
Planning over MDPs through Probabilistic HTNs

Yuqing Tang
Graduate Center

City University of New York
New York, USA

ytang@cs.gc.cuny.edu

Felipe Meneguzzi, Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, USA

meneguzz@cs.cmu.edu
katia@cs.cmu.edu

Simon Parsons
Brooklyn College

City University of New York
New York, USA

parsons@sci.brooklyn.cuny.edu

Abstract

In this paper, we propose a new approach to using probabilis-
tic hierarchical task networks (HTNs) as an effective method
for agents to plan under conditions in which their problem-
solving knowledge is uncertain, and the environment is non-
deterministic. In such situations it is natural to model the
environment as a Markov Decision Process (MDP). We show
that using Earley graphs, it is possible to bridge the gap be-
tween HTNs and MDPs. We prove that the size of the Earley
graph created for any given HTN is bounded by the total num-
ber of tasks in the HTNs and show that from the Earley graph
we can construct a plan for a given task that has the maximum
expected utility when it is executed in an MDP environment.

1 Introduction
The ability to plan is crucial for autonomous agents. De-
signing planning-capable agents requires a domain expert
to formally define the actions available to the agent so that
when new plans are needed, a planning algorithm can gen-
erate new plans to achieve the agent’s goals. To that effect,
Hierarchical Task Networks (HTNs) have been widely used
as the formalism of choice to design planning agents in de-
terministic domains. Its popularity is due not only to the way
domains are defined, providing a convenient way to specify
domain knowledge as hierarchically structured recipes (Nau,
Ghallab, and Traverso 2004) closer to how humans struc-
ture their own knowledge, but also in the fact that solving an
HTN is significantly faster than other deterministic planning
methods. HTNs, however, are used mainly where there is no
uncertainty over action outcomes, and autonomous agents
that function in realistic environments must be able to create
plans that take into consideration the possibility that actions
could either fail or have unintended outcomes. Markov De-
cision Process (MDPs) have been widely studied as an el-
egant mathematical formalism to model stochastic domains
(Bellman 2003).The solution to an MDP planning problem,
given a stochastic state transition system and a reward func-
tion, is a policy that defines the optimal (or maximum ex-
pected utility) action for every state in the domain.

In this paper, we present work towards bridging the gap
between HTNs and MDPs by performing maximum ex-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pected utility (MEU) planning on an HTN domain speci-
fied in terms of tasks that are hierarchically structured from
high-level tasks down to executable actions through a library
of methods. In order to accomplish this, we look at the HTN
methods as if they were the rules of a context-free gram-
mar and apply our own modified version of an Earley parser
(Earley 1970) to generate a data structure known as Earley
state chart (Stolcke 1995). Probabilistic Earley parsing is
a dynamic programming technique widely used in the pro-
cessing of natural language that has been adapted to parse
sentences probabilistically in order to cope with the ambigu-
ity inherent to human languages. The Earley state chart not
only supports an efficient implementation of the Earley pars-
ing algorithm but also provides a semantic understanding
of the grammar parsing procedure on a given input string.
These parsing algorithms can also be employed for poste-
rior revisions of the probabilistic grammars, given a set of
annotated parsing strings (Stolcke 1995). This class of algo-
rithm performs a parallel top-down search over all possible
grammar parses for a given input sentence, and its complex-
ity is bounded by O(N3) where N is the number of words in
the input (Earley 1970).

Our adaptation of Earley parsing for probabilistic HTN
planning was inspired by earlier efforts relating task decom-
position to grammar parsing (Barrett and Weld 1994), where
the solution concept is taken to be the intersection of two
languages: 1) the language of sequences of actions result-
ing from the task decompositions modeled as grammar pars-
ing; 2) the language of sequences of actions of all the valid
chaining of the actions (primitive tasks) defined by the ac-
tion templates (or operators). In this paper, by construct-
ing our modified Earley graph, we take into consideration
the preconditions of tasks and the effects of actions to make
sure that the generated plans follow the constraints imposed
by the HTN domain specification. While earlier work relates
planning and parsing only for deterministic domains, we ex-
tend this concept into probabilistic domains by annotating
probabilities in the HTN methods, allowing us to calculate
the probabilities of generating plans in the domain. Further-
more, we allow a user to specify rewards for specific states
in the HTN specification in the same way as goal states are
specified in classical planning, allowing us to use the Earley
graph to calculate the expected utilities of these plans and to
perform MEU planning using the HTN domain.



While we share the same grammar passing idea for task
decompositions as in (Barrett and Weld 1994), we adopt a
different task decomposition approach using Earley graph
(Stolcke 1995). The advantage of using Earley graphs to
represent task decompositions is of twofold: 1) a graphi-
cal semantics of the decomposition procedure; 2) an intu-
itive framework to accommodate probabilistic information.
In turn, this helps us nicely link HTNs with MDPs in this pa-
per. It also opens up scope for further investigation on how
the Earley graph itself can become a generalized solution
concept to MDP planning problems with HTN knowledge
and how to automatically revise the domain knowledge (in
HTN form) from past experiences.

2 Basic Definitions
In this section we introduce and provide a formal model of
the main concepts required throughout the paper.

The language of states and actions
Our extensions to Earley parsing are underpinned by an
adaptation of the formalization of the state-space model
commonly used in in non-deterministic planning (Cimatti
et al. 2003). We define a non-deterministic state transition
domain (NSTD) to be a tupleM = 〈P,S,A,R〉 where:

• P = PS∪PA is a finite set of propositions resulting of the
union of, respectively, state and action propositions;

• S ⊆ 2PS is the finite set of all possible states;

• A ⊆ 2PA is the finite set of actions; and

• Tr ⊆ S ×A× S is the state-transition relation.

We can describe and manipulate the logical structure of
the states, actions and state transitions using a language L of
quantified boolean formulae (QBFs) over the propositions
in P , which can be efficiently implemented with Binary De-
cision Diagrams (BDDs) (Bryant 1992). The language of
QBFs is an extension to the propositional language by al-
lowing standard connectives ∧,∨,→,¬ and quantifiers ∃,∀.
We define a variable renaming operation on L as follows.
Let ~x and ~x′ be two vectors of propositional variables for
a ξ ∈ L, then a variable renaming operation is defined as
ξ[~x/~x′] where all the occurrences of variables ~x are substi-
tuted by~x′.

States and actions are specified by the QBF formulas
respectively as ξ(s) on PS, denoted by s |= ξ(s); and
ξ(a) on PA, denoted by a |= ξ(a). Extending P with an
additional set of set propositions PS′ which is a copy of
PS, a state transition 〈s, a, s′〉 can be specified by a for-
mula ξ(s) ∧ ξ(a) ∧ ξ(s′) on PS, PA and PS′ , denoted by
〈s, a, s′〉 |= ξ(s)∧ ξ(a)∧ ξ(s′). Furthermore ,a set of states S
can be represented by ξ(S) =

∨
si∈S ξ(si), a set of actions A

can be represented by ξ(A) =
∨

ai∈A ξ(ai), and a set of state
transitions R can be represented by ξ(Tr) =

∨
tri∈Tr ξ(tri).

In what follows, we give small examples to illustrate the
basic idea of representing domain knowledge efficiently in
QBFs, while more detailed study can be found in (Edelkamp
and Helmert 1999). Consider an agent that can be in
8 locations {L0,L1, . . . ,L7} and owns one of 4 types

{V0,V1,V2,V3} of vehicles at any one time, then in PS we
need 3 (binary) variables ~xl = 〈xl0 , xl1 , xl2〉 to encode the
locations, and 2 variables ~xv = 〈xv0 , xv1〉 to encode the ve-
hicles being used. Thus, the agent being at location L0 is
represented by at(L0)

def
= ¬xl0 ∧¬xl1 ∧¬xl2 , while the agent

not being at location L0 is represented by ¬at(L0). Simi-
larly, if the agent has 3 actions available, we represent the
actions with 2 action variables ~a = 〈ya0 , ya1〉. If there are
16 possible values that can be assigned to the parameters
to these actions, we need another four parameter variables
~pa = 〈ypa0 , ypa1 , ypa2 , ypa3〉. If the agent can either own or
not own each type of 4 vehicles, we need 4 variables instead
of 2 to denote the 24 = 16 vehicle usage possibilities.

Hierarchical Task Networks
An HTN consists of a network of tasks connected by order-
ing constraints (Ghallab, Nau, and Traverso 2004). Tasks
can be at various levels of abstraction, from very high-level
(e.g. go to conference C) to very specific (e.g. flip a switch).
An HTN domain consists of a set of concrete actions (or op-
erators) directly executable in the environment, and a set of
methods that refine higher-level tasks into actions.

Definition 1 An HTN planning domainD is a tuple (T ,M)
where: (i) T is a finite set of task symbols which are com-
posed by two disjoint sets: non-primitive tasks NT and
primitive tasks A; and (ii) M is a finite set of methods to
refine the tasks in T .

The set A of primitive tasks corresponds to the actions in
the NSTD defined in Section 2, whereas the set NT of non-
primitive tasks must be refined into primitive tasks by apply-
ing methods from Definition 3. Methods are used to refine a
non-primitive task by replacing it with a task network.

Definition 2 A task networkH is a pair (T,C) where T is a
finite set of tasks to be accomplished and C = {ti ≺ tj} is a
set of partial ordering constraints on tasks in T.

In a task network, a precedes constraint ≺, ti ≺ tj denotes
that task ti must be executed before tj. We denote the set of
tasks which do not have preceding tasks in H as first(H),
and the set of tasks which do not have succeeding tasks in
H as last(H). Formally, first(H) = T − {t′|t ≺ t′ ∈ C} and
last(H) = T − {t|t ≺ t′ ∈ C}.
Definition 3 An HTN method m ∈ M is represented as a
tuple m = 〈t,H〉, where t is a task to be decomposed, and
H = 〈T,C〉 is a task network that specifies how t can be
achieved. Each method m has a precondition precond(m)
specified by a formula in LS which is interpreted into a set
of states S = {s|s |= precond(m)}.
To ease presentation, we refer to the components of an HTN
method m = (t,H) respectively as task(m) and network(m).
To simplify the planning algorithms, we assume that every
task network network(m) is totally ordered, and leave partial
order task networks for future research.

Definition 4 A method m decomposes a task network H =
〈T,C〉 into a resulting task network H′ = 〈T ′,C′〉, denoted
by H′ = decompose(H,m), iff t = task(m) ∈ T; Hm =



network(m); T ′ = (T − {t}) ∪ Tm; and C′ = (C − Ct) ∪
(C′t ∪ Cm) where

Ct = {t ≺ ti|t ≺ ti ∈ C} ∪ {ti ≺ t|ti ≺ t ∈ C}
C′t = {ti ≺ tj|ti ≺ t ∈ C and tj ∈ first(Hm)}

∪{ti ≺ tj|t ≺ tj ∈ C and tj ∈ last(Hm)}
Here, Ct ⊆ C are constraints referring to t in Hm, and C′t
are the constraints linking the tasks preceding t in H to the
all the un-preceded tasks, and the constraints linking the un-
succeeded tasks inHm to the immediate successors of t.
Definition 5 A sequence m1, . . . ,mk of methods decom-
poses a task network H = 〈T,C〉 into a resulting task net-
work H′ if there is a sequence H0,H1, . . . ,Hk of task net-
works such that: (i) H0 = H, (ii) task(mi) ∈ Hi−1, (iii)
Hi = decompose(Hi−1,mi), and (iv) H′ = Hk. The appli-
cation of a sequence of methods m1, . . . ,mk is said to have
fully decomposed a task networkH if the resulting task net-
workH′ contains only primitive tasks.

An action a is expressed by its precondition precond(a)
and its effect effect(s, a) in a state s. Here we use QBFs
and the state transitions Tr defined in Section 2 to express
precond(a) and effect(a) as follows:

precond(a) = ∃PA,PS′ [Tr ∧ ξ(a)]

effect(s, a) = ∃PS,PA [Tr ∧ ξ(a)]

Using this encoding, we define action execution.
Definition 6 Let s and s′ be two states in the environment
and a an action. An action a is executable in state s if s |=
precond(a), and the execution of a in state s is a new state
s′ such that s′ |= effect(s, a) and s′ 6|= ⊥.
Now, from Definition 6 it is easy to see that the ex-
ecution of a sequence of actions {a1, . . . , an} from an
initial state s0 induces a sequence of state transitions
〈s0, a1, s1, . . . , sn−1, an−1, sn〉 where each state si is the re-
sult of executing action ai from state si−1. We call such as
sequence of state transitions trajectory of execution.

Taking into account the task network constraints, the pre-
conditions of methods, and the preconditions and effects of
primitive tasks, we define valid task decompositions.
Definition 7 Let H = 〈T,C〉 be a task network composed
of primitive tasks, i.e. T ⊆ A, H is a valid primitive task
network at a state s0 iff for each t0 ∈ first(H) we have
s0 |= precond(t0); and there exists an execution trajec-
tory s0, t0, . . . , sn, tn, sn+1 such that ti ≺ ti+1 ∈ C, si |=
precond(ti), si+1 |= effect(si, ti) and si+1 |= precond(tj).
Definition 8 Let m1, . . . ,mk be a sequence of methods that
fully decomposes a task networkH intoH′, then the decom-
position is valid at state s0 iff the resulting task network H′
is a valid primitive task network at s0.

3 From HTN Methods to Earley Graphs
Our approach is based on the Earley Parsing algorithm for
probabilistic context free grammar parsing (Stolcke 1995)
adapted to accommodate the components of states (of pre-
conditions and effects), and task decompositions. We mod-
ify the concept of Earley states, which we refer to as Earley
nodes to avoid confusion with the planning state-space, to
include the information of states and actions.

Earley Graphs for HTN Methods
To facilitate the construction of our Earley graph, we add
two dummy tasks to every task network H: start(H) is a
dummy starting task in H preceding the first tasks in H,
end(H) is a a dummy ending task succeeding last tasks in
H; and next(H, t) denotes the set of tasks immediately suc-
ceeding t in H. An Earley graph constructed from an HTN
is defined by Earley nodes and links as follows.
Definition 9 Let m = 〈t,H〉 be an HTN method from which
we generate |T| Earley nodes. Each Earley Node EN is of
the form ENm,ti = 〈m, ti〉 where ti ∈ network(m). For no-
tational convenience, we denote m by method(ENm,ti), ti by
current(ENm,ti), and task(m) by root(ENm,ti).
Definition 10 An Earley graph for a method libraryM is a
graph G = 〈N , E〉 where
• N = {EN} is the set of Earley nodes; and
• E is the set of Earley links of three types:

– A predicting link 〈ENm,ti ,ENm′,t′start
〉 where task(m′) =

ti and t′start = start(m′) is the starting task of m′ which
precedes all the other tasks in m′. ENm′,t′start

is then a
predicting node.

– A scanning link 〈ENm,a,ENm,ti〉 where a is a primitive
task in m, and ti ∈ next(m, a) is a task immediately
succeeding a in m. ENm,a is then a scanning node.

– A completing link 〈ENm′,t′end
,ENm,ti〉 where

t′end = end(m′) is the last task of m′, and
ti ∈ next(m, task(m′)) is a task immediately suc-
ceeding task(m′) in m. ENm′,t′end

is then a completing
node.

A predicting link 〈ENm,ti ,ENm′,t′start
〉 marks a possible de-

composition of a task ti; a completing link 〈ENm′,t′end
,ENm,ti〉

marks a possible completion of a task in m resulting in the
investigation of the next task ti in m; a scanning link marks
an execution of a primitive task a resulting in the investiga-
tion of the next task ti in m. A predicting node ENm,tstart and a
completing node ENm,tend are said to be corresponding with
each other. An Earley graph is illustrated in Figure 1.

Given an HTN method library M, an Earley graph can
be constructed using Algorithm 1. The algorithm is directly
derived from the Definition 10, and we can establish bounds
on the Earley graph it constructs:
Proposition 1 Let |network(m)| be the number of tasks in
the network of a method m; |Methods(t)| the number of
methods that can be used to decompose a non-primitive
task t, and Appearances(t) = {〈m, t〉|m ∈ M} the
number of instances of t in all the methods. The num-
ber of nodes in the Earley graph constructed by Algo-
rithm 1 is Σm∈M|network(m)|, and the number of edges in
the constructed Earley graph is O(Σm∈M|network(m)|) +
2Σt∈NT (|Appearances(t)| · |Methods(t)|)
Proof 1 Each Earley node is identified by a pair 〈m, t〉 for
every method m ∈ M and every task t ∈ network(m). The
number of such pairs is Σm∈M|network(m)| which is the
number of nodes in the constructed Earley graph.

For a non-primitive task t, the number of predictive
links leaving a node identified by 〈m, t〉 is |Methods(t)|



linking and number of completing links entering a
node 〈m, next(m, t)〉 is also |Methods(t)|. Therefore
the number of predictive links and completing links is
2Σt∈NT (|Appearances(t)| · |Methods(t)|). The number of
scanning links for each method m is the number of prim-
itive tasks in m. The total number of scanning links
is Σm∈M|{a|a ∈ A ∧ a ∈ network(m)}| which is
bounded by O(Σm∈M|network(m)|). As a result, the to-
tal number of Earley edges is O(Σm∈M|network(m)|) +
2Σt∈NT (|Appearances(t)| · |Methods(t)|).
Note that multiple appearances of the same task t in an H
is counted multiple times in |Apperances(t)|. For example,
in an HTN H = {t1 ≺ t1 ≺ t1}, |apperances(t1)| = 3.
Another subtle aspect of the Earley graph involves pro-
cessing recursive method decompositions. For example, if
m0 = (t0, {t0 � t1}),m1 = (t0, {a1}), then the Earley
graph will contain two loops: one is a predictive loop from
〈m0, t0〉 to 〈m0, start〉, and 〈m0, start〉 to 〈m0, t0〉; another
one is a self-loop 〈m0, end〉 to 〈m0, end〉. These loops help
to avoid infinite Earley node instantiations of recursive task
decompositions.

Figure 1 illustrates the Earley graph generated from Ex-
ample 3.1, which consists of planning to arrive in London
departing from New Jersey.
Example 3.1 Planning consists of selecting the ap-
propriate means of transportation and route to max-
imize the utilities of reaching London. The do-
main D contains a set of five tasks T = {goTo(L),
obtainVehicle,moveTo(L),moveTo(L,V), getVehicle(V)}
of which two are actions A =
{moveTo(L1,L2,V), getVehicle(V)}. These tasks are
decomposed using a set of six methods M = {ml,mo1,
mo2,mtl1,mtl2,mtl3}

The methods are defined as (in all method definitions we
assume that the set of constraints C orders the tasks as they
are written within their set definitions):
• ml = 〈goTo(L), 〈{getVehicle(car), obtainVehicle,

moveTo(L)},C〉〉, with precond(ml) = >
• mo1 = 〈obtainVehicle〈{moveTo(airport, car),

getVehicle(airplane)},C〉〉, with precond(mo1)
= at(airport)

• mo2 = 〈obtainVehicle〈{moveTo(harbor, car),
getVehicle(ship)},C〉〉, with precond(mo2) = at(harbor)

• mtl1 = 〈moveTo(L), 〈{moveTo(nyc, airplane),
moveTo(london, airplane)},C〉〉, with precond(mtl1) =
has(airplane)

• mtl2 = 〈moveTo(L), 〈{moveTo(soton, ship),
moveTo(london, ship)},C〉〉, with precond(mtl2) =
has(ship)

• mtl3 = 〈moveTo(L), 〈{moveTo(lpool, ship),
moveTo(london, ship)},C〉〉, with precond(mtl3) =
has(ship)

The actions are specified as follows:
• moveTo(L1,L2,V) has preconditions has(V)∧at(L1) and

effects at(L2) ∧ ¬at(L1)

• getVehicle(V) has preconditions > and effects has(V2) ∧
¬has(V1)

Figure 1: Earley Graph for “Go to London”

Valid Decompositions and Executions
In an Earley graph, a path from ENm,tstart to ENm,tend corre-
sponds to a decomposition of task(m) and an execution tra-
jectory of task(m) according to the methods in the library
M if the traversal of the paths is carefully managed to en-
sure that 1) the task decompositions corresponding to the
path are valid, and 2) the preconditions of the methods and
primitive tasks in the path are met. The first condition is to
avoid linking a completing node to a parent method which
does not lead to such a method. To ensure the first con-
dition, we need to maintain a stack of applied methods; to
ensure the second condition, we use the BDD representation
to enforce the preconditions. In Algorithm 2, we provide
a generic algorithm to traverse all valid decomposition and
execution paths. The parameters of Traverse are:

• G is the input Earley graph;

• EN is an predictive node for an initial task t;

• cache is a table to store previous explorations of methods;

• stack is a stack to keep track of the decompositions;

• precond is the set of preconditions corresponding to the
initial states;

• Order is an order function on Earley nodes (e.g. ascend-
ing in probability or utility);

• Process is an algorithm called whenever a valid decom-
position and execution path is found; and

• PostProcess is post-processing algorithm called to per-
form additional book keeping on the current Earley node
once all its children have been processed



Algorithm 1: Construct Earley Graph forM
input : A method libraryM
output: The Earley graph G forM
G ← ∅ ;
for each m ∈M do

for each ti ∈ network(m) do
if ti is a non-primitive task then

for each m′ ∈ {m′|task(m′) = ti} do
Add a predicting link 〈ENm,ti ,ENm′,first(m′)〉
into G ;

end
else if ti is a primitive task and ti 6= end(m) then

Add a scanning link 〈ENm,ti ,ENm,next(m,ti)〉 into G
;

else if ti = end(m) then
for each m′ ∈ {m′|task(m) ∈ network(m′)} do

Add a completing link
〈ENm,ti ,ENm′,next(m′,task(m))〉 into G ;

end
end

end
end
return G

In the initial invocation of Traverse, the precond param-
eter is set to an initial state of interest S. If no special
initial states are considered, we can apply Traverse with
precond = >. Since Traverse examines all the possible
decomposition paths with the control of a stack, and the
branching factor for a non-primitive task in any method is
|Methods(t)|, the path space can grow exponentially in the
worst case. In this case, we use a cache to store the ex-
ploration result of a method into a starting Earley node.
Given a set of states, the set of valid decompositions us-
ing a method does not depend on decompositions preceding
such a method, this enables us to cache the decomposition
results and reuse them later. For non-recursive HTNs, the
Earley graph enables us to employ dynamic programming
with complexity bounded by the size of the Earley graph
and the sizes of the BDDs which encode the sets of states in
which the methods can be explored. BDDs1 also enable us
to look up the cache given a precondition using one BDD op-
eration whose complexity does not depend on the number of
states but the complexity of information in preconditions and
the state information in the cache. For recursive HTNs, the
Traverse procedure might produce an infinite-depth stack.
Although we do not deal with this issue in this paper, ap-
proaches to parse recursive grammars exist (Stolcke 1995,
Section 4.5) that could be leveraged to handle recursive task
decompositions.

4 Integrating HTNs and MDPs
Markov Decision Processes
We start by formally laying out the elements of an MDP in
Definition 11.

1By BDDs, we also refer to BDD variants such as MTBDDs
when numerical values are encoded along with the boolean values.

Algorithm 2: Traverse(G, EN, precond, cache, stack,
path, Order, Process, PostProcess)

if method(top(stack)) 6= task(method(EN)) then
return FAIL ;

end
Append EN to the end of path ;
if EN is a completing node then

pop(stack) ;
if stack is empty then

Call Process with appropriate parameters, e.g. EN,
NN, path, etc. ;
return SUCCESS

end
end
if EN is a first(method(EN)) then

Look up cache for 〈precond,method(EN), resultState〉
for previous result;
if previous result available then

return previous result;
end

end
Sort the children of EN with respect to Order ;
for each child NN of EN in Order do

if 〈EN,NN〉 is a predicting link and
precond(method(NN)) ∧ precond 6= FALSE then

push NN into stack ;
precond ← precond ∧ precond(method(NN)) ;

else if 〈EN,NN〉 is a scanning link and
precond(current(NN)) ∧ precond 6= FALSE then

precond ← effect(current(NN), precond) ;
end
if precond 6= FALSE then

resultNN ← Traverse( t, G, NN, precond, stack, path,
Order, Process, PostProcess ) ;

end
Restore the context associated with top(stack);

end
Call PostProcess with appropriate parameters, e.g. EN,
NN, path, etc. ;
if any resultNN is SUCCESS then

return SUCCESS
else

return FAIL
end

Definition 11 A Markov Decision Process (MDP) Σ is a 4-
tuple (S,A,Pr,R) where S is a finite set of states, A is a
finite set of actions, Pr is a state-transition system and R is
a reward function.

We equate the set of MDP states and actions S and A to the
same set of states and actions of the non-deterministic state
transitions defined in section 2. In this way, we can specify
the MDP with QBFs.

The dynamics of the environment in an MDP is modeled
by a probability distribution Pr on the state transitions.
Definition 12 An MDP state-transition system defines a
probability distribution for each state transition through a
function Pr : S × S × A → [0, 1]. Given s, s′ ∈ S and
a ∈ A, Pra(s, s′) denotes the probability of transitioning
from state s to state s′ when executing action a. That is,
Pra(s, s′) = Pr(Xτ+1 = s′|Xτ = s,Yτ = a) where Xτ and



Yτ are random variables denoting the state and action at
time τ respectively.

In order to calculate an optimal solution to the decision
problem posed by an MDP, it is necessary to associate re-
wards to the states in an MDP through a reward function.

Definition 13 An MDP reward function R : S → < asso-
ciates a real number to each state of an MDP. Given s ∈ S,
R(s) denotes the reward associated with reaching state s.

Within this work, we specify the conditional probability
table and reward table respectively with QBFs

Pr = {〈ξ(〈si, ai, s′i〉),Prai(si, s′i)〉}
R = {〈ξ(si),R(si)〉}

The entries with the same probability or reward can be
grouped into one QBF expression as in Example 4.1.

Example 4.1 Extending Example 3.1 with MDP probabili-
ties and rewards, with QBF representation we can set

R = {〈at(London), 100〉, 〈¬at(London, 0〉}

Pr = {〈getVehicle(car), 0.9〉, 〈moveTo(airport, car), 0.8〉,
〈getVehicle(plane), 0.9〉, 〈moveTo(harbor, car), 0.9〉,
〈getVehicle(ship), 0.8〉, 〈moveTo(nyc, plane), 0.7〉,
〈moveTo(london, plane), 0.75〉, 〈moveTo(soton, ship), 0.6〉,
〈moveTo(london, ship), 0.6〉, 〈moveTo(lpool, ship), 0.6〉}

The rewards on the states that are not satisfied the formulae
in the reward table R are set to 0. The other probabilities on
the state transitions that can not satisfied the above formulae
in the table Pr are inferred by the above with the sum of
probabilities on each state-action pair to be 1.

We note that in our current implementation it is the burden
of the input to guarantee that the list of pairs of QBF expres-
sions and numbers can be interpreted into consistent reward
assignments to states and consistent probability assignments
to state transitions.

In a classic MDP problem, the solution of an MDPs is a
policy, which indicates the best action to take in each state.
Thus, an MDP policy is a total function mapping states into
actions, so a policy π is represented as a function π : S→ A.
Information on the rewards of states makes it possible to
compute the value of a a given state under a particular policy
π – it is the expected value of carrying out the policy from
that state, given some discount factor γ:

Vπ(s) = [R(s) + γ
∑
s′∈S

Pra∈π(s)(s, s′)Vπ(s′)].

Semantics of an HTN Earley Graph
Given a task t, a method libraryM contains a set of meth-
ods M(t) which can be used to decompose t. Assuming that
the application of m is independent of choice of the methods
used to decompose the other tasks, we have Pr(mi | ti) =
Pr(mi | ti,mi−1, ti−1, . . . ,m0, t0) where mi is used to de-
compose ti.

The probability of applying a method m on a task t can be
assigned according to the application domains. Typically,
we will assign human’s subjective view about how likely a
method m can be used to decompose a task t as Pr(m|t).

For example, in Figure 1, we set

Pr(mo1|ObtainVehicle) = 0.7,
Pr(mo2|ObtainVehicle) = 0.3,

Pr(mtl1|moveToLondon) = 0.6,
Pr(mtl2|moveToLondon) = 0.2,

and Pr(mtl3|moveToLondon) = 0.2.

Thus, we can induce that the probability of a sequence of
decompositions of a task t with a libraryM into a network
of primitive tasks by the chain rule of probability and the
independence assumption

Pr(mi, ti,mi−1, ti−1, . . . ,m0, t0)

= Pr(mi | ti)× Pr(mi−1 | ti−1)× ...× Pr(m0 | t0)

To embed the probability of decompositions into the Earley
graph, we assign probability to the edges in an Earley graph
induced from a method library:

• For a predicting link 〈EN,NN〉, set Pr(EN|NN) = Pr(m |
t) where m = method(NN) and t = root(NN).

• For a scanning link 〈EN,NN〉, set Pr(EN|NN) = 1

• For a completing link 〈EN,NN〉, set Pr(EN|NN) = 1

The probabilities assigned to the Earley links are about the
uncertainty in decomposing tasks. The predicting link stores
the subjective knowledge on how probable it is that a method
can be used to successfully decompose a task, so it is as-
signed number Pr(m|t). A scanning link is assigned proba-
bility 1 since, in terms of task decomposition, encountering
a primitive task in the task network entails a move to the next
task with probability 1. A completing link is assigned prob-
ability 1 because once a method has been fully “parsed”, the
next method in the parent task must be parsed next, as en-
forced by Algorithm 2

Thus, the probability of a path 〈EN0,EN1, . . . ,ENN〉 ex-
tracted by our technique is

Pr(〈EN0,EN1, . . . ,ENN〉) = Pr(EN0|EN1)×. . .×Pr(ENn−1|ENn)

This is the probability of a pure task network decomposition
which models the uncertainty of how a computer program or
a human expert uses a library of methods.

The probability of an Earley path with initial states can
be similarly computed. Associated with a valid Earley
graph path path = 〈EN0,EN1, . . . ,ENn〉, we will have a
set of execution trajectories each of which are of the form
〈s0,ENa0 , s1,ENa1 , . . . ,ENam , sm+1〉 such that

• ENa0 , . . . ,ENam is a sub-sequence of scanning nodes of
〈EN0,EN1, . . . ,ENn〉;

• s0 ∈ precond(method(EN0) ∧ . . . ∧ precond(ENj) . . .
∧precond(ENa0) where EN0 is an initial node with
task(EN0) = t, each ENj (0 < j < a0) is a predictive
node, and there are no scanning nodes between EN0 and
ENa0 in the sequence; and



• si ∈ effect(current(ENai−1))∧ . . .∧ precond(ENj)∧ . . .∧
precond(ENai+1) where each ENj (ai−1 < j < ai) is a pre-
dictive node or a completing node and there are no scan-
ning nodes between EN0 and ENa0 in the sequence.

Such a set of execution trajectories of
an Earley path is denoted by E(path) =
{〈s0,ENa0 , s1,ENa1 , . . . ,ENam , sm+1〉}. Incorporating
decompositions, we have a decomposition-execution
path DE(path) = {〈EN0, . . . ,ENj, . . . , sa0 ,ENa0 , . . . ,
sa1 ,ENa1 , . . . , sai ,ENai , . . . ,ENm, . . . , sm+1〉}. For conve-
nience we denote the set of decomposition-execution paths
of path starting from state s by DE(path, s). Assuming
independence between the MDP environment and the
choices of method decompositions, we can then compute
the probability of a decomposition-execution path de using

Pr(de) =
∏

ENi∈de

Pr(ENi+1|ENi) ·
∏

sj,aj,sj+1∈de

Pr(sj+1|sj, aj)

Utility of Earley Paths
Given a decomposition-execution path de ∈ DE(path), the
value of this path is the summation of all the rewards en-
countered, so that V(de) =

∑
aj∈de R(sj). As a decompo-

sition path corresponds to a collection of decomposition-
execution paths, the expected value of a decomposition path
can be computed by summing up the values of all these
decomposition-execution paths weighted by their probabili-
ties:

V(path) =
∑

de∈DE(path)

(V(de) · Pr(de))

Similar to the MDP value computation, the expected value
of a path can be computed iteratively with the Earley graph.
Let subpath(s,EN) be the sub-path of path starting from
〈s,EN〉, we define

Vpath(s|EN) = V(subpath(s,EN))

and
Vpath(EN) =

∑
s

Vpath(s|EN).

Related to a decomposition path = 〈EN0, . . . ,ENn〉,
we define the value of the complete Earley node ENn to
beVpath(s|ENn) = R(s); if ENi+1 is a predicting or com-
pleting node, then

Vpath(s|ENi) = Pr(ENi+1|ENi) · V(s|ENi)

and if ENi+1 is a scanning node, then

Vpath(s|ENi) =

Pr(ENi+1|ENi) ·
(
R(s) +

∑
s′ Pr(s′|s, a) Vpath(s′|ENi+1)

)
Proposition 2 The expected value of the starting Earley
node EN0 of a decomposition path is the expected value of
the path: Vpath(EN0) = V(path).

The expected value of the starting Earley node EN0 of
a decomposition path situated at a state s0 is is the ex-
pected value of all the decomposition-execution paths of
path: Vpath(s0|EN0) = Σde∈DE(path,s0)V(de).

Function MaxValProcess(EN, precond)
V(·|EN)← ∅;
if EN is a fully completing node then

for each s |= precond do
V(s|EN)← R(s) if V(s|EN) is not in the table ;

end
end
return V(·|EN);

Function MaxValPostProcess(EN,SucEdges,precond)
if En is a predicting node then

for each 〈EN,NN〉 ∈ SucEdges do
V ← ∅;
for each s |= precond do

V(s)← Pr(NN|EN) V(s|NN) if
s ∈ precond(NN) ;

end
end
Select 〈EN,NN〉 as the decomposition edge with
maximum ΣsV(s) and set V(·|EN)← V(·);

end
if EN is an internal completing node then

Let 〈EN,NN〉 ∈ ValidEdges ;
for each s |= precond do

V(s|EN)← Pr(NN|EN) V(s|NN) if
s ∈ precond(NN) ;

end
end
if EN is a scanning node then

for each s |= precond and each action a in EN do
V(s|EN)← R(s) + Σs′∈SPr(s′|s, a) · V(s′) ;

end
end
return V(·|EN);

Proof 2 By construction.

The solution for a probabilistic hierarchical planning prob-
lem is then a search for a decomposition path∗ with the max-
imum expected V∗(path∗) with a given set of initial states
S |= precond.

MEU HTN Planning
In order to search for a maximum value decomposition
path, we traverse the Earley graph using Algorithm 2
with the Process and PostProcess functions set to the
MaxValProcess and MaxValPostProcess. The in-
put to MaxValPostProcess is the set of successful
edges. As we traverse the graph, we store entries of the form
〈s,m, s′,Vmax(s,m, s′),Choices〉 in the cache. Each entry
contains a method m which, when applied in state s results in
state s′ with Vmax(s,m, s′) as the maximum possible reward
that can be accumulated by executing m on state s. More-
over, the choices of methods to decompose non-primitive
tasks in m are stored in Choices. Once a method is explored
in a given state, an agent can lookup in the cache providing a
sequence of states and actions encountered, from which the
agent can compute the probabilities of the Earley Nodes it is
in, and in turn, compute the choices of actions that can take



it to the maximum expected values.
We have implemented a preliminary version of

these algorithms in C++. Invoking Algorithm 2 with
MaxValProcess and MaxValPostProcess, we
obtain the Earley graph with node value filled in
Figure 1, for which the optimal HTN solution is:
〈 ml : START , getVechicle(car), obtainVehicle,
mo1 : START , moveTo(airport, car), getVehicle(plane),
mo1 : END, moveToLondon, mtl1 : START ,
moveTo(NYC, plane), moveTo(London), mtl1 : END,
ml : END 〉.

The corresponding states experienced by the system are:
〈at(NJ), at(NJ) ∧ has(car), at(airport) ∧
has(car), at(airport) ∧ has(plane), at(NYC) ∧
has(plane), at(London) ∧ has(plane)〉. The expected
utilities are shown in Figure 1, and the optimal HTN
solution is marked in bold red.

5 Discussion
The Earley graph provides an intuitive probabilistic graphi-
cal model by which we can understand the interplay between
the knowledge in the HTNs and the stochastic environment.

In this paper, the solution for a probabilistic hierarchical
planning problem is simplified to be a decomposition path∗
with the maximum expected V∗(path∗) given a set of initial
states. In a more realistic setting, we should seek to produce
a task decomposition table and a policy table for each node
in the Earley graph as a robust solution concept to handle
more effectively the failure of the action execution and the
uncertainty in task decomposition knowledge. Furthermore,
with the Earley graph we will be able to calculate the proba-
bility of being in an Earley node given a sequence of previ-
ously observed states and a sequence of actions taken. This
can be done in a manner similar to probabilistic grammar
parsing (Stolcke 1995). With this information, it is possible
to revise the decomposition and action decisions conditional
on the previous observations and actions.

Regarding the decomposition, if no information about the
predictive probability is given, we can assume that the appli-
cation of a method m ∈ M(t) is equally chosen:Pr(m | t) =

1
|M(t)| . Starting with this maximum entropy assumption, or
some other assumption about the conditional priors Pr(m|t),
we can learn these probabilities for a set D of the sequences
of state-transitions and their parsing as HTN decomposi-
tions, and update Pr(m|t) to be the posterior Pr(m|t,D).
This can be done similarly to learning grammar probabili-
ties given annotated samples as proposed in (Stolcke 1995).

6 Conclusions and Future Work
In this work, we developed a new approach to using
probabilistic hierarchical task networks (HTNs) as an ef-
fective method for agents to plan when their problem-
solving knowledge is uncertain, and the environment is non-
deterministic. In such situations it is natural to model the
environment as a Markov decision process (MDP) and we
show that using Earley parsing techniques we can bridge the
gap between HTNs and MDPs. We prove that the size of the
Earley graph created for given HTNs is bounded by the total

number of tasks in the HTNs and show that from the Earley
graph we can then construct a plan for a given task that has
the maximum expected value when it is executed in an MDP
environment.

Our ultimate goal is not only to perform probabilistic hi-
erarchical planning for an uncertain environment, but also
to extend the approach for multiagent system control. With
these extensions, a system of cooperative agents can com-
municate to share the same set of task networks while work-
ing in the same environment (and the same uncertainty). As
every agent can construct the same Earley graph structure
from the task network library, they should be able to incre-
mentally adapt to the environment and revise their task de-
composition probabilities. The system of agents would then
converge to a set of cooperative behaviors prescribed by the
communicated set of task networks. In this way, we will
have a system which allows us to specify its group behav-
iors in a way that is close to how humans think about the
problem solving while accommodating both the uncertainty
in the knowledge of problem solving and the uncertainty in
the environment.

Acknowledgement: This research was sponsored by the U.S.
Army Research Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Re-
search Laboratory, the U.S. Government, the U.K. Ministry of De-
fence or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

References
[Barrett and Weld 1994] Barrett, A., and Weld, D. S. 1994. Task-

decomposition via plan parsing. In Procs. of the 12th National
Conference on Artificial Intelligence (vol. 2), 1117–1122. Menlo
Park, CA, USA: American Association for Artificial Intelligence.

[Bellman 2003] Bellman, R. E. 2003. Dynamic Programming.
Dover Publications, Incorporated.

[Bryant 1992] Bryant, R. E. 1992. Symbolic boolean manipulation
with ordered binary-decision diagrams. ACM Computing Surveys
24(3):293–318.

[Cimatti et al. 2003] Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2003. Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence 147(1-2):35–84.

[Earley 1970] Earley, J. 1970. An efficient context-free parsing
algorithm. Communications of the ACM 13(2):94–102.

[Edelkamp and Helmert 1999] Edelkamp, S., and Helmert, M.
1999. Exhibiting knowledge in planning problems to minimize
state encoding length. In Procs. 5th European Conference on Plan-
ning, volume 1809 of LNCS, 135–147. New York: Springer-Verlag.

[Ghallab, Nau, and Traverso 2004] Ghallab, M.; Nau, D.; and
Traverso, P. 2004. Automated Planning: Theory and Practice.
Elsevier.

[Nau, Ghallab, and Traverso 2004] Nau, D.; Ghallab, M.; and
Traverso, P. 2004. Automated Planning: Theory & Practice. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[Stolcke 1995] Stolcke, A. 1995. An efficient probabilistic context-
free parsing algorithm that computes prefix probabilities. Compu-
tational Linguistics 21(2):165–201.


	Introduction
	Basic Definitions
	The language of states and actions
	Hierarchical Task Networks

	From HTN Methods to Earley Graphs
	Earley Graphs for HTN Methods
	Valid Decompositions and Executions

	Integrating HTNs and MDPs
	Markov Decision Processes
	Semantics of an HTN Earley Graph
	Utility of Earley Paths
	MEU HTN Planning

	Discussion
	Conclusions and Future Work

