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1 Introduction

In our work in Project 10, Task 1, we are investigating how agents can help teams
to better perform their allocated tasks. Our work to date hasdeveloped models that
construct plans for the members of a team, plans that allow the team to reach some
specified team goal, and then extract from this the individual actions that team members
have to perform. A key element of our work has been factoring into the plans, and
the model that constructs the plans, the need for communication. In particular, we
recognise that because the members of a team only have a very partial view of the
team’s progress, team members will often be uncertain as to what their best next step
is and that appropriate and timely communication to resolvethis kind of ambiguity has
the potential to greatly improve team performance.

The models that we have developed to date (for example [6]) have been symbolic
models, adapted from the literature of non-deterministic planning. Here we take an
additional step, moving from the world of non-deterministic planning to the world
of decision-theoretic planning, and in particular developing a model for planning the
actions and the communications of a team using Markov Decision Processes (MDPs).

2 MDP model

Following the literature on decision theoretic planning [3, 4], we can define an MDP
as a tuple

M = 〈P, S,A, Pr,R〉
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where

• P = PS × PA is a finite set of propositions;

• S = 2PS is the set of all possible states;

• A = 2PA is the finite set of actions;

• Pr is a probability distribution onS conditional onS × A so thatPra(s, s′),
wherea ∈ A ands, s′ ∈ S, is the probability of an agent arriving in states′

when it takes actiona in states; and

• R is a reward distribution onS conditional onS × A so thatRa(s, s′) where
a ∈ A ands, s′ ∈ S is the immediate reward the agent gets when it is in state
s and takes the actiona and ends up in states′. The reward can be further
decomposed into

Ra(s, s′) = Ua(s, s′) − Ca(s, s′)

where

– Ua(s, s′) is the immediate utility an agent gets when it is in states and
takes the actiona, resulting in being in states′; and

– Ca(s, s′) is the cost to the agent of taking actiona in s to get tos′.

We diverge a little from the standard MDP model here in including a propositional
language as part of the model. We need this because we are going to useMDPs to
describe both the actions of an agent in the world, and the action of an agent in terms
of communication, and the propositional language will allow us to relate these two
models together.

3 Policies

3.1 What is a policy?

We solveMDP models to get apolicy, a description of what to do in each state of the
model. In particular, we consider a policy to be a set of state-action pairs,

π = {〈si, ai〉}

wheresi ∈ S andai ∈ A(s) with

A(s) = {a|∃s′Pa(s, s′) 6= 0}

The usual notion of a policy, as in [3] includes one action foreach state, so the choice
of action in that state is easy. Because of our focus on planning for teams, we think
of policies being constructed in terms of what we termjoint actions, in other words
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actions specify what is done by every member of the team1, and which can then be
decomposed to give actions for each individual agent.

A fundamental difference between our work and other work in this area is that
although we assume that in each state there is at most one joint action in the policy, it
may not be the case that each agent has a unique action for eachstate of the team as
whole. In other words an agent that, for example is taking part in a flanking operation,
might not be able to distinguish between several team statesfor which it has different
actions — states in which it should attack immediatel and states in which it should
wait before attacking for example. This occurs because in many situations an agent
only has local knowledge of its own state, and without information from other agents
cannot resolve the ambiguity about which action to perform.In effect, then, the policy
for the team — what we will call thejoint policy — specifies more than one action
for a given agent for a given state of that agent. We call a policy that does thisnon-
deterministic.

In general, a policyπ is a non-deterministic iff there is a states such thatπ pre-
scribes more than one action. When non-determinism present,and no way to resolve
it, agents choose each action inπ with equal probability. By overloading the notation,
π(s) is used to represent the set of actions associated withs in π

π(s) = {a|〈s, a〉 ∈ π}.

Moreover,π(s, a) is used to represent the action selection probability:

π(s, a) =
1

|π(s)|
.

In the case whenπ is deterministic in the states, π(s, a) = 1. Below we will consider
at length how to use communication to handle non-deterministic policies.

A history is a sequence of state-action pairs that ends with a state. For example,
h = s1, a1, . . . , sn−1, an−1, sn is a history. A historyh = s1, a1, . . . , sn−1, an−1, sn

can be induced from a policyπ, denoted byh ∈ induced(π), if every pair〈si, ai〉 ∈ h

is also inπ andPrai
(si, si+1) > 0. Given the Markov property,

Prπ(h = s1, a1, . . . , sn) =

n−1
∏

i=1

Prai
(si, ai) · π(si, ai).

The reward of a history is defined as follows

R(h = s1, a1, . . . , sn) =

n−1
∑

i=1

γi−1Rai
(si, ai)

whereγ ∈ [0, 1] is the discount factor (which guarantees convergence to a finite reward
even though the policy execution may be infinite).

1These actions do not necessarily involve team members performing parts of a larger action — like
helping to lift a heavy object — merely they involve team membersall having a specified thing to do, which
may, of course, be “do nothing”.
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The goal of policy planning is then looking for a policyπ that can maximize the ex-
pected long term utility for the system for all possible historiess1, a1, . . . , s∞ induced
from π in:

argmaxπ

∑

h∈induced(π)

Prπ(h) · R(h)

Two special cases of policy planning are

• Given a start states0, produce a policyπ(s0) such that the execution structure
underπ has the maximum expected utility

Rπ(s0) = Maxπ





∑

h∈induced(π),h=[s0...]

(Prπ(h) · R(h))





• Given a set of start statesS0, produce a policyπ(S0) such that the execution
structure underπ has the maximum expected utility over all the start statess ∈
S0

Rπ(S0) = Maxπ

∑

s∈S0

Pr(s)Prπ(h)R(h)

3.2 The execution structure

One view of a policy is that it is theMDP equivalent of a plan — a choice of actions
to be executed, though a plan that, because there is an actionfor every possible state,
covers every possible eventuality. Another way to think of apolicy is in terms of the
states that it connects through the nominated actions. Thisleads us to the concepts of
transition graphandexecution structure.

Definition 1 The transition graph of anMDP M = 〈P, S,A, Pr,R〉 under a policyπ
is a graphTr = 〈S,E〉 where

• S are the nodes of the graph, each of which corresponds to a state in theMDP.

• E are the edges in the graph,each of which corresponds to a state-state transition
enabled by the policyπ.

Each edge〈s, s′〉 ∈ E is labeled by a set of triples{〈a, pr, r〉} with each element
〈a, pra, ra〉 specified as follows

– a ∈ A is an action that satisfiesPra(s, s′) 6= 0 and〈s, a〉 ∈ π,

– pra = Pra(s, s′) is the corresponding probability, and

– ra = Ra(s, s′) is the corresponding reward.

Combining the concepts ofMDPs and the execution structure of non-deterministic state
transitions we have:

Definition 2 The execution structure of anMDP M = 〈P, S,A, Pr,R〉 under a policy
π is a graphΣ = 〈S,E〉 where
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• S are the nodes in the graph, each of which corresponds to a state in theMDP.,

• E ⊆ S × S are the edges in the graph, each of which correspond to a state
transitions enabled by the policyπ.

Each edge〈s, s′〉 ∈ E is labeled by a set of triples{〈h, prh, rh〉} defined as
following

– h = s1, a1, . . . , sn is the history which be induced fromπ with Pr(h) > 0
andR(h), s1 = s, andsn = s′.

– prh = Pr(h)

– rh = R(h)

4 The Joint MDP model

4.1 Joint actions

To describe the behavior of a team, we need to prescribe more structure over the actions
available to an agent. We assume that in the system there is a set of N agents labeled
by T = {T1, T2, . . . , TN} each of which is modeled byMDP

Mi = 〈Pi, Si, Ai, P ri, Ri〉.

We call the actions in the setA the joint actionsof these agents.
In the MDP literature which has addressed multiagent systems, for example, [1],

the name “Decentralized Markov Decision Process” is often used for this situation. We
prefer the name “joint MDP” partly because it conforms with our previous work on
non-deterministic dialogue policy planning and partly because it emphasizes our focus
on building plans for teams — we are more interested in the fact that theMDP describes
joint actions than the fact that it is decentralized (thoughof course it is decentralized,
andDEC-MDPs deal with joint action).

The joint MDP model is then

M = 〈P, S,A, Pr,R〉

where

• P = ∪iPi,

• S = ΠiSi,

• A = ΠiAi, and

• Pr andR satisfy the properties specified below.

In the joint model, each actiona ∈ A is a tuple of actions of individual agents, so
a = [a1, . . . , an]. That is each actiona ∈ A can be further decomposed inton actions
ai ∈ Ai of individual agentsTi. Based on the underlying propositional logic, we also
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write a |= ai if agentTi’s action isai in a joint actiona, s |= si if agentTi’s perception
of a (joint) states is si.

We can introduce additional conditionsβ on agents, and corresponding probabil-
ity and reward constraintsPrβ andRβ , can be introduced. Together these specify
the logical, probabilistic, and reward inter-dependencies between the state and action
variables of different agents. A form of logical interdependency can be found in as
in our previous work [6], and we will study the forms of the probability and reward
inter-dependencies in our future work.

With these notions, now we can specify the conditions on the relation between the
joint probabilities and rewards and those of the individualagents:

• Prai
(si, s

′
i) =

∑

{〈s,a,s′〉|s|=si,s′|=s′
i,a|=ai}

Pra(s, s′):

The local transition probabilities are obtained by marginalizing over all the states
and actions that can be mapped to the same local states.

• Rai
(si, s

′
i)

Local transition rewards will conform with some application dependent criteria
and assumptions. One example is the assumption that the joint utility is the sum
of individual utilities and a system wide reward in which case:

Ra(s, s′) = Σi=1...NRai
(si, s

′
i) + Ra|sys(s, s

′)

wheres = [s1, . . . , sN ], s′ = [s′1, . . . , s
′
N ], a′ = [a′

1, . . . , a
′
N ], Rai

(si, s
′
i) is

agentTi’s reward, andRa|sys(s, s
′) is a system wide reward.

In addition, we will have the following notions to map joint states, actions, and policies
to those in their agentTi’s local model

• proji(s) = {si|s |= si} is the projection of a joint state to a set of local states of
agentTi;

• proji(a) = {ai|a |= ai} is the projection of a joint action to a set of local actions
of agentTi;

• proji(π) = {〈si, ai〉|〈s, a〉 ∈ π, s |= si, a |= ai} is the projection of joint policy
to a local policy (most likely to be a non-deterministic one)of agentTi.

4.2 The shadow joint policy

We do not anticipate that individual agents will hold a full copy of the set of joint
states and joint actions. Even if an agent knows the jointMDP model and the joint
policy, as discussed above its limited view of the world means that it cannot typically
carry out the policy exactly. Instead what the team of agentsdo is to carry out an
approximation of the joint policy in which each agent makes the best choices it can
given the information available to it. We call the resultingpolicy that is executed the
shadow joint policy. This is a useful concept in establishing the efficiency withwhich
a team of agents manages to carry out a policy.
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Informally, theshadow joint policyof a joint policyπ is an implicit joint policy in
which each agent makes random choices from the set of actionsit can project for its
current state from the joint policyπ. Before we can define the shadow policy precisely,
we need a concept of similarity which captures the fact that agents cannot tell certain
joint states apart.

Definition 3 Two joint statess andss are similar in agentTi’s view, denoted bys ∼i

ss, iff there exists ansi ∈ Si such that

• proji(s) = si, and

• proji(ss) = si.

Similarly, two joint actionsa andaa are similar in agentTi’s view, denoted bya ∼i aa,
iff there exists anai ∈ Ai such that

• proji(a) = ai, and

• proji(aa) = ai.

Thus two states are similar for a given agent if they map to thesame local state, and
two joint actions are similar if they map to the same action for that agent.

Definition 4 A joint policyπ’s shadow policy is a joint policyπ≈ whose entries are of
the form〈ss, aa〉 with aa = [a1, a2, . . . , aN ] where for each agentTi (i = 1, . . . , N )
there exists an entry〈s, a〉 ∈ π such that

• s ∼i ss, and

• ai = proji(a)

The correspondingshadow executionof a joint policyπ can be defined as

Σ≈(π) = Σ(π≈)

5 The MDP communication model

At this point we have a formal model that is sufficiently rich to construct plans that
involve the physical actions that agents carry out. However, we want to create plans
that include communications that permit the necessary sharing of information, so we
need to add a communication model to the model we already have. We refer to this
model as adialoguemodel in recognition of the fact that our long-term goal is to
extend the model so that it permits agents to engage in complex communications.

As the basis of the dialogue model, we will use the same kind ofMDP model as we
use for the world model. To distinguish the two state transition models, we will denote
these two models and their elements with subscripts. We write |D to denote elements of
the dialogue model, for example,M|D denotes the state transition model for a dialogue
andS|D denotes the states of a dialogue. We write|W to denote elements of the world
model, for example,M|W denotes the external world model andS|W the states of the
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world. However, when the state transition model is obvious from the context, we will
omit the subscripts.

As before, we assume that, in the dialogue, there is a set ofN agents labeled
T1, T2, . . . , TN where each agentTi has a model of the world:

Mi|W = 〈Pi|W , Si|W , Ai|W , P ri|W , Ri|W 〉

and for which it has a policyπi|W = {〈si, ai〉}. Given this, a dialogue model is then a
state transition system:

M|D = 〈P|D, S|D, A|D, P r|D, R|D〉

for which there is a policy for conducting dialoguesπ|D. Correspondingly, each agent
Ti has an individual dialogue model:

Mi|D = 〈Pi|D, Si|D, Ai|D, P ri|D, Ri|D〉

and dialogue policyπi|D.
The dialogue languageP|D contains elements from languagePi|W that individ-

ual agents use to describe the world, along with auxiliary language elements such as a
proposition to mark the differences between two world states. The dialogue informa-
tion is induced fromPD. The set of dialogue actsA|D are those available to the agents.
We will give a concrete example in the following sections.

As before, a policy for a dialogue,π|D = {〈s|D, a|D〉}, specifies what dialogue
actions should be taken in a given dialogue state. To distinguish such policies from the
policies that govern an agent’s actions in the world, we callthe policies that govern an
agent’s actions in a dialogue aconversation policyand a policy that governs an agent’s
actions in the world aworld policy.

Definition 5 AgentTi’s behavior model with dialogue transitions added is a tuple

Mi = 〈Pi, Si, Ai, P ri, Ri, Fi|W→D, Fi|D→W 〉

where

• Pi = Pi|W ∪ Pi|D,

• Si andAi are induced fromPi as before,

• Pri is a probability distribution,

• Ri is a reward distribution,

• Fi|W→D maps the external world states and actions to dialogue states, and

• Fi|W→D maps the dialogues to world states and actions

The probability distributionPri captures both external world transitions and dialogue
transitions as follows:
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• External world transitions:

Pr〈ai|W 〉(〈si|W , si|D〉, 〈s′i|W , s′i|D〉) = Prai|W
(si|W , s′i|W )

where

– ai|W ∈ Fi|D→W (si|D) is the world action selected after communication.

– s′
i|D = Fi|W→D(s′

i|W ) picks the corect dialogue state after a world action.

• Dialogue transitions:

Pr〈ai|D〉(〈si|W , si|D〉, 〈si|W , s′i|D〉) = Prai|D
(si|D, s′i|D)

• Otherwise,Pri is set to0.

Note that all the above are conditional probabilities on behavior state-action pairs. This
along with the Markov property will makePri a valid probability distribution.

The reward functionRi also has to handle external world transitions and dialogue
transitions. It does this as follows:

• External world transitions:

R〈ai|W 〉(〈si|W , si|D〉, 〈s′i|W , s′i|D〉) = Rai|W
(si|W , s′i|W )

where

– ai|W ∈ Fi|D→W (si|D) is the world action selected after communication

– s′
i|D = Fi|W→D(s′

i|W ): resets the dialogue state after the world action

• Dialogue transitions:

R〈ai|D〉(〈si|W , si|D〉, 〈si|W , s′i|D〉) = Rai|D
(si|D, s′i|D)

• Otherwise,Ri is set to0.

The functionsFi|W→D andFi|D→W define the relationship between world states
and actions and the dialogue states of individual agents.Fi|W→D is actually two func-
tions

• First there is a function to map a world state to a set of dialogue states:

Fi|W→D : Si|W → 2Si|D

This also comes in a version that operates on a set of states:

Fi|W→D(S) = ∪s∈SFi|W→D(s)

• Second there is function to map a world action to a set of dialogue states

Fi|W→D : Ai|W → 2Ai|D

This also comes in a version that operates on a set of states:

Fi|W→D(A) = ∪a∈AFi|W→D(a)
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Sometimes, we will overload the notion to map a world state-action pair to a set of
dialogue states

Fi|W→D : Si|W × Ai|W → 2Si|D

whereFi|W→D(si|W , ai|W ) = Fi|W→D(si|W ) ∩ Fi|W→D(ai|W ).
Fi|D→W is also composed of two functions

• First there is a function that maps a dialogue state to a set ofjoint world states:

Fi|D→W : Si|D → 2S|W

This also comes in a version that operates on a set of states:

Fi|D→D(S) = ∪s∈SFi|D→W (s)

• Second, there is a function that maps a dialogue state to a setof joint world action

Fi|D→W : Si|D → 2A|W

This also comes in a version that operates on a set of states:

Fi|D→W (S) = ∪s∈SFi|D→W (s)

In addition we may overload the notion to map a dialogue states to a joint world state-
action pairs:

Fi|D→W : Si|D → 2S|W ×A|W

whereFi|D→W (si|D) = Fi|D→W (si|D) × Fi|D→W (ai|D)
What we have so far specifies the world and dialogue models of each agent. We

can then put these together to get anMDP that describes the whole multiagent system.
We have:

Definition 6

M = 〈P, S,A, Pr,R〉

where

• P = ∪N
i=1Pi

• S andA are induced fromPi as before

• Pr is composed from thePri of individual agents.

To do this we can assume independence among agents or specifymore complex
interactions using logical constraintsβ, probability constraintsPrβ and reward
constraintsRβ .

• Ri is composed by adding individual agents’ rewards together
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6 A detailed look at the communication model

The reason for including communication in the model is so that we can identify when
agents can and should pass information to their teammates inorder to help those team-
mates to disambiguate states and make better choices of action. As a result, the dia-
logue state transition is about world states, actions and their executions. The ontology
of P|D will be built on top ofP|W and some additional control variables to ensure that
the dialogue state transitions can enable the constructionof a dialogue policy which can
prescribe effective dialogue actions to a set of dialogue states that result from applying
Fi|W→D on the external states of each individual agentTi.

6.1 An ontology for dialogues

Recall that, in general,Pi|D = Pi,S|D ∪ Pi,A|D.
We start by assuming that each agentTi maintains a model of the external world

Mi|W and its finite propositional languagePi|W will depend on the application.Ti’s
dialogue modelMi|D is based on a propositional language:

Pi,S|D = ∪N
j=1(Pj,S|W ∪ Pj,A|W ) ∪ PAL ∪ PCM ∪ PACT

where:

• PAL contains a boolean variable for every variable inPj,S|W ∪Pj,A|W for each
j = 1, . . . , N to indicate its validity in dialogue state.

• PCM contains a boolean variable for every variable inPj,S|W ∪ Pj,A|W of the
agentTi’s state (the informationTi can send to ther agents) to indicate whether
its value has been communicated in dialogue statej, j = 1 . . . N whereN is the
number of agents in the system.

• PACT = {zj |j = 1 . . . N} with zj = 1 indicates the agentTj should act in
the external world, andzj = 0 indicates that the agentTj should continue the
dialogue.

In the simple model of communication that we consider here agents can only inform
each other of information that the sender believes to be true. As a result, dialogue
actions will be of the form:

tell(i, j, xk, v)

and the locations will be encoded by the following set of proposition variables

Pi,A|D = Pi,AGID ∪ Pi,CNT

wherePi,AGID is the set of propositional variables that denote the recipient of the
message, andPi,CNT is the set of proposition variables encoding dialogue action’
content. With the number of agents isN , |PAGID| = logN . In most cases,Pi,AGID

andPi,CNT are of the same ontology for different agentsTi. The content propositions
can be further decomposed as

Pi,CNT = Pi,IDW
∪ PV .

11



Pi,IDW
is the set of propositional variables that encode the identifier that denotes agent

Ti’s knowledge of the world state and its action variables. We denote the size of this
set of variables asKi where:

Ki = |Pi,IDW
| = log|Pi,S|W ∪ Pi,A|W |

PV contains a variablev wherev = {0, 1} to indicate the truth value of variables with
ID encoded byPID,S|W ∪ PID,A|W to communicated.

For notional convenience, we denote variables inPi,S|D asxi,j,k, lxi,j,k andcxi,j,k.

• xi,j,k is Ti’s information aboutTj ’s kth state/action variable.

• lxi,j,k denotes the validity ofxi,j,k, so thatlxi,j,k = 1 means thatxi,j,k is valid
andlxi,j,k = 0 means thatxi,j,k is invalid.

• cxi,j,k is about whetherTi has communicated itskth state variable to agentTj

so thatcxi,j,k = 1 means that the value ofTi’s kth variable has been communi-
cated toTj , cxi,j,k = 0 means that the value ofTi’s kth variable has not been
communicated toTj .

Notice that
|Pi,S|D| = 3N ∗ K + N

assuming thatKi ≈ Kj , i 6= j, and writing this asK;

|Pi,A|D| = logN + logK + 1.

In total, the number of propositional variables ofM|D is

(3N ∗ K + N + logN + logK + 1) ∗ N.

6.2 Action and communication

A communicationtell(i, j, xk, v) will result in two state transitions. One will involve
agentTi and the other will involveTj .

Definition 7 For Ti, set Prai|D
(si|D, s′

i|D) = 1 if cxi,j,k = 0 and ~yi,agid = j,
~yi,IDW

= k, cx′
i,j,k = 1; otherwisePrai|D

(si|D, s′
i|D) = 0. Correspondingly set

the communication costCai|D
(si|D, s′

i|D) = 1 if Prai|D
(si|D, s′

i|D) = C whereC is a
constant of the cost of communicating a bit of information.

This cost should be set relatively to the metric of the external world MDP model’s
reward measurement. Another choice is to have the reward function composed of a
vector of rewards〈R|W , R|D〉 — one for the external world and one for the dialogue
— and then have the algorithms update each dimension using simple arithmetic oper-
ations according to the external world state transitions and the dialogue state transition
accordingly; when comparison is needed, depending on the applications, different cri-
teria can be applied in the comparison: e.g. the external world reward can take the
precedence or discounting the communication costs, and etc.
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Definition 8 For Tj , set Prai|D
(sj|D, s′

j|D) = 1 if lxi,j,k = 0 and ~yi,agid = j,
~yi,IDW

= k, thenlxi,j,k = 1, and in addition

• if ~yi,v = 0, thenx′
j,i,k = 0;

• if ~yi,v = 1, thenx′
j,i,k = 1;

otherwisePrai|D
(sj|D, s′

j|D) = 0

We need to define an additional dialogue actiontell(i, j, z, v) which means agentTi

tells the agentTj his is ready to act. It will incur two state transitions:

Definition 9 For Ti, setPrai|D
(si|D, s′

i|D) = 1 if zi = 0, z′i = 1; otherwisePrai|D
(si|D, s′

i|D) =

0. Correspondingly set the communication costCai|D
(si|D, s′

i|D) = C if Prai|D
(si|D, s′

i|D) =
1 whereC is the communication cost constant set by the application.

Definition 10 For Tj , setPrai|D
(sj|D, s′

j|D) = 1 if zi = 0 in sj|D, then setz′i = 1;
otherwisePrai|D

(sj|D, s′
j|D) = 0.

6.3 Joint dialogue transitions

Now we consider the transitions that result from joint dialogue actions Recall that a
dialogue is a sequence:

a|D = [
tell(1, j1, k1, v1),
tell(2, j2, k2, v2),
...
tell(N, jN , kN , vN )

]

In addition to the general behavior model, we impose furtherconstraints on the proba-
bilistic characterizationPri as follows:

• External world transitions:

Pr〈ai|W 〉(〈si|W , si|D〉, 〈s′i|W , s′i|D〉) = Prai|W
(si|W , s′i|W )

where the transition only happens when all the agents agree to act, namely the
action bitzj in si|D is set to1 for all j = 1 . . . N assuming there is a synchro-
nization protocol to achieve these. Other approaches are possible, for example,
in the joint probability action model we can specify the utility of the joint actions
with some agents being idling, and having actions bits or timing information en-
abled in the dialogue states to embed the action synchronization problem into the
utility model. We will leave this possibility for future research.

• Dialogue state transitions:

Pr〈ai|D〉(〈si|W , si|D〉, 〈si|W , s′i|D〉) = Prai|D
(si|D, s′i|D)

when the action bitzj in si|D is not set to1 for all j = 1 . . . N .
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Definition 11 For the joint dialogue state transition characterization,setPra|D
(s|D, s′|D) =

1, if for everyi = 1 . . . N

• Prai|D
(si|D, s′

i|D) = 1,

• Praj|D
(si|D, s′

i|D) = 1 for all the j 6= i

otherwisePra|D
(s|D, s′|D) = 0. Correspondingly the communication cost is

Ca|D
(s|D, s′|D) = ΣN

i=1Cai|D
(si|D, s′i|D)

if Pra|D
(s|D, s′|D) > 0.

6.4 A specific version ofFi|W→D and Fi|D→W

Having described our general model of team planning with communication, the last
thing we do in this paper is to describe a specific implementation of the these functions.

Definition 12

Fi|W→D(si|W ) = {si|D}

wheresi|D is the agentTi’s dialogue state with

• xi,i,k set to their corresponding values of its world statesi|W

• lxi,i,k set to 1; and otherlxi,j,k set to 0

• all cxi,j,k set to 0 (forj = 1 . . . N )

Definition 13

Fi|W→D(ai|W ) = {si|D}

wheresi|D is the agentTi’s dialogue state with

• xi,i,k set to their corresponding values of its world actionai|W

• lxi,i,k set to 1; and otherlxi,j,k set to 0

• all cxi,j,k set to 0 (forj = 1 . . . N )

Definition 14

Fi|D→W (si|D) = {si|W }

wheresi|W is the agentTi’s dialogue state with the bit values of the world statesi|W

are set corresponding to those insi|D.

Definition 15

Fi|D→W (si|D) = {ai|W }

whereai|W is the agentTi’s dialogue state with m the bit values of the world stateai|W

are set corresponding to those insi|D.
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7 Related Work

The work we describe here differs from existing work onMDP models of multiagent
systems in a number of ways. Perhaps most obviously, in the simplest model of mul-
tiagent MDPs [2], only actions are decomposible into individual agents’ actions —
states, state transition probabilities and rewards are specified for the whole system.
Thus whereas our model reflects our focus on ad-hoc teams thatare composed of in-
dependent elements that are brought together for a specific operation, the model in [2]
considers the team to be the basic component and factors the individual agents’ actions
out from the joint policy.

In [1], the DEC-MDP model for external world is similar to our, but their commu-
nication model is just “yes” or “no” on whether individual agent should communicate
the whole vector of local state variables to all the other agents. In their model, a my-
opic decision is made on whether to communicate or not, and only one-short or ak-step
look ahead benefit of the communication is considered, and the approach doesn’t revise
the external world policy and its expected utilities when revising the communication
policy. This is so partly because their model does not have asclean a concept as ours
for how communication can affect the execution of a externalworld policy and in turn
affect the expected utility of the policy.

Another model that is similar to the one we describe is theCOM-MTDP (commu-
nicative multiagent team decision problem) [5].COM-MTDP is multiagent teamwork
model based onPOMDP (partial observable Markov Decision Process) models. In the
COM-MTDP model, the system’s states can not be decomposed into individual agents’
states, namely all the agents share the same set of joint states. The system’s joint action
is composed of individual agents’ actions. Then the state transition probabilities and
rewards are defined on the joint states and joint actions. From the same joint state, these
agents can have different observations probabilistically, and collectively the agents can
have joint observations.

The COM-MTDP model also includes a mental state — the belief state — compo-
nent to bridge between the decision theoretic model and the BDI model. The dialogue
state of our model provide some similar functions as the belief state component in the
COM-MTDP model but the dialogue states and dialogue actions are modeled as another
MDP in our system making it a more comprehensive and systematic way to design and
model a team with communication structure in which the team can share their joint
intentions — achieving the goal states from their initial states or maximizing their joint
utilities — and maintain the execution of the courses of actions to achieve their joint
intentions. Another difference is that our model explicitly enables a gradual scheme
of communication by having the agents conduct the communication at the bit level of
their states or observations. Finally, our model can be easily extended to be based on
an underlyingPOMDPmodel.

More recently, along the road ofCOM-MTDP, in [7], a revised model based on
networked distributedPOMDPmodel is proposed. In the model, the joint states can be
decomposed as ours. The model allows the agents to carry out their individual plans
(projected from the join policy) fork steps, and then enter the communication phase
to communicate the observation/action histories to revisetheir original planned joint
POMDPpolicy. The communication scheme they proposed actually also lack long term
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view of how the communication can affect the external policyexecution.

8 Conclusions

In this paper we have described an initial model for team planning with communica-
tion that extends our previous, symbolic, model to become a full decision-theoretic
model. Such a model not only extends the representational capabilities of our previous
work, but also the scope of solution concepts. Whereas beforewe could identify plans
that might work, and plans that were guaranteed to work, solutions to the new model
will also allow us to identify how likely particular plans are to succeed (by looking at
trajectories through the state space) and to compute the expected utility of policies.

Future work will be directed towards the implementation of this approach and its
testing on representative examples of team planning.
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