in the graph, each of which corresponds to a stahembpp.,

e | C S x S are the edges in the graph, each of which correspond to a state
transitions enabled by the poliey.

Each edge(s, s’y € E is labeled by a set of triple§(h, pry,, )} defined as
following

— h =s1,a4,..., s, is the history which be induced fromwith Pr(h) > 0
andR(h), s1 = s, ands,, = s¢'.

— pryp = Pr(h)
— TR = R(h)

4 The Joint MDP model

4.1 Joint actions

To describe the behavior of a team, we need to prescribe riracge over the actions
available to an agent. We assume that in the system thereetsod 8 agents labeled
by 7 ={T1,Ts,...,Tn} each of which is modeled hybp

M; = <Pivsi7Ai7PTiaRi>~

We call the actions in the set thejoint actionsof these agents.

In the MDP literature which has addressed multiagent systems, fanpba [1],
the name “Decentralized Markov Decision Process” is oftegdufor this situation. We
prefer the name “joint MDP” partly because it conforms witlr grevious work on
non-deterministic dialogue policy planning and partlydnese it emphasizes our focus
on building plans for teams — we are more interested in thitffiatt thembP describes
joint actions than the fact that it is decentralized (thoofbourse it is decentralized,
andDEC-MDPs deal with joint action).

The joint MDP model is then

M=(P,S A, Pr R)

where
o P =UiPi,
o S =115,

e A=1I;A;, and
e Pr andR satisfy the properties specified below.

In the joint model, each actiom € A is a tuple of actions of individual agents, so
a = [ai,...,a,]. Thatis each action € A can be further decomposed intactions
a; € A; of individual agentd;. Based on the underlying propositional logic, we also



write a |= q, if agentT;’s action isa, in a joint actiona, s |= s; if agentT;’s perception
of a (joint) states is s;.

We can introduce additional conditiogson agents, and corresponding probabil-
ity and reward constraint®rg and Rg, can be introduced. Together these specify
the logical, probabilistic, and reward inter-dependesitietween the state and action
variables of different agents. A form of logical interdedency can be found in as
in our previous work [6], and we will study the forms of the pability and reward
inter-dependencies in our future work.

With these notions, now we can specify the conditions on ¢tetion between the
joint probabilities and rewards and those of the individagénts:

b P’I“a,l (Si7 S;) = Z{(s,a,s’ﬂs\:si,s’|:s;,a|:ai} Pr@(87 S/):

The local transition probabilities are obtained by martinireg over all the states
and actions that can be mapped to the same local states.

hd Rai(5i7 5;)
Local transition rewards will conform with some applicatidependent criteria

and assumptions. One example is the assumption that theujdity is the sum
of individual utilities and a system wide reward in which eas

Ra(sa 5/) = Zi:l..ANRai(Sia 5;) + Ra\sys(& 5/)

wheres = [s1,...,sn], 8 = [s],..., 8] &' = [a),...,a\y], Ra,; (s, 8) is
agentT;'s reward, andR,, s, (s, s') is a system wide reward.

In addition, we will have the following notions to map jointates, actions, and policies

to those in their agent;’s local model

e proji(s) = {si|s = s;} is the projection of a joint state to a set of local states of
agentr;;

e proji(a) = {a;la = a;} is the projection of a joint action to a set of local actions
of agentT;;

o proji(m) = {{si,a:)|(s,a) € m,s = s;,a = a;} is the projection of joint policy
to a local policy (most likely to be a non-deterministic onépgentT;.

4.2 The shadow joint policy

We do not anticipate that individual agents will hold a fullpy of the set of joint

states and joint actions. Even if an agent knows the jeibP model and the joint

policy, as discussed above its limited view of the world neetimat it cannot typically

carry out the policy exactly. Instead what the team of agdotss to carry out an

approximation of the joint policy in which each agent makies best choices it can
given the information available to it. We call the resultipglicy that is executed the
shadow joint policy This is a useful concept in establishing the efficiency wittich

a team of agents manages to carry out a policy.



Informally, theshadow joint policyof a joint policy « is an implicit joint policy in
which each agent makes random choices from the set of agtioas project for its
current state from the joint policy. Before we can define the shadow policy precisely,
we need a concept of similarity which captures the fact thahts cannot tell certain
joint states apart.

Definition 3 Two joint states and ss are similar in agentl’;'s view, denoted by ~;
ss, iff there exists am; € S; such that

e proj;(s) = s;, and
e proji(ss) = si.

Similarly, two joint actions andaa are similar in agent’;'s view, denoted by ~; aa,
iff there exists am; € A; such that

e proj;(a) = a;, and
e proj;(aa) = a;.

Thus two states are similar for a given agent if they map tostiree local state, and
two joint actions are similar if they map to the same actiartiiat agent.

Definition 4 A joint policyn’s shadow policy is a joint policy™ whose entries are of
the form(ss, aa) with aa = [ay, as, ..., ay]| where for each ageri; (i = 1,..., N)
there exists an entrys, a) € 7 such that

e s~ ss,and
e a; = proji(a)
The correspondinghadow executioof a joint policyn can be defined as

YR (r) = X(r7)

5 The MDP communication model

At this point we have a formal model that is sufficiently righdonstruct plans that
involve the physical actions that agents carry out. Howewerwant to create plans
that include communications that permit the necessaryirghaf information, so we
need to add a communication model to the model we already. Akerefer to this
model as adialogue model in recognition of the fact that our long-term goal is to
extend the model so that it permits agents to engage in caraplamunications.

As the basis of the dialogue model, we will use the same kid@P model as we
use for the world model. To distinguish the two state trémsitnodels, we will denote
these two models and their elements with subscripts. Weito denote elements of
the dialogue model, for exampl&/{| , denotes the state transition model for a dialogue
andSp denotes the states of a dialogue. We wijteto denote elements of the world
model, for exampleM |y, denotes the external world model afigy the states of the



world. However, when the state transition model is obvigosifthe context, we will
omit the subscripts.

As before, we assume that, in the dialogue, there is a séf afgents labeled
Ty, Ts, ..., Ty where each agefit; has a model of the world:

Mw = (Pyw, Siyw, Ayw, Prijw, Riyyw)

and for which it has a policy; ;- = {(si, a;)}. Given this, a dialogue model is then a
state transition system:

Mip = (Pp,Sp;Ap, Prip, Rp)

for which there is a policy for conducting dialogues,. Correspondingly, each agent
T; has an individual dialogue model:

M;p = (Pip, Siip, Ai|p, Prijp, Ri|D)

and dialogue policyr;| .

The dialogue languag®|, contains elements from langua@® that individ-
ual agents use to describe the world, along with auxilianglege elements such as a
proposition to mark the differences between two world stafehe dialogue informa-
tionis induced fronPp. The set of dialogue actd| , are those available to the agents.
We will give a concrete example in the following sections.

As before, a policy for a dialoguerp = {(s|p,a|p)}, specifies what dialogue
actions should be taken in a given dialogue state. To disishgsuch policies from the
policies that govern an agent'’s actions in the world, wetbalpolicies that govern an
agent’s actions in a dialoguecanversation policyand a policy that governs an agent’s
actions in the world avorld policy.

Definition 5 AgentT;’s behavior model with dialogue transitions added is a tuple
M; = (Pi,Si, Ai, Pri, Ri, Fyyw—.p, Fy p—w)
where
* Pi =Piw UPip,

e S; and A; are induced fronP; as before,

Pr; is a probability distribution,

R; is a reward distribution,
e F;w_p maps the external world states and actions to dialogue staied

e F;w—p maps the dialogues to world states and actions

The probability distributionPr; captures both external world transitions and dialogue
transitions as follows:



e External world transitions:
Pr<ai\w>(<SiIWa 3i\D>v <3;\W7 S;\D» = Pr(li\w(si\Wv S;’|W)
where

- a;w € Fjp—w(s; p) is the world action selected after communication.
= s;p = Fyyw—p(sjy) picks the corect dialogue state after a world action.

e Dialogue transitions:
Pr(ai‘D)(<5i|W75i|D>7 <5i|Wa3;\D>) = P7’a“D(5i|D, S;\D)

e Otherwise,Pr; is set to0.

Note that all the above are conditional probabilities ondwétr state-action pairs. This
along with the Markov property will mak&r; a valid probability distribution.

The reward functiom?; also has to handle external world transitions and dialogue
transitions. It does this as follows:

e External world transitions:
R<aﬂw>(<5i|wa 5i\D>v <5;\W7 S;',\D>) = Rauw(Snw, SQ\W)
where

- a;yw € Fjp—w(s; p) is the world action selected after communication
= sip = Fyyw—p(sjy): resets the dialogue state after the world action

e Dialogue transitions:
R(ai‘D)(<5i|W7 5i|D>7 <5i|Wa 3;\D>) = Ra”D(Si\m 52|D)
e Otherwise,R; is set to0.

The functionsF; . p and I p_. define the relationship between world states
and actions and the dialogue states of individual ageits: _. p is actually two func-
tions

e First there is a function to map a world state to a set of dizdogfates:
Fyw_p : Sijw — 217
This also comes in a version that operates on a set of states:
Fyw—p(S) = Uses Fyyw—p(s)
e Second there is function to map a world action to a set of diadcstates
Fywp : Aijw — 2417
This also comes in a version that operates on a set of states:

F‘?‘W—>D(A) = UU.EAF%‘W*D(G')



Sometimes, we will overload the notion to map a world stati#ea pair to a set of
dialogue states
Fiw—p : Sijw X Agw — 251P

whereF;jw_ p(siyw, a;jw) = Fyyw—p(siw) N Fyjw—p(agw).
F; p—w is also composed of two functions

e First there is a function that maps a dialogue state to a getrafworld states:
Fyp—w : Sijp — 25
This also comes in a version that operates on a set of states:
Fyip—p(S) = UsesFijp—w (s)
e Second, there is a function that maps a dialogue state taéjséit world action
Fyp—w : Sip — 24w
This also comes in a version that operates on a set of states:
Fyp—w(S) = Uses Fip—w(s)

In addition we may overload the notion to map a dialogue stiate joint world state-
action pairs:
Fyp—w : Syyp — 25w *Aw

whereF; p_w(siip) = Fijp—w(siip) X F;jp—w(aip)

What we have so far specifies the world and dialogue modelsalf agent. We
can then put these together to get\ame that describes the whole multiagent system.
We have:

Definition 6
M= (P,S, A, Pr,R)
where
o P=UN,P;

e S and A are induced fronP; as before

e Pris composed from ther; of individual agents.

To do this we can assume independence among agents or specgicomplex
interactions using logical constraints, probability constraintsPrz and reward
constraintsR 3.

e R;is composed by adding individual agents’ rewards together

10



6 A detailed look at the communication model

The reason for including communication in the model is so Weacan identify when
agents can and should pass information to their teammatedén to help those team-
mates to disambiguate states and make better choices ofia&s a result, the dia-
logue state transition is about world states, actions agid #xecutions. The ontology
of P p will be built on top of P;» and some additional control variables to ensure that
the dialogue state transitions can enable the construatiadialogue policy which can
prescribe effective dialogue actions to a set of dialogatestthat result from applying
F;jw—p on the external states of each individual agént

6.1 An ontology for dialogues

Recall that, in general;;p = P; sjp U P; a|p-

We start by assuming that each ag&hmaintains a model of the external world
M, w and its finite propositional languagdg, - will depend on the applicatioril;’s
dialogue modelM;  is based on a propositional language:

Pi,S\D = Uj-vzl('Pj,S‘W U PJ"A‘W) UPar UPcrm UPact
where:

e P4z, contains a boolean variable for every variabléing i U P; 4w for each
j=1,..., N toindicate its validity in dialogue state.

e Py contains a boolean variable for every variabléPng i U P; 4w of the
agentT;’s state (the informatiofi; can send to ther agents) to indicate whether
its value has been communicated in dialogue stafe=1... N whereN is the
number of agents in the system.

e Pacr = {zlj = 1...N} with z; = 1 indicates the agerif; should act in
the external world, and; = 0 indicates that the agefi; should continue the
dialogue.

In the simple model of communication that we consider heentmgycan only inform
each other of information that the sender believes to be tAga result, dialogue
actions will be of the form:

tell(i, j, x,v)

and the locations will be encoded by the following set of msition variables
Piaip = Pi,acip UPicnT

whereP; a¢rp is the set of propositional variables that denote the renipof the
message, an®; ¢y is the set of proposition variables encoding dialogue attio
content. With the number of agentsi§ |Pacrp| = logN. In most casesP; acip
andP; ¢ nr are of the same ontology for different agefits The content propositions
can be further decomposed as

Pient = Pi.ipy U Py.

11



P;. 1Dy, IS the set of propositional variables that encode the ilenthat denotes agent
T;’s knowledge of the world state and its action variables. \&eate the size of this
set of variables a&’; where:

Ki = |Piipw | = log|Pi sjw U Pi ajw|

Py contains a variable wherev = {0, 1} to indicate the truth value of variables with
ID encoded byP;p sjw U Prp,ajw to communicated.
For notional convenience, we denote variableBig| p asz; j k, lx; j x andcz; j k.

e z; ;1 iST;'s information aboufl’;’s kth state/action variable.

e lz; ;1 denotes the validity of; ; ., so thatlz; ; , = 1 means that; ;  is valid
andlz; ;. = 0 means that; ; , is invalid.

e cx; ;1 IS about whethef; has communicated itsth state variable to agefft;
so thatcz; ; , = 1 means that the value @}’s kth variable has been communi-
cated toT}, cxz; j, = 0 means that the value @f's kth variable has not been
communicated td’;.

Notice that
‘,Pi’kg‘p‘ - 3N*K+N

assuming thak(; ~ K, ¢ # j, and writing this ags;
|Pi,aip| = logN + logK + 1.
In total, the number of propositional variables/of | is

(B3N « K + N + logN + logK + 1) « N.

6.2 Action and communication

A communicatiortell(i, j, zj, v) will result in two state transitions. One will involve
agentZ; and the other will involvel;.

Definition 7 For T3, setPr, ,(sp,s}p) = 1if cxijr = 0 and giagia = J,
Yiapw = k, cxi;, = 1; otherwise Prq, ,(sip,s;p) = 0. Correspondingly set
the communication cost,, , (si p, s;‘D) = Lif Prq, ,(si|D; sng) = C whereC is a

constant of the cost of communicating a bit of information.

This cost should be set relatively to the metric of the exdemorld MDP model’'s
reward measurement. Another choice is to have the rewadifumcomposed of a
vector of rewards Ry, R|p) — one for the external world and one for the dialogue
— and then have the algorithms update each dimension usimgesarithmetic oper-
ations according to the external world state transitiortsthe dialogue state transition
accordingly; when comparison is needed, depending on thiicapons, different cri-
teria can be applied in the comparison: e.g. the externaldweward can take the
precedence or discounting the communication costs, and etc

12



Definition 8 For T}, setPr(,ﬂD(sﬂD,sg‘D) = 1if lz;;r = 0 and g qgia = 7,
Ui,1Dw = k, thenlz; ; , = 1, and in addition

e if 4;, =0, thenz’ , , =0;
e if i, =1,thena’ ,, =1,
otherwisePrq, ,, (sjp, s} p) =0

We need to define an additional dialogue actiefi(:, j, z, v) which means ageri;

tells the agen®; his is ready to act. It will incur two state transitions:

Definition 9 For T3, setPra”D(s“D,s;‘D) =1ifz =0,z =1; otherwisePra“D(s“D,s’i‘D) =
0. Correspondingly set the communication a0sf, , (si|p, 85 p) = Cif Pra,, (sijp, 53 p) =

1 where( is the communication cost constant set by the application.

Definition 10 For 73, setPrq, ,(sjip, s p) = 1if z; = 0in s;p, then setj = 1;
otherwisePrq, ,, (sp, s} p) = 0.

6.3 Joint dialogue transitions

Now we consider the transitions that result from joint dgple actions Recall that a
dialogue is a sequence:

ap = |
tell(1, j1,k1,v1),
tell(2, jo, k2, v2),

tell(N, JIN, k}N,’UN)

]

In addition to the general behavior model, we impose furtioestraints on the proba-
bilistic characterizatiod’r; as follows:

e External world transitions:

PT(a,;‘W>(<Si|W,8i\D>, <3§\W75§\D>) = Prai‘w(sz‘\stﬂw)

where the transition only happens when all the agents agraetf namely the
action bitz; in s; p is settol for all j = 1... N assuming there is a synchro-
nization protocol to achieve these. Other approaches aslge, for example,
in the joint probability action model we can specify theititibf the joint actions
with some agents being idling, and having actions bits ointinimformation en-
abled in the dialogue states to embed the action syncht@rzaroblem into the
utility model. We will leave this possibility for future rearch.

e Dialogue state transitions:

Pr(ai‘D)(<5i|W75i|D>7 <5i|W’3§|D>) = PTa“D(SﬂD, S;\D)

when the action bit; in s, p is notsettal forall j =1... N.

13



Definition 11 For the joint dialogue state transition characterizati@®tPr, ,, (s|p, STD) =
1,ifforeveryi=1...N

® Pro,,(sip,sjp) =1,
o Pro,,(sip,sjp) = 1forallthej # i

otherwisePr,, ,, (s|p, siD) = 0. Correspondingly the communication cost is

N
CG\D (S\D’ STD) = Zi:lcaim (5i|D7 S;|D)

if Pra,,(sip,s|p) > 0.

6.4 A specific version offyyy_.p and F p_w

Having described our general model of team planning withroomication, the last
thing we do in this paper is to describe a specific implemantatf the these functions.

Definition 12
Fyw—p(sqw) = {sip}
wheres; , is the agenfl;’s dialogue state with
e x;; Setto their corresponding values of its world statg
o lx;; ) setto 1; and othetx; ;  setto 0
o all cx; ;1 setto O (forj =1...N)
Definition 13
Fyw—p(agw) = {sip}
wheres; p is the agent’;'s dialogue state with
e x;; Setto their corresponding values of its world actiof
o lx;; ) setto 1; and othetx; ; , setto 0
o all cx; ;1 settoO (forj =1...N)
Definition 14
Fyp—w(syp) = {sqw}

wheres; - is the agentl;’s dialogue state with the bit values of the world statgy
are set corresponding to thosesfp.

Definition 15
Fyip—w(sip) = {ayw}

wherea; y; is the agent’;’s dialogue state with m the bit values of the world stgig,
are set corresponding to thosespp.

14



7 Related Work

The work we describe here differs from existing work mnpP models of multiagent
systems in a number of ways. Perhaps most obviously, in thelest model of mul-
tiagentmbpPs [2], only actions are decomposible into individual ageatgions —
states, state transition probabilities and rewards areifggx for the whole system.
Thus whereas our model reflects our focus on ad-hoc teamarinabmposed of in-
dependent elements that are brought together for a spepération, the model in [2]
considers the team to be the basic component and factonsdivedual agents’ actions
out from the joint policy.

In [1], the DEC-MDP model for external world is similar to our, but their commu-
nication model is just “yes” or “no” on whether individual egt should communicate
the whole vector of local state variables to all the othemégeln their model, a my-
opic decision is made on whether to communicate or not, alydome-short or &-step
look ahead benefit of the communication is considered, andproach doesn't revise
the external world policy and its expected utilities whewisig the communication
policy. This is so partly because their model does not havdess a concept as ours
for how communication can affect the execution of a extewwld policy and in turn
affect the expected utility of the policy.

Another model that is similar to the one we describe isdbe1-mTDP (commu-
nicative multiagent team decision problem) [%JoM-MTDP is multiagent teamwork
model based oromDP (partial observable Markov Decision Process) models. én th
CcoM-MTDP model, the system’s states can not be decomposed intododivagents’
states, namely all the agents share the same set of joias sTate system’s joint action
is composed of individual agents’ actions. Then the statesition probabilities and
rewards are defined on the joint states and joint actionsnfine same joint state, these
agents can have different observations probabilisticafigl collectively the agents can
have joint observations.

The com-MTDP model also includes a mental state — the belief state — compo-
nent to bridge between the decision theoretic model and Bientbdel. The dialogue
state of our model provide some similar functions as theebstate component in the
com-MTDP model but the dialogue states and dialogue actions are mudslanother
MDP in our system making it a more comprehensive and systematidevdesign and
model a team with communication structure in which the team share their joint
intentions — achieving the goal states from their initialtes or maximizing their joint
utilities — and maintain the execution of the courses ofadito achieve their joint
intentions. Another difference is that our model expliciéhables a gradual scheme
of communication by having the agents conduct the commtioitat the bit level of
their states or observations. Finally, our model can bdyeasiended to be based on
an underlyingpombP model.

More recently, along the road afomM-MTDP, in [7], a revised model based on
networked distributeé@ombpr model is proposed. In the model, the joint states can be
decomposed as ours. The model allows the agents to carrpeiviridividual plans
(projected from the join policy) fok steps, and then enter the communication phase
to communicate the observation/action histories to rethie@ original planned joint
pomDPpolicy. The communication scheme they proposed actualy lalck long term

15



view of how the communication can affect the external podiggcution.

8 Conclusions

In this paper we have described an initial model for teammptamwith communica-
tion that extends our previous, symbolic, model to becomellad&cision-theoretic
model. Such a model not only extends the representatiopabdéies of our previous
work, but also the scope of solution concepts. Whereas befermould identify plans
that might work, and plans that were guaranteed to work tisoisi to the new model
will also allow us to identify how likely particular planse&to succeed (by looking at
trajectories through the state space) and to compute theecgbutility of policies.

Future work will be directed towards the implementationto$ tapproach and its
testing on representative examples of team planning.
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