
Learning to communicate more efficiently in
human-agent teams

Yuqing Tang
Graduate Center

City University of New York
New York, NY 10016, USA

ytang@cs.gc.cuny.edu

David Emele
Dept of Computing Science
The University of Aberdeen
Aberdeen, AB24 3UE, UK

c.emele@abdn.ac.uk

Timothy J. Norman
Dept of Computing Science
The University of Aberdeen
Aberdeen, AB24 3UE, UK
t.j.norman@abdn.ac.uk

Simon Parsons
Brooklyn College,

City University of New York
Brooklyn, NY 11210 USA

parsons@sci.brooklyn.cuny.edu

Abstract—We are developing software agents that can help
support the work of human teams. In order to be useful, these
agents must be able to adapt their behavior, learning over time
how to better serve the human members of the teams. In previous
work, we have demonstrated how agents can use techniques from
machine learning to improve the performance of agents that
identify organisational policy contraints of coalition partners. We
have also identified mechanisms that agents can use for planning
the communication that supports team activities. In this paper
we describe how to combine these lines of work, showing how
agents can use learning to improve their performance, both to
identify more efficient communication patterns, and to construct
communication policies more efficiently.

I. INTRODUCTION

This paper is concerned with managing collaboration in a
team [1]. In particular, we are interested in teams engaged in
military missions, and teams in which members may come
from different parts of an international coalition. In such situ-
ations, effective coordination can be problematic, with units
unable to communicate easily, and handicapped by having
been trained to operate under rather different doctrines. Soft-
ware agents can support effective collaboration in teams, and
can overcome some of the problems with coalition forces. In
particular, agents can filter messages [13]; coordinate activities
[6], ensure timely delivery of crucial data [17]; and enforce
the correct protocol for team behavior, [11], [12].

In our work, we are particularly interested in how software
agents can help in the planning and execution of missions.
Previously, we have described how to manage appropriate
communication between agents during plan execution [18],
and how to integrate this communication into team plans [19],
developing a mechanism for simultaneously constructing plans
for a team and the communication necessary to carry out the
plan.

In addition, we are interested in the question of how soft-
ware agents can improve their performance over time. In any
collaborative environment, we can do better once we are used
to our teammates’ behavior — we can anticipate their actions
and needs and modify our own behavior to better fit with
theirs. In [10], [9] we have been investigating how software
agents can learn the policy constraints that apply to their
teammates, showing that techniques from machine learning

can significantly improve performance and, in the context of
negotiation, reduce the time taken to reach agreement.

In this paper we look at combining these two lines of work,
considering how learning can be incorporated into planning for
teams. The paper is structured as follows. Section II describes
our previous work on team planning and introduces the formal
model that is used in the paper. Section III describes our
previous work on learning policy constraints. Section IV then
describes how the formal model is extended to incorporate
dealing with policy constraints, and we show how these can
be integrated into the planning process, making it possible to
use our prior work on machine learning in this context. Finally,
Section V concludes.

II. MULTIAGENT SYSTEMS AND DIALOGUES ON
SYMBOLIC TECHNIQUES

This work uses a state-space model as a basis for the for-
malisation. This model is an adaptation of a model commonly
used in non-deterministic planning [7]. States are objects that
capture some aspect of a system, and actions are transitions
between states. States and actions together define a state-
space. When action effects are non-deterministic then what
one seeks for any state-space is a policy: i.e. a state-action
table to specify which actions one should take in a given state.
We define a non-deterministic state-transition domain (NSTD)
to be a tuple M = 〈P,S,A,R〉 where:
• P = PS ∪ PA is a finite set of propositions;
• S ⊆ 2PS is the set of all possible states;
• A ⊆ 2PA is the finite set of actions; and
• R ⊆ S ×A× S is the state-transition relation.

We model how the agents can influence the external world as
a policy, and we consider it to simply be a set of state-action
pairs,

π = {〈si, ai〉}

where si ∈ S and ai ∈ A(s) with A(s) = {a|∃〈s, a, s′〉 ∈ R}
that is the set of actions that are applicable in s. A policy π is a
deterministic policy, if for a given state s, there is no more than
one action specified by π, otherwise it is a non-deterministic
policy. What we are calling a policy is the state-action table
of [7]. While the current model is concerned with the logical
structure of states and state transitions, it is our future work to

extend the model with probability and utility values attached
to states or state transitions. With this extension in mind, the
concept of policy in this model is also related to what the
literature on MDPs calls a policy [3].

We define a propositional language L with quantification
extension over the proposition variables by allowing standard
connectives ∧,∨,→,¬ and quantifiers ∃,∀. The resulting
language is a logic of quantified boolean formulae (QBF) [4].
A symbol renaming operation, which we use below, can be
defined on L. For a formula ξ ∈ L, if ~x and ~x′ are two
vectors of propositional variables, then a variable renaming
operation can be defined by ξ[~x/~x′] which means that all the
appearances of variables ~x are substituted by ~x′. In QBF,
propositional variables can be universally and existentially
quantified: if ξ is a QBF and x is one of its variables,
the existential quantification of x in ξ is defined as ∃xξ =
ξ[x/FALSE] ∨ ξ[x/TRUE]; the universal quantification of
x in ξ is defined as ∀xξ = ξ[x/FALSE] ∧ ξ[x/TRUE].
Here FALSE and TRUE are two propositional constants
representing “true” and “false” in the logic. Quantification
over a vector ~x = x1x2, . . . , xn of variables is defined
as sequential quantifications over each variable xi in the
vector: Q~xξ = Qxn

Qxn−1
. . . Qx1

ξ where Q is either ∃ or
∀. Similarly, quantifications over a set X = {x1, x2, . . . , xn}
of variables is defined as QXξ = Qxn

Qxn−1
. . . Qx1

ξ. For
the convenience of doing quantifications, given a set X and a
vector ~x of proposition variables, we define −X and −~x to
denote the set of variables that are not in X and ~x respectively.

Multiagent Systems

A multiagent system is composed of N agents, AGS =
{T1, . . . , TN}. We model each agent Ti with a NSTD Mi =
〈Pi,Si,Ai,Ri〉 where Pi = Pi,S ∪ Pi,A, and is associated
with a local policy πi. The multiagent system as a whole is
modeled as a joint NSTD M = 〈P,S,A,R〉 along with
with a joint policy π. The set of proposition variables in
the joint model is the union of those of individual agents:
PS =

⋃N
i=1 Pi,S and PA =

⋃N
i=1 Pi,A. The joint states,

actions, and state transitions are the result of interpreting
PS and PA as in the basic NSTD. The individual transition
relation and the policy can be projected from the joint system:
Ri = ∃−PiR and πi = ∃−Piπ. To distinguish from the
dialogue model below, we call the individual modelsMis, the
joint model Ms, the associated polices πis and the external
NSTDs and policies π.

Dialogue Systems

In addition to the external transition system Mi, each
agent Ti is also associated with dialogue transition system
Mi,D = 〈Pi,D,Si,D,Ai,D,Ri,D〉 and a dialogue policy
πi,D. The joint dialogue system is then defined as, MD =
〈PD,SD,AD,RD〉, along with a joint dialogue policy πD.
The set of propositional variables in the joint model is the
union of those of individual agents: PS,D =

⋃N
i=1 Pi,S,D and

PA,D =
⋃N

i=1 Pi,A,D. The joint dialogue states, actions, and
state transitions are the result of interpreting PS,D and PA,D

as in the basic NSTD. The individual transition relation and
the policy can be projected from the joint dialogue system:
Ri,D = ∃−Pi,DRD and πi,D = ∃−Pi,D

πD. Separate from
the external policy π, the requirement for a dialogue policy
πD is that the individual agent can execute the projected πi,D
without knowing the other agents’ dialogue states so that the
dialogue can help the multiagent system coordinate the joint
external policy execution.

Coordination Dialogues

Using the above general model of multiagent systems and
dialogues, in [19] we proposed a mechanism to coordinate
agents’ execution of a joint plan. This approach takes infor-
mation about external states, state transitions and the joint
policy and generates an appropriate dialogue between agents.
These dialogues are then used to communicate the neces-
sary information between agents. Individual dialogue actions
communicate the values of external state and action variables
to limit the number of dialogue state transitions. A dialogue
policy can be planned by setting the goal dialogue states in
which the external joint states and the policy decisions are
• fully communicated with each other; or
• partially communicated to a point at which every agent

can locally compute a unique joint action from the joint
policy locally.

Assume that the joint policy π is known by all the agents
in the system. The task is to coordinate any joint decision
〈s, a〉 ∈ π of the pre-agreed or planned policy based on any
joint perception s = 〈s1, . . . , sN 〉 of the whole system. As
each agent Ti only holds its local view si, in order to conform
with the joint plan, each agent might need to obtain additional
information from the other agents so that a unique local action
ai can be computed. In order to achieve this, the effective
execution of this coordination dialogue is as the following:
• On perceiving a new state si, agent Ti updates its local

information store ISi with newly perceived external state
si by:

ISi = si ∧ π

• On receiving a message expj,i from another agent Tj , Ti
updates its information store ISi by:

ISi = update(ISi, expj,i)

update is a function to update the information store from
the message received.

• At the end, every agent will need to communicate to a
level such that a unique local action ai can be drawn from
ISi.

This, then, provides us with a mechanism by which software
agents can build a plan for a team, and know what information
needs to be passed between team members in order to make
sure that the plan is executed as intended. However, there is a
major assumption that underlies this work — that the team
members will freely share resources and information. In a
coalition scenario this is typically not the case, and so our

next step is to consider the impact of agents being less open
with each other.

III. ARGUMENTATION-DERIVED EVIDENCE LEARNING

In a coalition, members of different organisations will
typically operate under different policies for the sharing of
information and resources (a specific form of the general
policy defined above on information and resource allocations).
Such policies can hamper coalition operations, especially in
the planning stage where collaborative planning [2], [14]
may involve extended negotiation about the use of resources.
To address this problem, our previous work [10] presents
an efficient approach for identifying, learning and modeling
the policies of others during collaborative problem solving
activities.

The mechanisms we presented in [10] enable agents to build
more effective approaches to constructing plans by keeping
track of who might have, and be willing to provide, the
resources required for the enactment of a plan. In [10], we
argues that agents can improve their communication strategies
by building accurate models of others’ policies regarding
resource use, information provision, and this is backed up by
a series of experiments. In these experiments, we demonstrate
that more accurate models of others’ policies (or norms) can be
developed more rapidly using various forms of evidence from
inter-agent communication. In particular, the approach exploits
the fact that the dialogues are argument-based, that is the
agents pass justifications — arguments — for the information
that they exchange. We learn these justifications, and use them
to predict future responses.

Negotiation dialogues

In argumentation-based dialogues, we assume that agent Ti
has a plan (a subset of the joint plan) requiring the use of a
set of resources R in order to achieve a goal G.

Definition 1: A resource allocation, denoted as Λt
i is a

collection R of resources that an agent Ti has at its disposal
at time t, where t denotes the time step in the dialogue.
• Λt

i ⊆ R, and t = {0, 1, . . . , n}
The negotiation dialogue, as shown in Figure 1, starts with an
agent, Ti (A in the figure), sending a request to another agent,
Tj (B in the figure), for the use of some resources needed to
fulfill a plan. The other agent can then respond with an agree
or refuse based on the policy constraints defined below.

Resourcing policy

A resourcing policy governs how resources are deployed to
others. The policies in this framework are based on a number
of features which characterise the prevailing circumstances
under which an agent operates. These features can take on
different values, and are defined as follows:
• Organization, denoted by O. This refers to the coun-

try/organization/affiliation of the requesting agent. In this
framework, an agent is associated with the organization
it represents.

Fig. 1. The negotiation protocol.

You are prohibited from releasing a UAV to a coalition member
if the affiliation of the coalition partner is Holistan, and the UAV
is to be used on the second day of the mission.

TABLE I
AN EXAMPLE OF A RESOURCING POLICY

• Resources, denoted by R. This generally denotes the
physical equipment, capabilities or information that are
required to carry out a plan.

• Purpose, denoted by P. This indicates the purpose for
which the resources are requested

• Location, denoted by L. This denotes the particular
location or zone where the resource is to be deployed

• Day, denoted by D. This refers to the day the resource
is to be deployed

For every resource r ∈ R required to enact a plan, the resource
policy features that determine the decision of the provider are
denoted as the following

RSF = 〈O,P,L,D〉

A resourcing policy is

πRS : O×P× L×D×R → {grant|deny}

In other words it maps the above given issues and the resource
profile into the decision grant or deny. The resourcing policy
cited in the example given in Table I can be written as:

πRS(Holistan,Any,Any,Day2, UAV) = deny

The term Any denotes that the attribute in question can be
any of the possible values. There are two kinds of policies:
the coalition-wide policy that is known to all the agents, and
an individual policy that is only known to the individual agent.

TABLE II
EXAMPLE OF THE TRAINING DATA FOR LEARNING POLICY

Affiliation Purpose Location Day Resource Decision
UK Recon Tersa Day2 UAV Grant
GER Transport Bortez Day3 JEEP Grant
US Engagement Holistan Day1 TANK Grant
Holistan Recon Tersa Day2 UAV Deny
UK Food Holistan Day2 UAV Grant

Learning Resourcing Policy

We have explored a range of techniques for learning the
resourcing policies of other agents in this argumentation-
based context. The techniques we have used include deci-
sion tree learning (C4.5), instance-based learning (k-Nearest
Neighbours, abbreviated as k-NN) and rule-based learning
(Sequential Covering, abbreviated as SC).

C4.5 [16] builds decision trees from a set of training data,
using the concept of information entropy [15] (beyond the
scope of this paper). Generally, the training data is a set
S = s1, s2, ..., sn of already classified samples. Each sample
si = x1, x2, ..., xm is a vector where x1, x2, ..., xm represents
attributes of the sample. The training data is augmented with
a vector C = c1, c2, ..., cn where c1, c2, ..., cn represent the
class to which each sample belongs.

Integrating this algorithm into our system with the inten-
tion of learning policies is appropriate since the algorithm
supports concept learning and policies can be conceived as
concepts/properties of an agent. Agent policies are represented
as a vector of attributes (e.g. resource, purpose, location, etc.)
and these attributes are communicated back and forth during
negotiation. The C4.5 algorithm is then used to classify each
set of attributes (policy instance) into a class — grant or deny.
Grant means that the provider agent will possibly provide the
resource that is requested while deny implies that the provider
agent will potentially refuse. The leaf nodes of a decision tree
hold the class labels of the instances while the non-leaf nodes
hold the test attributes. In order to classify a test instance, the
C4.5 algorithm searches from the root node by examining the
value of test attributes until a leaf node is reached and the
label of that node becomes the class of the test instance.

We have also used Instance-based Learning (k-NN) and
Rule-based Learning (Sequential Covering) to learn the re-
sourcing policies. The k-nearest neighbours algorithm (k-NN)
[8] is a type of instance-based learning, or lazy learning, where
the function is only approximated locally and all computation
is deferred until classification. The universal set of all the
policies an agent may be operating within could be conceived
as a feature space (or a grid) and the various policy instances
represent points on the grid. Using k-NN, a policy instance is
classified by a majority vote of its neighbours, with the policy
instance being assigned to the class most common amongst its
k nearest neighbours, where k is a positive integer, typically
small. The k-NN algorithm is incremental, which means all
the training examples need not exist at the beginning of the
learning process. This is a good feature because the policy
model could be updated as new knowledge is learned.

Since policies guide the way entities within a community
(or domain) act by providing rules for their behaviour it
makes sense to learn policies as rules. The sequential covering
algorithm [15], [5] is a rule-based learning technique, which
constructs rules by sequentially covering the examples. The
sequential covering algorithm, SC for short, is a method that
induces one rule at a time (by selecting attribute-value pairs
that satisfy the rule), removes the data covered by the rule and
then iterates the process. SC generates rules for each class by
looking at the training data and adding rules that completely
describe all tuples in that class. For each class value, rule
antecedents are initially empty sets, augmented gradually for
covering as many examples as possible.

Argument-derived Evidence
Using the negotiation dialogue showed in Figure 1, we can

add more information into the learned resourcing policy. With-
out the information derived from the arguments, the agents
can only build their model of the other agents’ resourcing
policy by mapping the resource allocation profile r ∈ R to
{grant|deny} as a pure resource policy

πΛ : R → {grant|deny}

The underlying assumption of a pure resource policy πΛ is that
the other factors, such as organizations, locations, purpose, and
day, can be any values.

With the negotiation protocol, additional issues, such as
those mentioned above (that is, policy features), are com-
municated with each other. For example, a UK agent may
request a UAV to be used for Reconnaissance at Holistan
on Day3. If this request is denied it may assume that the
other agent’s policy does not allow UAV s to be provided for
Reconnaissance but that is not entirely true (as you can see
from the training data in Table II). By exchanging arguments
about the features and characteristics of the agent’s request,
the UK agent may gather further evidence about the other
agent’s policy. For instance, the UK agent may learn that (1)
the UAV was not available at the time of request, (2) the other
agent only provides UAV s for Reconnaissance at Tersa and
not at Holistan, or (3) the other agent can provide UAV s
on Day3 for any purpose other than Reconnaissance. As a
result, agents can build a more accurate model of the other
agents’ resourcing policy by mapping the resource allocation
profile and the resource policy features RSF to decisions
{grant|deny}

πRS : R×RSF→ {grant|deny}

In combination with the aforementioned learning techniques,
agents are able to learn more accurate model of each other’s
resourcing policy so that the system as whole can reach the
mutual agreed resource allocation to resource the plan more
efficiently.

IV. INTEGRATING LEARNING, NEGOTIATION, AND
COORDINATION DIALOGUES

In this section we extend the formal model of Section II
with the features we need to incorporate negotiation about

resources and the learning mechanism described above. In
particular, we add a set of resource variables and policy
issues to the state variables, and embed negotiation dialogues
within the coordination dialogues. With the original model,
resources were just a common pool that agents could draw on
as required. In the extended model, resources have an owner,
and it is necessary to negotiate their use with their owner.

We handle resources in the formal model by assuming that
for any joint decision 〈s, a〉 in the joint policy π, there is a
resource profile RS ⊆ R that can resource it. Among these
resource allocations, there is a subset RS∗ ⊆ RS, acceptable
to all the agents according to their constraint policies. RS =
〈RS1, . . . , RSN 〉 where RSi is the locally feasible allocation
for individual agent Ti, and RS∗i is the globally acceptable
allocation of all the agents to Ti. RSi and RS∗i can contain
resources from other agents.

As is the case for the local perception si, the resource
allocation can be used to compute a unique local action of
Ti to achieve the joint policy as the output of the negotiation
dialogues.

Ontology Extension

To handle negotiation over resources, we need to extend
the ontology we use in the planning system with a set of
resource variables Pi,R for agent Ti. Each resource ri will be
represented by a set of resource variables ~xri ∈ Pi,R. There is
another set of variables Pi,RSF for the resource policy features
of agent Ti. For each issue, there is a subset of issue variables
Pi,∗,RSF where ∗ stands for {O,P,L,D}. In addition, we
need to introduce a resource decision variable PRD = {decR}
where decR means grant the resource request and ¬decR
means deny the resource request.

With this setup, we can use the same framework to represent
resource allocation and resource policy, and resource decision
for each joint decision.

Policies and resources

With this extended formal model, we have the following
relationship between policies and resources.
• We start with the policy π that describes the joint plan

for the team and its projection πi for each agent Ti; this
requires a set of resources, and they are listed in a:

• Resource requirement table Λ : S × A × 2PR ; for each
resource we have a resource policy:

πRS : S ×A× 2PRSF × 2PR → 2PRD

We currently assume that the resource requirement is associ-
ated with a state-action pair — that is each action requires a
resource, and that resource may vary with the state in which
the action is carried out. The resource policy πRS can then be
learned using the learning methods mentioned in Section III.

Planning joint policy with learned resource policy

The model described so far is sufficient for us to create
a team plan. However, we can prune the set of joint state

Set representation QBF implementation
EXEC(s, a) ξ(s) ∧ ξ(a) ∧ ξ(R)[~x′/~x]
StatesOf(π) ∃~aξ(π)
GetAction(s, π) ξ(s) ∧ ξ(π)
ComputeWeakPreImage(S) ∃~x′ξ(S)[~x/~x′] ∧ ξ(R)
ComputeStrongPreImage(S) ∀~x′(ξ(R) → ξ(S)[~x/~x′]) ∧

∃~x′ξ(R)
ComputeNextImage(S) ∃~xξ(S) ∧ ξ(R)
PrunStates(π, S) ξ(π) ∧ ¬ξ(S)

TABLE III
THE MAPPING BETWEEN SET REPRESENTATION AND QBF

IMPLEMENTATION OF SOME TRANSITION RELATION AND POLICY
FUNCTIONS

transitions before planning reducing it to:

R∗ = ∃−(PS∪PA∪P′S) (R∧ Λ ∧ πRS)

Using R∗ means we will only consider those state transitions
that can possibly be resourced given the teams’ knowledge
of the constraints on the use of resources by team members,
ignoring those resources that might be used if team members
were operating under different resource policies. Feeding R∗
to a Algorithm IV.1 will then generate a joint plan that is
feasible in the sense that the team is willing to use all the
resources that are needed to carry out the plan.

Of course since πRS contains those constraints on resources
that, from experience, the team believes will be applied, it
might not capture the real allocation constraints accurately. It
might also not provide enough resources to carry out the plan.
If no joint plan can be generated using πRS , we can then re-
move constraints from πRS gradually with respect to what has
been learned about the likelihood of them being granted. As
these constraints are removed, R∗ grows, and Algorithm IV.1
will search through an expanding set of possible plans until
it either finds a plan that will work for some subset of all
the possibly available resources, or discovers that the task in
question is beyind the ability of the team.

Policy Based Negotiation dialogues

So far we have shown how to incorporate a model of
resources into the planning model, and how to flexibly in-
corporate a model of resource constraints, which has been
obtained by machine learning, into the planning process. Now
we look at the question of how we might learn the resource
constraints from the planning process.

We start by denoting the specification of kth resource
requirement of agent Ti as

RSi,k which is labeled by lRS,i,k

The the full set of resources, which we call the joint resource,
is:

CONRS =

N∧
i=1

KRS,i∧
k=1

(lRS,i,k → RSi,k)

 ∧ SHRSC
where SHRSC is the set of publically known resource
constraints — constraints that have been revealed by previous

Algorithm IV.1 World policy generation
1: function ComputeWorldPolicy(I,G,CompPreImage)

{
(1) I: Initial states,
(2) G: Goal states,
(3) CompPreImage : A pre-image function }

2: DJMAP ← ∅
3: OldSA← Fail
4: SA← ∅
5: SAD ← ∅
6: while OldSA 6= SA ∧ I 6⊆ (G ∪ StatesOf(SA)) do
7: PreImage← ComputePreImage(G ∪ StatesOf(SA))
8: NewSA ← PruneStates(PreImage,G ∪

StatesOf(SA))
9: if ∃i|joint(GetAction(proji(NewSA)))| > 1 then

10: ID ← ComputeDialState(NewSA)
11: GD ← ComputeDialGoal(NewSA)
12: NewSAD ← ComputePolicy(ID, GD, RD,

ComputePreImage)
13: if NewSAD = ∅ then
14: return Fail
15: end if
16: SAD ← SAD ∪NewSAD

17: end if
18: OldSA← SA ∪NewSA
19: end while
20: if I ⊆ (G ∪ StatesOf(SA)) then
21: return 〈SA, SAD〉
22: else
23: return Fail
24: end if
25: end function

dialogues. We can then write:

CONRS+ = CONRS ∧
N∧
i=1

KRS,i∨
k=1

(lRS,i,k)

where

∧N
i=1

(∨KRS,i

k=1 (lRS,i,k)
)

denotes the fact at least one
resource requirement of each agent should be satisfied. This
can be replaced by a more fine grained global resourcing
criteria. For example, we can introduce constraint types associ-
ated with each item RSi,k: must-be-satisfied flgMS , satisfied-
one flgS1. As a result, each RSi,k is represented by a tuple
〈lRS,i,k, {flgMS |flgS1}, RSi,k〉 and we get a modified set of
constraints:

CONRS+ = CONRS ∧

=

N∧
i=1

KRS,i∨
k=1

((flgS1 → lRS,i,k))

∧(flgMS ∧ lRS,i,k)

Given this, we can show that the negotation described above
ties in with the planning process:

Proposition 1: Using the aforementioned negotiation dia-
logues, a participating agent Ti will reveal each RSi,k during
the dialogue, and the negotiation dialogue will stop when
CONRS+ is not empty. Every agent can extract a mutually

Algorithm IV.2 General policy generation
1: function ComputePolicy(I,G,ComputePreImage) {

(1) I: Initial states,
(2) G: Goal states,
(3) ComputePreImage : A pre-image function }

2: OldSA← Fail
3: SA← ∅
4: while OldSA 6= SA ∧ I 6⊆ (G ∪ StatesOf(SA)) do
5: PreImage← ComputePreImage(G ∪ StatesOf(SA))
6: SA← PruneStates(PreImage,G ∪ StatesOf(SA))
7: OldSA← SA ∪ SA
8: end while
9: if I ⊆ (G ∪ StatesOf(SA)) then

10: return SA
11: else
12: return Fail
13: end if
14: end function

agreed joint resource allocation from CONRS+ because the
items RSi,k are revealed and become known by every agent.

In other words, the negotiation process will generate the set
of resources necessary to execute the plan.

V. SUMMARY

This paper has described how we are integrating two lines
of work in Project 10, Task 1 — work on generating plans
for teams and work on negotiating the resources required by
teams and learning over time how the policies that govern the
use of these resources. We have shown how the formal model
that underlies our approach to team planning can be extended
with the notion of the resources that are used in the plan.
This provides a bridge to the work on resource negotiation
— integrating the objects that are being negotiated into the
planning process. It is then possible to detect which resources
are required, so that their use can be negotiated. The planning
model is also extended with a model of the constraints on
the use of resources, and this allows the planning model to
benefit from the work on learning — learning provides a way
to adapt the model of contraints over time, and when this
changing model is used in planning, the planning process will
adapt to what is learnt.

Acknowledgement

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] J. Allen, A. Mowshowitz, T. Norman, S. Parsons, and A. Preece.
Managing collaboration in hybrid-agent teams. In Proceedings of the
First Annual Conference of the ITA, University of Maryland, 2007.

[2] A. Bahrami, J. Yuan, D. Mott, and C. D. Emele. Collaborative, context-
aware and chain of command sensitive planning. In Proceedings of the
Second Annual Conference of the International Technology Alliance,
London, September 2008.

[3] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic
planning: Structural assumptions and computational leverage. Journal
of Artificial Intelligence Research, 11:1–94, 1999.

[4] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[5] J. Cendrowska. Prism: An algorithm for inducing modular rules.
International Journal of Man-Machine Studies, 27(4):349–370, 1987.

[6] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath,
T. A. Russ, and M. Tambe. Electric elves: Agent technology for
supporting human organizations. Artificial Intelligence, 23(2):11–24,
2002.

[7] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong,
and strong cyclic planning via symbolic model checking. Artificial
Intelligence, 147(1-2):35–84, 2003.

[8] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transaction on Information Theory, 13(1):21–27, 1967.

[9] C. D. Emele, T. J. Norman, F. Guerin, and S. Parsons. Argumentation-
based agent support for learning policies in a coalition mission. In
Proceedings of the Third Annual Conference of the International Tech-
nology Alliance, pages 151–154, Maryland, USA, 2009.

[10] C. D. Emele, T. J. Norman, F. Guerin, and S. Parsons. On the benefits
of argumentation-derived evidence in learning policies. In Proceedings
of the Seventh International Workshop on Argumentation in Multiagent
Systems, Toronto, May 2010.

[11] M. Esteva, D. Cruz, and C. Sierra. Islander: an electronic institution ed-
itor. In Proceedings of the 1st International Conference on Autonomous
Agents and Multi-Agent Systems, New York, NY, 2002. ACM Press.

[12] M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On
the formal specification of electronic institutions. In Agent-mediated
Electronic Commerce, number 1991 in Lecture Notes in Artificial
Intelligence, pages 126–147. Springer Verlag, Berlin, Germany, 2001.

[13] P. Maes. Agents that reduce work and information overload. Commu-
nications of the ACM, 37(7):31–40, 1994.

[14] T. J. McKearney. Colaborative planning for military operations: Emerg-
ing technologies and changing command organizations. In Proceedings
of the Command and Control Research and Technology Symposium,
Naval Postgraduate School, Monterey, CA, June 2000.

[15] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
[16] J. Ross Quinlan. C4.5: programs for machine learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
[17] S. D. Ramchurn, B. Deitch, M. K. Thompson, D. C. de Roure, N. R.

Jennings, and M. Luck. Minimising intrusiveness in pervasive computing
environments using multi-agent negotiation. In Proceedings of the 1st
International Conference on Mobile and Ubiquitous Systems, Boston,
MA, 2004.

[18] Yuqing Tang, Timothy J. Norman, and Simon Parsons. Agent-based
dialogues to support plan execution by human teams. In Proceedings
of the Second Annual Conference of the ITA, Imperial College, London,
2008.

[19] Yuqing Tang, Timothy J. Norman, and Simon Parsons. A model for
integrating dialogue and the execution of joint plans. In Proceedings
of the Eigth International Joint Conference on Autonomous Agents and
Multiagent Systems, Budapest, Hungary, May 10-15 2009.

