
Towards the implementation of multiagent planning
dialogues

Yuqing Tang
PhD Program in Computer Science

Graduate Center,
City University of New York

365 Fifth Avenue
New York, NY 10016, USA
Email: ytang@gc.cuny.edu

Timothy J. Norman
Dept of Computing Science
The University of Aberdeen
Aberdeen, AB24 3UE, UK

Email: t.j.norman@abdn.ac.uk

Simon Parsons
Dept of Computer & Information Science

Brooklyn College,
City University of New York

2900 Bedford Avenue
Brooklyn, NY 11210 USA

Email: parsons@sci.brooklyn.cuny.edu

Abstract—To support coalition teams, we are investigating
the use of software agents that can help in planning team
activities, thus reducing the cognitive burden on team members.
Since the timely delivery of information can be crucial to team
performance, we are especially interested in creating plans than
explicitly include communications between team members. In
previous work we developed a formal model of planning and
communication that can support the creation of such plans. Here
we describe how to implement this formal model, in particular
how to map our model into the language of binary decision
diagrams (BDDs), a representation of states and actions forwhich
there are efficient open-source planners.

I. I NTRODUCTION

This paper is concerned with managing collaboration in a
team. In particular, we are interested in teams engaged in mil-
itary missions, and teams in which members may come from
different parts of an international coalition. In such situations,
effective coordination can be problematic, with units unable to
communicate easily, and handicapped by having been trained
to operate under rather different doctrines. Software agents can
support effective collaboration in teams, and can overcome
some of the problems with coalition forces. In particular,
agents can filter messages [13]; coordinate activities [4],
ensure timely delivery of crucial data [15]; and enforce the
correct protocol for team behavior, [8].

In our work, we are particularly interested in how software
agents can help in the planning and execution of missions.
Previously, we have described how to manage appropriate
communication between agents during plan execution [20],
and how to integrate this communication into team plans [21],
developing a mechanism for simulanteously constructing plans
for a team and the communication necessary to carry out the
plan. Here we describe an implementation of this mechanism.

The mechanism centers around a state-space model adapted
from non-deterministic planning [5].Statesare objects that
capture some aspect of a system, andactionsare transitions
between states. States and actions together define astate-
space. When action effects are non-deterministic [5] then what
one seeks for any state-space is apolicy: i.e. a state-action
table to specify which actions one should take in a given

state. We define a non-deterministic domain to be a tuple
M = 〈P ,S,A,R〉 where:

• P = PS ∪ PA is a finite set of propositions;
• S ⊆ 2PS is the set of all possible states;
• A ⊆ 2PA is the finite set of actions; and
• R ⊆ S ×A× S is the state-transition relation.

A propositional languageL with quantification extension can
be defined by allowing standard connectives∧,∨,→,¬ and
quantifiers∃, ∀ over the propositional variables. The resulting
language is a logic of quantified boolean formulae (QBF)
[2]. Now, QBF formulae can be represented using a data
structure called a Binary Decision Diagram (BDD) [2], and
the advanatge of this representation that is able to efficiently
compute the operations that are necessary for planning. This is
exactly way that the current state of the art planning systems
are implemented [5] — they takeQBF descriptions of states
goals and actions, translate these intoBDDs and compute
policies from them.

The key insight in [21] is that since communication is
another form of action, we can adapt the kinds of model
described in [5] to not only come up with a policies that
include physical actions, what we callworld policies, but with
policies for communication, which we calldialogue policies.
Indeed, we can, as described in [21], come up with policies
that merge communication and physical action.

Now, to provide an implementation that can create such
policies automatically, we have to provide a means to specify
descriptions of world states, or physical actions, or dialogue
states and dialogue actions inQBFS that can then be translated
into the BDDs that can be fed into planning algorithms.
In fact, we go further. Rather than expecting states, goals
and actions to be specified asQBFs, we want to provide a
more human-readable language, anontology for describing
the kinds of team coordination scenario that we are interested
in, and have our implementation automatically translate this
into the BDD description. In addition to making the system
more user-friendly, this additional level of abstraction will
make it easier to experiment with different ontologies for
describing scenarios, and simpler to connect this work with



the collaborative planning model CPM [14].

II. A N ONTOLOGY

The main contribution of this paper is to present an ontology
that can be used to describe a specific domain and the mapping
from this ontology into theBDD format that can be used as
input to a system, such as [11] which can create plans. We aim
to do this in a very general way, intending that as much of the
process as possible be automated, and providing algorithms
that can do this automation.

A. A Heirarchy of Attributes

We start with the logical attributes that capture properties
of a domain. An attribute is formally defined as:

ATTRIBUTE ::≡ ATOMIC_ATTRIBUTE

|COMPOUND_ATTRIBUTE

ATOMIC_ATTRIBUTE ::≡

〈NAME〉 〈WIDTH〉

COMPOUND_ATTRIBUTE ::≡

〈NAME〉 ATTRIBUTE_LIST

ATTRIBUTE_LIST ::≡

ATTRIBUTE_LIST ATTRIBUTE|ATTRIBUTE

where 〈NAME〉 is a string to name the attribute, and
〈WIDTH〉 is an integer to describe the number of informa-
tion bits are needed to represent the attribute1.

The set of attributes that describe a domain stand in a com-
positional heirarchy. The attributeJOINT_STATE, which
appears in every specification capturing the state space of
the whole team that is being modelled (and which is the
input to the planner), will haveN sub-attributesSTATE

of individual team members (assuming we haveN team
members in the system). An individual’sSTATE might be
further decomposed intoSELF_LOCATION (the agent’s
location), ENEMY _LOCATION (the enemy’s location)
and so on. However, the planning algorithm will only need
to understandJOINT_STATE and will ignore the detailed
structure of theJOINT_STATE.

B. Mechanisms to Assign BDD Variables to Attributes

Attributes thus provide a general language for describing a
domain. To plan, we need to convert this into a set ofBDDs. A
BDD is just a representation of all the possible models of a set
of propositional variables, so establishing a set ofBDDs from
a set of attributes comes down to assigning aBDD variable to
each variable in the set of attributes.

The basis of any process to do this assignament is what call
the BDD variable locator,ATTR_LOCATOR, which keeps
track of which BDD variables have already been assigned to
which attributes. This has the following function:

• [name1][name2] . . . [nameh]: locate an attribute (either
compound or atom) (and all itsBDD variables)

1The number of bits is necessary because of the subsequent translation into
QBFs — each bit requires a propositional variable to encode it.

• [name1][name2] . . . [nameh][ith]: locate theith bit of
the attribute[name1][name2] . . . [nameh] (if this is not
an atom attribute, theBDD variables will be num-
bered by pre-order traversing the sub-attributes rooted at
[name1][name2] . . . [nameh])

• [name1][name2] . . . [nameh][ith, jth]: locate the bits
from the ith bit to the jth bit of the attribute
[name1][name2] . . . [nameh]

Given this we can implement a simple mechanism which
assignsBDD variables fromx0 to xK to an attributeATTR

whereK is the width of theATTR. The assignment is done
in preorder by traversing the hierarchy of attributes from the
root to the bottom and from left to right. Since the size of the
resulting BDD is highly related to the ordering in which the
BDD variables are assigned to the attributes, we make use of a
frequently used assignment mechanism. The mechanism will
require additional inputs in the form of a set of pairs:

INTERLEAV ES =

{〈ATTR_LOCATOR, ATTR_LOCATOR′〉}

which denote attributes for which theBDD variables may be
interleaved in theBDD. For example, ifINTERLEAV ES

contains〈[js][s1], [js][s2]〉, then theBDD variables assigned to
agentsT1 andT2’s states will be interleaved. It is also useful
to be able to identify a list of attribute pairs or attribute bit
pairs that should be assigned the same (sub-)vector ofBDD

variables, thus reducing the size of theBDD:

UNIFIED =

{〈ATTR_LOCATOR, ATTR_LOCATOR′〉}

This is another mechanism used in the planning literature to
reduce the information needed by the planning algorithms [7].

Finally, we can also make use of additional information
about the domain that allows us to assign the BDD variables
in some preset order. We capture this information as:

〈ATTR_LOCATOR1,

ATTR_LOCATOR2, . . . ATTR_LOCATORk〉

These assignment mechanisms are sufficient for our current
experiments, but there are others that can be used for more
complex problems [10].

C. Operations on attributes

The system implements the following operations on at-
tributes:

• Clone: Clone(attr) will clone the system of and at-
tribute and return an attribute with the same structure
asattr and temporarily with the same name asattr

• +: attr(n) = attr1(n1) + attr2(n2) + . . . + attrN(nN )
means that a compound attribute namen
is formed by having a list of attribute
attr1(n1), attr2(n2), . . . , attrN(nN ).

• Name: Name(attr, newName) will name theattr with
a new namenewName. It is usually used in combi-
nation with Clone. attr1(n′) = Clone(attr2(n)) is a



shortcut of two steps:attr1 = Clone(attr2(n)) and
Name(attr1, n′).

As we will see, these operations are necessary to support the
automatic creation of dialogue states and actions for a domain.

D. Relations on Attributes

For this paper, the equality relation= is defined as

ATTR_LOCATOR1 = ATTR_LOCATOR2.

The equality relation contains all the equal pairs of valuesin
attributes ATTR_LOCATOR1 and ATTR_LOCATOR2

(it is required that the two attributes are of the same width).
Other relations have been implemented forBDD representa-
tions, but for now the equality relation constant is sufficient.

U(ATTR_LOCATOR1, ATTR_LOCATOR2,

{REL_ATTR_LOCATORi}) ::≡

((ATTR_LOCATOR1 − {REL_ATTR_LOCATORi})

= (ATTR_LOCATOR2 − {REL_ATTR_LOCATORi})

whereATTR_LOCATOR−{REL_ATTR_LOCATORi}
stands for the set of BDD variables located by
ATTR_LOCATOR but excluding the variables located by
ATTR_LOCATOR[REL_ATTR_LOCATORi], and “U”
stands for unitary. When{REL_ATTR_LOCATORi} is
empty, the “U” becomes a synonym for=.

III. C ONSTRUCTING AND EXECUTING POLICIES

Given an ontology that is composed of a set of attributes as
above, we can turn to the information that must be encoded
in terms of these attributes if we are to create team plans.

A. Joint policy context

For now we consider that plans are created centrally (dis-
tributed planning is future work) with the planner operating
on descriptions of thejoint state, that is the state of all
team members, andjoint action, that is the combination of
all possible actions by all team members. All the necesary
information about the joint state is collected in the set of
attributes that describe all the possible sets of joint state js,
joint action ja, and next joint statejs′ (this is the typical
way to describe state spaces in this kind of planning) –
we call this thejoint policy context. This can be composed
out of the sets of attributes that describe individual agents’
state and action information as shown in Procedure 1. The
attributes for individual agents, which containsSTATE(si)
and ACTION(ai) for every agentTi, will be specific to a
given domain, and will be the input to the system we describe.

B. Dialogue context

A key aspect of our work is the integration of communica-
tion — which we think of as being in the form of adialogue
between team members — into the plans we construct. These
dialogues are included in the plan to reduce undertainty that
team members face as a result of their incomplete knowledge
about the states of other team members. Here we will outline a

Procedure 1Compose Joint Policy Context

1: function ComposeJointAttributes(WS) {
(1) WS = {Wi} is a set of individual’s world context
with Wi = {si, ai}}

2: JSTATE(js)← Σisi

3: JSTATE(ja)← Σiai

4: JSTATE(js′)← Clone(js)
5: WorldContext← {js, ja, js′}
6: return WorldContext

7: end function

way to construct the set of attributes that describe a dialogue,
what we call thedialogue context, automatically out of the
joint policy context, and then describe not only how to create
a policy for action and a policy for dialogue, but also how to
go about executing these policies as well.

We start by considering how to construct the necessary
dialogue system from the joint policy context. There are many
ways to do this — what we present is just one of these ways
(a fuller analysis of the different ways that we might do thisis
left for future work). We begin with the joint policy context:

W = {js, ja, js′}

where

• js is the set of joint state attributes, which includes
descriptions of individual statessi (i = 1, . . . , N );

• ja is the set of joint action attributes, which includes
descriptions of individual actionsai (i = 1, . . . , N ); and

• js′ is the set of next joint state attributes, which includes
descriptions of indivdual next statess′i (i = 1, . . . , N )

In addition, we need to denote the information about one agent
that is available to another (since communication takes place
exactly when one agent needs information that it doesn’t have
access to), and what information has been exchanged. The
set of attributes that describe the availability of information
between agents can be constructed as:

AL_BITS(ali) = Clone(js) + Clone(ja)

This denotes the availability of the bits of the informa-
tion about a joint state-action pair in a policy. Similarly,
AL_BITS[ali][js][sj ] is the availability of agentj’s state
information in the information that agenti’s has, and
AL_BITS[ali][ja][ai] is the availability of agentj’s action
information to agenti. The set of attributes that describe the
information that is communicated between agents is then:

CM_BITS(cmi,j) = Clone(si) + Clone(ai)

This denotes whether bits of information regarding agenti’s
state and action have been communicated to agentj. Now,

CM_BITS(cmi) = Σj 6=icmi,j

is the set of communication bits of agenti, and
CM_BITS[cmi][cmi,j ][si][k] denotes the communication bit



of the kth bit of agentTi’s state variables, which denotes
whether or not this has been communicated to agentTj.

From these components, we can construct a dialogue sys-
tem. The description of the dialogue state of agentTi in the
joint state{js, ja, js′} can be computed as:

DIAL_STATE(dsi) = js + ja + ali + cmi

And we can also compute the set of dialogue actions available
to Ti. If agentTi has the ID:

AGENT_ID(ag_id) ::≡ name(ag_id) width(⌈logN⌉),

the IDs of the state and action variables that describe the state
and action of an agent are:

V AR_ID(v_idi) ::≡

name(v_idi) width(⌈log(max(width(si), width(ai)))⌉)

and the variable indicating the selection of whether to tellthe
action or the state:

INFO_DIM(dim) ::≡ name(dim) width(1),

(where dim = 0 means a state variable is conveyed, and
dim = 1 means an action variable is conveyed) and the value
of a variable is encoded as

V ALUE(vv) ::≡ name(vv) width(1),

thenTi can carry out dialogue actions:

DIAL_ACTION(dai) ::=

name(dai) list(dim, v_idi, ag_id, vv)

meaning that agentTi tells the agent with ID encoded inag_id

the value encoded invv, where this is the value ofTi’s state
or action variablev_idi indicating bydim. For convenience
we write:

dai[sv_idi] = k ::≡ (dai[dim] = 0) ∧ (dai[v_idi] = k)

dai[av_idi] = k ::≡

(dai[dim] = 1) ∧ (dai[v_idi] = (k + width(si)).

A similar construction for every{js, ja, js′} will give the full
set of dialogue acts forTi, meaning thatTi can communicate
(or not) the value of all of the variables that encode its state,
and all the actions that it can carry out, across all possible
states that it might be in. If we do this unrolling of all the
dialogue states and actions for every agent, we can establish
the joint dialogue state as:

JOINT_DIAL_STATE(jds) = Σidsi

and the the joint dialogue actions as:

JOINT_DIAL_ACTION(jda) = Σidai

Procedure 2 formalises the procedure by which dialogue
context can be built from the joint policy context.

Procedure 2Compose Dialogue Attribute Context

1: function ComposeDialContext(W ) {
(1) W ⊇ {js, ja} is the world attribute context}

2: Composejds and jda out of js and ja (as defined in
Section III-B)

3: DialContext← {jds, jda}
4: return DialContext

5: end function

C. Dialogue State Transitions

Given the dialogue actionda, we can specify a correspond-
ing message that can be passed between agents:

[tell(i, j, si[k], v)] =

(dai[sv_idi] = k) ∧ (dai[ag_id] = j) ∧ (dai[vv] = v)

[tell(i, j, ai[k], v)] =

(dai[av_idi] = k) ∧ (dai[ag_id] = j) ∧ (dai[vv] = v)

These can then be used to specify transitions between the
dialogue states. Thustell(i, j, si[k], v) creates the transition:

Ri
i,j,k|S,D =

(dsi[js][si][k] = v) ∧ (dsi[al][js][si][k] = TRUE)

∧ (dsi[cmi][cmi,j ][si][k] = FALSE)

∧ [tell(i, j, si[k], v)]

∧ (ds′i[cmj ][si][k] = TRUE)]

∧ (U(dsi, ds′i, {[cmj][si][k]}))

This means that if the value of a bit that can diambiguate
the global state is available, and hasn’t been communicated
to agent Tj , then this information should be sent out to
Tj, and the communication should be recorded. There is a
corresponding transition for agentTj :

R
j

i,j,k|S,D
=

(dsi[al][si][k] = TRUE)

∧ [tell(i, j, si[k], v)]

∧ (ds′j [al][si[k] = 1)] ∧ (ds′j [js][k] = v)

∧ (U(dsj , ds′j , {[js][k]}))

while for all other agentsTl with l 6= j, i,

Rl
i,j,k|S,D = TRUE

We also have update rules for when the state is known but it
is still unclear which actionTj should take. ForTi this is:

Ri
i,j,k|A,D =

(dsi[js][ai[k]] = v) ∧ (dsi[al][js][ai][k] = TRUE)

∧ (dsi[cmi][cmi,j ][ai][k] = FALSE)

∧ [tell(i, j, ai[k], v)]

∧ (ds′i[cmj ][ai][k] = TRUE)]

∧ (U(dsi, ds′i, {[cmj][k]}))



Procedure 3Compose Dialogue State Transitions

1: function ComputeDialT ransitions(DialContext) {
(1) DialContext = {ds, da, ds′} is the dialogue attribute
context}

2: ComputeR|D as described in Section III-C
3: return R|D

4: end function

and forTj

R
j

i,j,k|A,D
=

(dsi[al][ai][k] = TRUE)

∧[tell(i, j, ai[k], v)]

∧(ds′j [al][ai[k] = TRUE)] ∧ (dsj [ja][k] = v)

∧(U(dsj , ds′j , {ja[ai][k]}))

while for all agentsTl with l 6= j, i

Rl
i,j,k|A,D = TRUE

In total2, we have the following state transitions for
tell(i, j, ai[k], v)

Ri,j,k|A,D = Ri
i,j,k|A,D ∧R

j

i,j,k|A,D
∧

∧

l 6=j,i

Rl
i,j,k|A,D

, and fortell(i, j, si[k], v)

Ri,j,k|S,D = Ri
i,j,k|S,D ∧R

j

i,j,k|S,D
∧

∧

l 6=j,i

Rl
i,j,k|S,D

.
In total, we can have the following dialogue system:

R|D =
∧

i

∧

j

∨

k

(Ri,j,k|S,D ∨Ri,j,k|A,D)

and Procedure 3 will construct the set of all dialogue state
transitions from the dilaogue attributes which themselveswere
built from the components joint policy context{js, ja, js′}.

D. Policy Execution

The state-space model described above allows us to describe
the world in which an agent finds itself, and the actions it can
undertake. We now turn to considering what the output of
planning process will be. We call this output apolicy, and we
consider it to simply be a set of state-action pairs,

π = {〈si, ai〉}

wheresi ∈ S andai ∈ A(s) with

A(s) = {a|∃〈s, a, s′〉 ∈ R}

that is the set of actions that are applicable ins. A policy
π is a deterministic policy, if for a given states, there is
no more than one action is specified byπ, otherwise it is a

2Ri
i,j,k|A,D

and R
j

i,j,k|A,D
are of a simplified version here. In a real

implementation, the frame intertial description will be ina more complicated
form thanU(dsi, ds′i, . . .) because of the need to take into account the effect
of simultaneous dialogue actions.

non-deterministic policy. What we are calling a policy is the
state-action table of [5]. It is also related to what the literature
on MDPs calls a policy [1], but we allow a policy to only
specify actions for a subset of all possible states. The space
of all policies is denoted byΠ. The set of states in a policy
π is Sπ = {s|〈s, a〉 ∈ π}. Adapting from [5], we have the
following definition:

Definition 1: An execution structureinduced by the policy
π from a set of initial statesI is a directed graphΣπ(I) =
(Vπ , Eπ) which can be recursively defined as

• if s ∈ I, thens ∈ Vπ , and
• if s ∈ Vπ and there exists a state-action pair〈s, a〉 ∈ π

such that〈s, a, s′〉 ∈ R, thens′ ∈ Vπ anda : 〈s, s′〉 ∈ Eπ

where the actiona is the label of the edge.

Procedure 4 gives a suitable procedure for executing poli-
cies. SenseCurrentState will update the current world
state ofTi with sensing.ReceiveCommunication will up-
date the dialogue state by the communication it received.
RefineDecision is a function to refine the external world
action decision by utilizing the information in the dialogue
state and the knowledge of the joint policyπ|W (the reference
to the joint policy can be relaxed however):

RefineDecision(si|W , ai|W , si|D) =

∃~x−ai|W
si|W ∧ si|D

∧ U(ai, js[ai]) ∧ U(si, dai[ai])

∧

N∧

j=1

(dsi[ali][aj ]→ U(ja[aj ], dsi[aj ])

∧
N∧

j=1

(dsi[ali][sj ]→ U(js[sj ], dsi[sj ])) ∧ π|W

where~x−ai|W
is the vector ofBDD variables in the formula

other than those ofai|W . A simple example is that the
dialogue state contains full information of the other agents’
state-action pairs, so that an individual agent can choose a
unique local action to ensure that the necessary joint state
transition is completed.RefineDialState is to refine the
dialogue state based on its local sensing and decision, and have
the information ready for communicating to other agents:

RefineDialState(si|W , si|D) =

∃~x−ai|D
si|W ∧ si|D

∧ U(ai, js[ai]) ∧ U(si, dai[ai])

∧ U(ja[ai], dsi[ai])

∧ U(js[si], dsi[si])) ∧ π|W

where~x−si|W
is the vector of BDD variables in the formula

other than those ofsi|W .

E. Creating world and dialogue policies

A world policy and associated dialogue policy can be
created with an instantiation of Procedure 5, an adaptation
of standard non-deterministic planning techniques to include



Procedure 4Execution of a world policy of agentTi

Input: πi|W : A local policy for Ti

Input: πi|D: A local dialogue policy forTi

1: loop
2: si|W ← SenseCurrentState(si|W )
3: si|D ← ReceiveCommunication(si|D)
4: ai|W ← ∃~xi|W

(si|W ∧ πi|W )
5: ai|W ← RefineDecision(si|W , ai|W , si|D)
6: if |ai|W | = 1 then
7: Executeai|w

8: si|D ← FALSE {Reset the dialogue state for a new
round of communication}

9: else
10: si|D ← RefineDialState(si|W , si|D)
11: ai|D ← ∃~xi|D

(si|D ∧ πi|D)
12: if |ai|D| = 1 then
13: Executeai|D

14: end if
15: end if
16: end loop

Algorithm 5 World policy generation (high level description)

1: function ComputeWorldPolicy(W, D, I, G, R) {
(1) W = {js, ja, js′}: The world policy context,
(2) D = {ds, da, ds′}: The dialogue context,
(3) I : Initial states,
(4) G: Goal states,
(5) R: Joint world state transition }

2: repeat
3: Search the execution structure (forward, backward, or best-

search) ofR betweenI andG
4: for all joint decision〈sk, ak〉 searcheddo
5: if 〈sk, ak〉 is not feasiblethen
6: Continue
7: end if
8: if 〈sk, ak〉 can be executed by individual agents without

coordination then
9: Add 〈sk, ak〉 to the world policy

10: else if 〈sk, ak〉 can be coordinated by a dialoguethen
11: Add 〈sk, ak〉 to the world policy
12: Plan a dialogue for〈sk, ak〉, and add it into the dialogue

policy
13: end if
14: end for
15: until A successful joint policy and dialogue policy are reached

or fully explored the execution structure
16: end function

dialogue planning. A sound and complete instantiation of this
procedure can be found in [21].

With the attributes for world policy and dialogue policy, we
will have a overall system showed in Procedure 6. This gives
all the steps in the process, from the composition of individual
states and actions into joint descriptions, the synthesis of the
dialogue model, the composition of the overall policies, and
the projection of those policies to the individual agents. In the

Procedure 6Overall System

Input: IndividualStateT ransitionOntology : {Wi} with
Wi = {State(si), State(ai)}

Input: {Ii}, {Gi}, {Ri}, βI , βG, βR

1: W ← ComposeJointAttributes({Wi})
2: D ← ComposeDialAttributes(W )
3: I ←

∧
i Ii ∧ βI

4: G←
∧

i Gi ∧ βG

5: R←
∧

i Ri ∧RI

6: R|D ← ComputeDialT ransition(D)
7: 〈SA|W , SA|D〉 ← ComputeWorldPolicy(W, D, I, G, R)
8: {〈SAi|W , SAi|D〉} ← ProjectT oLocalPolicy(SA|W , SA|D)
9: return W, D, {SAi|W }, {SAi|D}

procedure,

ProjectT oLocalPolicy(SA|W) = ∃−SAi|W
SA|W

ProjectT oLocalPolicy(SA|D) = ∃−SAi|D
SA|D

where−SAi|W and−SAi|D means theBDD variables other
than those ofSAi|W andSAi|D respectively.

IV. A N NGO EXAMPLE

To demonstrate the function of the system, we will run
the system through an NGO example that is based on the
example in [3]. Two agents, one representing an NGO (N ) and
one representing a peace-keeping force (F ), are working in a
conflict zone. The agents (and the organizations they represent)
work independently and have different agendas.N is based at
A in Figure 1. F is based atH . N ’s goal is to reachD
to help the villagers there.F ’s goal is keeping the peace in
general in the area, but it also has to protectN while N is
carrying out its work. At any time, with some probability, some
disruption may flare up atW . If it happens, onlyF has the
surveillence data to know this is happening, andF must go to
W to suppress the disturbance. The routes between different
points are shown as arcs in Figure 1.N cannot traverse the
routes(J, W ), (W, C), (W, B), when there is a disturbance at
W , and it is only able to traverse(C, D) and(B, D) without
harm when it is accompanied byF . N can traverse the rest
of the routes independently andF can traverse any route. The
goal of the agents is to haveN reachD and to haveF put
down the conflict inW if it happens.

We first need to specify are the attributes that define the
ontology we need to encode information about the scenario.

A. Common attributes

We need to describe locations, the ability to move, and the
fact that there are discrete routes between different locations.
Thus we have:

location(location) ::≡ name(loc) width(3)

move(move) ::≡ name(move) list(loc, loc′)

loc(loc) ::≡ clone(location)

loc′(loc′) ::≡ clone(location)

Route(Route) ::≡ name(Route) list(loc, loc′)
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Fig. 1. An NGO team task

where possible location values are the encodings ofA, B, C,
D, H , J andW . The map can then captured as:

route = {(A, J), (H, J), (J, W ), (J, C),

(J, B), (W, C), (W, B), (C, D), (B, D)}

βroute =
∨

(x,y)∈route

(route[loc] = x) ∧ (route[loc] = y)

B. The NGO agent

Next we consider attributes that are specific to theNGO

agent:

STATE(sN) ::≡ name(sN) list(loc, health)

health ::≡ name(health) width(1)

ACTION(aN ) ::≡ name(aN) list(stay, move)

stay ::≡ name(stay) width(1)

We use the propositionhealth to capture the fact that the
NGO will suffer it it tries to move in certain places without
the presence of the peace-keeping force. Then, considering
sN , s′N andaN , we have:

RmoveN
= (sN [loc] = aN [move][loc])

∧ (s′N [loc] = aN [move][loc′])

∧ (aN [stay] = FALSE)

RstayN
= (sN [loc] = s′N [loc]) ∧ (aN [stay] = TRUE)

and with the unified list of attributes〈aN [loc], route[loc]〉,
〈aN [loc′], route[loc′]〉 we have:

βrouteN
= βroute∧

¬(
∨

(x,y)∈{(J,W ),
(W,C),(W,B)}

route[loc] = x ∧ route[loc′] = y)

which gives the constraint on theNGO’s movement, and

RN = RstayN
∨ (RmoveN

∧ βrouteN
)

which says that theNGO either stays in one place or moves
along an allowed route.

C. The peace-keeping force

Nest we turn to the attributes specific to the peace-keeping
force:

STATE(sF ) ::≡ name(sF ) list(loc, conflict)

conflict ::≡ name(conflict) width(1)

ACTION(aN ) ::≡ name(aN ) list(move)

Now, with the unified list: 〈aF [loc], route[loc]〉, 〈aF [loc′],
route[loc′]〉 we have:RF = RmoveF

RmoveF
= (sF [loc] = aF [move][loc])

∧(s′F [loc] = aF [move][loc′]) ∧ βrouteF

∧(aF [move][loc′] = W → sF [conflict] = FALSE)

and, since the peace-keeping force can move along any route:

βrouteF
= βroute

D. Joint state and actions

From the above, Procedure 1 will generate joint state and
joint action descriptions. The joint state will be

JSTATE(js) = Σisi.

and sincesi ∈ {sF , sN}, this will become:

JSTATE(js) = sF + sN

Similarly, the joint action will be:

JSACTION(ja) = Σiai.

and sinceai ∈ {aF , aN}, this will become:

JSACTION(ja) = aF + aN

Given the joint state and joint actions, the constraint on the
health of theNGO becomes:

βhealth = [[¬(ja[aF ][loc] = B ∧ ja[aF ][loc′] = D)

∧ (ja[aN ][stay] = FALSE)

∧ (ja[aN ][loc] = B ∧ ja[aN ][loc′] = D)]

∨[¬(ja[aF ][loc] = C ∧ ja[aF ][loc′] = D)

∧ (ja[aN ][stay] = FALSE)

∧ (ja[aN ][loc] = C ∧ ja[aN ][loc′] = D)]]

∧ js′[sN ][health] = FALSE

In total:
R = RF ∧ FN ∧ βhealth

E. Initial and terminal states

We have the following initial state:

I1 = (js[sN ][loc] = “A′′) ∧ (js[sN ][health] = TRUE)

I2 = (js[sF ][loc] = “H ′′) ∧ ((js[sF ][conflict] = TRUE)

∨ (js[sF ][conflict] = FALSE))

I = I1 ∧ I2

and the goal is:

G1 = (js[sN ][loc] = “D′′) ∧ (js[sN ][health] = TRUE)

G2 = (js[sF ][conflict] = FALSE)

G = G1 ∧G2

and this completes all the information we need to apply
Procedure 6.



V. CONCLUSIONS

This paper takes an important step towards the implemen-
tation of the combined dialogue and planning system we
proposed in [20], [21]. This system is built around a state-
transition model which is specified using a set of attributes
related to multiagent planning and dialogue. Different applica-
tions can specify their own set of atttributes, and the algorithms
described here will produce joint plans and dialogues for those
applications without detailed knowledge of the relevant states
and actions.

In addition, the ontology we describe here can potentially
serve as a bridge to a more comprehensive collaborative
planning ontology, such as CPM, and the similarity between
our state transition model and those used in decision-theoretic
planning suggest that we can use MDP-based approaches to
planning along with those described here.

As discussed by [18], teamwork requires requires the
establishment of joint intentions and the determination of
which goals to achieve, the creation of a plan, the sharing
of knowledge about the environment in which the team is
operating, and the ability to monitor plan execution. While
we do not claim that what we have described in this paper
is a comprehensive model of teamwork — it is much less
powerful and comprehensive than Teamcore [19], Retsina [17]
or GPGP/TÆMS [12], for example — it marks a useful
step towards our overall goal of constructing a model of
argumentation-based dialogue that can support many of the
important aspects of teamwork. In particular, it deals with
planning and the sharing of information.

One obvious area of future work is moving from a cen-
tralised planning process, which just hands every agent a
policy that will help the team achieve its goals, to a decen-
tralised process in which agents can engage in a discussion
of the best plan. For that we plan to combine our prior
work on argumentation-based planning [22], which assumes a
simple, deteministic model of actions, with the work we have
described here. Another area of future work, which addresses
the main area in which our model falls short of a model of
teamwork, is to consider the formation of joint intentions.Here
there is a rich vein of work to draw on, for instance [6], [9],
and we will seek to incorporate this into our model. Finally,
we mean to explore the connections between the model we
are using here and those for decision theoretic planning [1]
and multiagent reinforcement learning [16].
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