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Abstract A term terminates if all its reduction sequences are of finite length. We show four
type systems that ensure termination of well-typedπ-calculus processes. The
systems are obtained by successive refinements of the types of the simply typed
π-calculus. For all (but one of) the type systems we also present upper bounds
to the number of steps well-typed processes take to terminate. The termination
proofs use techniques from term rewriting systems.

We show the usefulness of the type systems on some non-trivial examples:
the encodings of primitive recursive functions, the protocol for encoding sepa-
rate choice in terms of parallel composition, a symbol table implemented as a
dynamic chain of cells.
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1. Introduction

A term terminates if all its reduction sequences are of finite length. As far
as programming languages are concerned, termination means that computation
in programs will eventually stop. In computer science termination has been
extensively investigated in term rewriting systems [5, 3] andλ-calculi [7, 2]
(where strong normalization is a synonym more commonly used). Termination
has also been discussed in process calculi, notably theπ-calculus [12, 17], a
formalism widely used to address issues related to concurrency.

Indeed, termination is interesting in concurrency. For instance, if we inter-
rogate a process, we may want to know that an answer is eventually produced
(termination alone does not guarantee this, but termination would be the main
ingredient in a proof). Similarly, when we load an applet we would like to
know that the applet will not run for ever on our machine, possibly absorbing
all the computing resources (a ‘denial of service’ attack). In general, if the life-
time of a process can be infinite, we may want to know that the process does
not remain alive simply because of non-terminating internal activity, and that,
therefore, the process will eventually accept interactions with the environment.

Languages of terminating processes are proposed in [19] and [16]. In both
cases, the proofs of termination make use of logical relations, a well-known
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technique from functional languages. The languages of terminating processes
so obtained are however rather ‘functional’, in that the structures allowed are
similar to those derived when encoding functions as processes. In particular,
the languages are very restrictive on nested inputs (that is, the possibility of
having free inputs underneath other inputs), and recursive inputs (that is, repli-
cations!a(x).P in which the bodyP can recursively call the guarda of the
replication). Such patterns are entirely forbidden in [19]; nested inputs are
allowed in [16] but in a very restricted form. For example, the process

a(x).!b.x̄ | āc (1)

is legal neither for [19] nor for [16]. The restrictions in [19, 16] actually rule
out also useful functional processes, for instance

F ≡ !a(n, b). if n = 1 then b̄〈1〉 else νc(ā〈n−1, c〉 | c(m).b̄〈m∗n〉) (2)

which represents the factorial function.
In this paper, we consider several type systems and well-typed processes

under each system are ensured to terminate. First, in Section 3, we present a
core type system, which adds level information to the types of the simply typed
π-calculus. Then, in Sections 4 to 6 we show three refinements of the core
system. Nested inputs and recursive inputs are the main patterns we focus on.
For all the type systems (except for the second one, which can capture primitive
recursive functions) we also present upper bounds to the number of steps well-
typed processes take to terminate. Such bounds depend on the structures of
the processes and on the types of the names in the processes. We show the
usefulness of the type systems on some non-trivial examples: the encodings
of primitive recursive functions, the protocol for encoding separate choice in
terms of parallel composition from [13, 17], a symbol table implemented as a
dynamic chain of cells from [8, 15].

Roughly, for each type system to prove termination we choose a measure
which decreases after finite steps of reductions. To compare two measures, we
exploit lexicographicandmultiset orderings, well-known techniques in term
rewriting systems [5, 4]. For the core type system, the measure is just a vector
recording, for each level, the number of outputs (unguarded by replicated in-
puts) at channels with that level in the type. For the extended type systems, the
ideas are similar, but the measures become more sophisticated since we allow
them to decrease after some finite (unknown and variable) number of reduc-
tions, up-to some commutativities of reductions and process manipulations.

2. The simply typedπ-calculus

We begin with a brief overview of the simply typedπ-calculus [17]. In this
work we only study type systems̀a la Church, and each name is assigned a
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type a priori. We writex : T to mean that the namex has typeT . A judgment
` P says thatP is a well-typed process, and̀v : T says thatv is a well-typed
value of typeT . The syntax of types and processes as well as the typing rules
are shown in Table 1. We use the usual constructors of monadicπ-calculus.
Recall that in the input prefixa(x) and output prefix̄av, namea is thesubject
andx, v are theobjectsof the prefixes. We assumeα-conversion implicitly in
order to avoid name capture and keep the uniqueness of every bound name.
The transition rules are standard, in the early style.

Table 1. Processes, types and typing rules of the simply typedπ-calculus

S, T ::= V | L types
V ::= L | bool | Nat value types
L ::= ]V link types

v, w ::= x | true, false | 0, 1, 2, · · · values
P, Q ::= 0 | a(x).P | āv.P | P | P | P + P | νaP |!a(x).P processes

T-in ` a : ]T x : T ` P
` a(x).P

T-out ` a : ]T ` v : T ` P
` āv.P

T-nil ` 0

T-par ` P ` Q
` P | Q T-sum ` P ` Q

` P + Q
T-res a : L ` P

` νaP

T-rep ` a : ]T x : T ` P
`!a(x).P

For simplicity we only consider two basic types:bool, for boolean values,
andNat, for natural numbers. Values of basic types are said to be of first-order
because, unlike channels (names of link type), they cannot carry other values.
We also assume some basic operations on first-order values. For example, we
may use addition(n + m), subtraction(n − m), multiplication (n ∗ m) for
Nat expressions. To avoid being too specific, we do not give a rigid syntax and
typing rules for first-order expressions. We just assume a separate mechanism
for evaluating expressions of typeNat.

Next we introduce some notations about vectors, partial orders and multi-
sets. We write0i as the abbreviation of a vector〈nk, · · · , n1〉whereni = 1 and
nj = 0 for all j 6= i, and0 for a vector with all0 components. The binary op-
eratorsumcan be defined between two vectors. Letϕ1 ≡ 〈nk, nk−1, · · · , n1〉,
ϕ2 ≡ 〈ml,ml−1, · · · ,m1〉 andk ≥ l. First we extend the length ofϕ2 to k by
inserting(k− l) zeros to the left ofml to get an equivalent vectorϕ′2. Then we
do pointwise addition over two vectors with equal length. We also define an
order between two vectors of equal length as follows:〈nk, nk−1, · · · , n1〉 ≺
〈mk,mk−1, · · · ,m1〉 iff ∃i ≤ k with nj = mj for j > i andni < mi.

Let S be a set and> a strict partial order onS. Following [1], we write
a multisetM overS in the formM = [x1, . . . , xn], wherexi ∈ S for 1 ≤
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i ≤ n; we use(M]M′) for the union of M andM′, and write>mul for
the multiset ordering (on multisets overS) induced by>. A multiset becomes
smaller, in the sense of>mul, by replacing one or more of its elements by any
finite number (including zero) of smaller elements. It can indeed be shown that
>mul is well-founded [1].

In this paper we restrict our attention to the termination property of closed
processes, i.e., processes without free names ofbool or Nat types.

3. The core system: the simply typedπ-calculus with
levels

Our first type system for termination is obtained by making mild modifica-
tions to the types and typing rules of the simply typedπ-calculus. We assign a
level, which is a natural number, to each channel name and incorporate it into
the type of the name. Now the syntax of link type takes the new form:

L ::= ]nV link types
n ::= 1, 2, · · · levels

The typing rules in Table 1 are still valid (by obvious adjustments for link
types), with the exception of ruleT-rep, which takes the new form:

T-rep ` a : ]nT x : T ` P ∀b ∈ os(P ), lv(b) < n
`!a(x).P

whereos(P ) is a set collecting all names inP which appear as subjects of
those outputs that are not underneath any replicated input (we say this kind of
outputs areactive). The functionlv(b) calculates thelevelof channelb from
its type. Ifb : ]nT thenlv(b) = n.

The purpose of using levels is to rule out recursive inputs as, for instance,
in the process̄a |!a.b̄ |!b.ā the two replicated processes can call each other
thus producing a divergence. It is ruled out by our type system because!a.b̄
requireslv(a) > lv(b) while !b.ā requireslv(b) > lv(a). With levels, we also
have a concise way of handling nested inputs. For example, leta : ]1]1Nat, b :
]2Nat, c : ]1Nat, then process (1) is well-typed. We callT this type system
and writeT ` P to mean thatP is a well-typed process underT . The subject
reduction theorem of the simply typedπ-calculus can be easily adapted toT .

To prove the termination property of well-typed processes, we need to define
a measure for processes. The measure that we choose in this section is the
weight, wt(P ), of a processP . It is a vector determined by the levels of subject
names which appear in active outputs. Specifically,

wt(0) = 0 wt(āv.P ) = wt(P ) + 0lv(a)

wt(!a(x).P ) = 0 wt(P | Q) = wt(P ) + wt(Q)
wt(a(x).P ) = wt(P ) wt(P + Q) = max{wt(P ), wt(Q)}

wt(νaP ) = wt(P )
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In the next theorem, clause (i) says that weight is a good measure because it
decreases at each reduction step, which leads naturally to the termination prop-
erty of well-typed processes (clause (ii)), by the well-foundedness of weight.

Theorem 1 (i) SupposeT ` P andP
τ−→ P ′, thenwt(P ′) ≺ wt(P ).

(ii) If T ` P , thenP terminates.

It is easy to see that the weight of a process gives us a bound on the time
that the process takes to terminate.

Proposition 2 Letn andk be the size and the highest level in a well-typed
processP , respectively. ThenP terminates in polynomial timeO(nk).

As a consequence we are not able to encode the simply typedλ-calculus,
according to the known result that computing the normal form of a non-trivial
λ-term cannot be finished in elementary time [18, 9]. We shall see in the next
section an extension ofT that makes it possible to encode all primitive re-
cursive functions (some of which are not representable in the simply typed
λ-calculus).

4. Allowing limited forms of recursive inputs

The previous type system allows nesting of inputs but forbids all forms of
recursive inputs. In this and the following sections we study how to relax this
restriction.

4.1 The type system

Let us consider a simple example. ProcessP below has a recursive input:
underneath the replication ata there are two outputs ata itself. However, the
values emitted ata are “smaller” than the value received. This, and the fact
that the “smaller than” relation on natural numbers is well-founded, ensures
the termination ofP . In other words, the termination ofP is ensured by the
relation among the subjects and objects of the prefixes – rather the subjects
alone as it was in the previous system.

P ≡ ā〈10〉 |!a(n). if n > 0 then (ā〈n− 1〉 | ā〈n− 1〉)
−→ ā〈9〉 | ā〈9〉 |!a(n). if n > 0 then (ā〈n− 1〉 | ā〈n− 1〉)

For simplicity, the only well-founded values that we consider are naturals. But
the arguments below apply to any data type on whose values a well-founded
relation can be defined.

We use functionout(P ) to extract all active outputs inP . The definition is
similar to that ofos(P ) in Section 3. The main difference is that each element
of out(P ) is a complete output prefix, including both subject and object names.
For example, we haveout(!a(x).P ) = ∅ andout(āv.P ) = {āv} ∪ out(P ).
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In the typing rule, in any replication!a(x).P we compare the active outputs
in P with the inputa(x) using the relation/ below. We have that̄bv / a(x)
holds in two cases: (1)b has a lower level thana; (2) b anda have the same
level, but the objectv of b is provably smaller than the objectx of a. For this,
we assume a mechanism for evaluating (possibly open) integer expressions that
allows us to derive assertions such asx− i < x if i > 0, orx+2− 3+1 ≤ x.
We adopt an eager reduction strategy, thereby the expression in an output is
evaluated before the output fires.

Definition 3 Leta : ]nS andb : ]mT . We writēbv / a(x) if one of the two
cases holds: (i)m < n; (ii) m = n, S = T = Nat andv < x.

By substituting the following rule forT-rep in Table 1, we get the extended
type systemT ′. The second condition in the definition of/ allows us to include
some recursive inputs and gives us the difference fromT .

T-rep ` a : ]nT x : T ` P ∀b̄v ∈ out(P ′), b̄v / a(x)
`!a(x).P

The termination property ofT ′ can also be proved with a schema similar
to the proof in last section. However, the details are more complex because
we need to be clear about how the first-order values in which we are interested
evolve with the reduction steps. So we use a measure which records, for each
output prefix, the value of the object and the level information of the subject.
More precisely, the measure is acompound vector, which consists of two parts:
theNat-multisetand the weight, corresponding to each aspect of information
that we wish to record.

To a given processP and leveli, with 0 < i ≤ k, we assign a unique Nat-
multisetMP,i = [n1, · · · , nl], with nj ∈ N ∪ {∞} for all j ≤ l. (Here we
consider∞ as the upper bound of the infinite setN.) Intuitively, this multiset
is obtained as follows. For each active outputb̄v in P with lv(b) = i, there
are two possibilities. Ifv is a constant value (v ∈ N), thenv is recorded in
MP,i. If v contains variables of typeNat, then a∞ is recorded inMP,i. For
instance, supposea : ]3Nat, b : ]2Nat, c : ]1Nat andP ≡ ā〈1〉 | ā〈1〉 | b̄〈2〉 |
!a(n).b̄〈n + 1〉 | b(n).c̄〈n〉, thenT ′ ` P and there are three Nat-multisets:
MP,3 = [1, 1], MP,2 = [2] andMP,1 = [∞]. We define an operator↘ to
combine a set of Nat-multisets{MQ,i | 0 < i ≤ k} with the weight ofQ (as
defined in the previous section),wt(Q) = 〈nk, · · · , n1〉, so as to get acom-
pound vectortQ = 〈(MQ,k;nk), · · · , (MQ,1;n1)〉. The order≺ is extended
to compound vectors as follows:

Definition 4 SupposetP = 〈(vk), · · · , (v1)〉 and tQ = 〈(uk), · · · , (u1)〉,
wherevi = MP,i;ni andui = MQ,i;n′i for 0 < i ≤ k.
(i) vi ≺ ui if MP,i <mul MQ,i ∨ (MP,i = MQ,i ∧ ni < n′i)
(ii) tP ≺ tQ if ∃i ≤ k, vj = uj for j > i andvi ≺ ui
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Theorem 5 (i) If T ′ ` P andP
τ−→ P ′ thentP ′ ≺ tP .

(ii) If T ′ ` P thenP terminates.

The measure used here is more powerful than that in Section 3. With
weights, we only prove the termination of processes which always terminate
in polynomial time. By using compound vectors, however, as we shall see im-
mediately, we are able to capture the termination property of some processes
which terminate in timeO(f(n)), wheref(n) a is primitive recursive function.
For example, we can write a process to encode therepeated exponentiation,
whereE(0) = 1, E(n + 1) = 2E(n). Once received a numbern, the process
does internal computation in timeO(E(n)) before sending out its result.

4.2 Example: primitive recursive functions

For simplicity of presentation, we have concentrated mainly on monadic
communication. It is easy to extend our calculus and type system to allow
polyadic communications and an if-then-else construct, which are needed in
this example.

Proposition 6 All primitive recursive functions can be represented as ter-
minating processes in theπ-calculus.

We represent each functionf(x̃) as a process with replicated inputs like
!p(x̃, r).R, where namep has typeTm,n = ]m(Ñat, ]nNat) with m > n. After
receiving viap some arguments̃x and a return channelr, processR does some
computation, and finally the result is delivered atr. This style of encoding is
a straightforward adaptation of Milner’s encoding ofλ-terms intoπ-processes
[10]. Furthermore, the resulting processes are well typed inT ′. For instance,
the processF in (2) is typable if we give namea the type]2(Nat, ]1Nat). By
contrast, the encoding of functions that are not primitive recursive may not be
typable. An example is Ackermann’s function.

5. Asynchronous names

In this section we start a new direction for extending our core type system
of Section 3: we prove termination by exploiting the structure of processes
instead of the well-foundedness of first-order values. The goal of the new type
systems (in this and in the next section) is to gain more flexibility in handling
nested inputs. In the previous type systems, we required that in a replicated
process!a(x).P , the highest level should be given toa. This condition appears
rigid when we meet a process like!a.b.ā because we do not take advantage of
the level ofb. This is the motivation for relaxing the requirement. The basic
idea is to take into account the sum of the levels of two input subjectsa, b, and
compare it with the level of the output subjecta. However, this incurs another
problem. Observe the following reductions:
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P ≡ ā | b̄ |!a.b.ā
−→ b̄ | b.ā |!a.b.ā
−→ ā |!a.b.ā

The weight ofP does not decrease after the first step of reduction (we consume
a copy ofā but liberate another one). Only after the second reduction does the
weight decrease. Further,P might run in parallel with another process, sayQ,
that interferes withP and prevents the second reduction from happening. This
example illustrates two new problems that we have to consider: the weight of a
process may not decrease at every step; because of interferences and interleav-
ing among the activities of concurrent processes, consecutive reductions may
not yield “atomic blocks” after which the weight decreases.

In the new type system we allow the measure of a process to decrease after
a finite number of steps, rather than at every step, and up-to some commuta-
tivities of reductions and process manipulations. This difference has a strong
consequence in the proofs. For technical reasons related to the proofs, we re-
quire certain names to be asynchronous.

5.1 Proving termination with asynchronous names

A namea is asynchronousif all outputs with subjecta are followed by
0. That is, if āv.P appears in a process thenP ≡ 0. A convenient way of
distinguishing between synchronous and asynchronous names is using Mil-
ner’s sorts [11]. Thus we assume two sorts of names,AN andSN , for asyn-
chronous and synchronous names respectively, with the requirement that all
names inAN are syntactically used as asynchronous names. We assume that
all processes are well-sorted in this sense and will not include the requirements
related to sorts in our type systems. (We stick to using both asynchronous and
synchronous names instead of working on asynchronousπ-calculus, because
synchronousπ-calculus is sometimes useful – see for instance the example in
Section 6.2 – and it is more expressive [14]. However, all the results in this
paper are valid for asynchronousπ-calculus as well.)

We make another syntactic modification to the calculus by adding a con-
struct to represent a sequence of inputs underneath a replication:

κ ::= a1(x1). · · · .an(xn) n ≥ 1 and∀i < n, ai ∈ AN
P ::= . . . |!κ.P

This addition is not necessary – it only simplifies the presentation. It is partly
justified by the usefulness of input sequences in applications. (It also strongly
reminds us of the input pattern construct of the Join-calculus [6]). We callκ
an input pattern. Note that all but the last name inκ are required to be asyn-
chronous. As far as termination is concerned, we believe that the constraint –
and therefore the distinction between asynchronous and synchronous names –
can be lifted. However, we do not know how to prove Theorem 7 without it.



Ensuring Termination by Typability 9

The usual form of replication!a(x).P is now considered as a special case
where the input pattern has length1, i.e., it is composed of just one input prefix.
We extend the definition of weight to input patterns by taking account of the
levels of input subjects:wt(a1(x1). · · · .an(xn)) = 0k1 + · · · + 0kn where
lv(ai) = ki. The typing ruleT-rep in Table 1 is replaced by the following one.

T-rep ` κ.P wt(κ) � wt(P )
`!κ.P

Intuitively, this rule means that we consume more than what we produce.
That is, to produce a new processP , we have to consume all the prefixes from
a1(x1) to an(xn) on the left ofP , which leads to the consumption of corre-
sponding outputs ata1, · · · , an. Since the sum of weights of all the outputs is
larger than the weight ofP , the whole process has a tendency to decrease its
weight. Although the idea behind this type system (T ′′) is simple, the proof
of termination is non-trivial because we need to find out whether and when a
whole input pattern is consumed and thus the measure decreases.

Theorem 7 If T ′′ ` P thenP terminates.

Below we briefly explain the structure of the proof and proceed in four steps.
Firstly, we decorate processes and transition rules with tags, which indicate the
origin of each reduction: whether it is caused by calling a replicated input, a
non-replicated input or it comes from an if-then-else structure. This informa-
tion helps us to locate some points, calledlandmarks, in a reduction path. If a
process performs a sequence of reductions that are locally ordered (that is, all
and only the input prefixes of a given input pattern are consumed), then the pro-
cess goes from a landmark to the next one and decreases its weight. (This is not
sufficient to guarantee termination, since in general the reductions of several
input patterns may interleave and some input patterns may be consumed only
partially.) Secondly, by taking advantage of the constraint about asynchronous
names, we show a limited form of commutativity of reductions. Thirdly, by
commuting consecutive reductions, we adjust a reduction path and establish on
it some locally ordered sequences separated by landmarks. Moreover, when an
input pattern is not completely consumed, we perform some manipulations on
the derivatives of processes and erase some inert subprocesses. Combining all
of these with the result of Step 1, we are able to prove the termination property
of tagged processes. Finally, the termination of untagged processes follows
from the operational correspondence between tagged and untagged processes,
which concludes our proof of Theorem 7.

Proposition 8 For a processP well-typed underT ′′, let n and k be its
size and the highest level, respectively. ThenP terminates in polynomial time
O(nk+1).
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5.2 Example: the protocol of encoding separate choice

Consider the following protocol which is used for encoding separate choice
by parallel composition [13], [17, Section 5.5.4]. One of the main contributions
in [13] is the proof that the protocol does not introduce divergence. Here we
prove it using typability.

[Σn
i=1x̄idi.Pi] ≡ νs ( s̄〈true〉

| Πn
i=1νax̄i〈di, s, a〉.a(x). if x then [Pi] else 0)

[Σm
i=1yi(z).Qi] ≡

νr ( r̄〈true〉
| Πm

i=1νg ( ḡ
| !g.yi(z, s, a).r(x). if x then

( s(y). if y then

( r̄〈false〉 | s̄〈false〉 | ā〈true〉 | [Qi])
else

( r̄〈true〉 | s̄〈false〉 | ā〈false〉 | ḡ))
else
r̄〈false〉 | ȳi〈z, s, a〉))

wherer, s anda are fresh andΠn
i=1Pi meansP1 | · · · | Pn.

The protocol uses two lockss andr. When one input branch meets a match-
ing output branch, it receives a datum together with locks and acknowledge
channela. Then the receiver testsr ands sequentially. Ifr signals failure, be-
cause another input branch has been chosen, the receiver is obliged to resend
the value just received. Otherwise, it continues to tests. Whens also signals
success, the receiver enables the acknowledge channel and let the sender pro-
ceed. At the same time, bothr ands are set tofalse to prevent other branches
from proceeding. If the test ofs is negative, because the current output branch
has committed to another input branch, the receiver should restart from the be-
ginning and try to catch other send-requests. This backtracking is implemented
by recursively triggering a new copy of the input branch.

Usually when a protocol employs a mechanism of backtracking, it has a
high probability to give rise to divergence. The protocol in this example is
an exception. However, to figure out this fact is non-trivial, one needs to do
careful reasoning so as to analyze the possible reduction paths in all different
cases. With the aid of type systemT ′′, we reduce the task to a routine type-
checking problem. Simply takingg.yi(z, s, a) as an input pattern, one can
check that the typability of[Pi] and [Qi] implies that of[Σn

i=1x̄idi.Pi] and
[Σm

i=1yi(z).Qi], which means that the protocol does not have infinite loops.

6. Partial orders

The purpose of our final type system is to type processes even if they contain
replications whose input and output parts have the same weight. Of course
not all such processes can be accepted. For instance,!a.b.(ā | b̄) should not
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be accepted, since it does not terminate when running together withā | b̄.
However, we might want to accept

!p(a, b).a.(p̄〈a, b〉 | b̄) (3)

wherea andb have the same type. Processes like (3) are useful. For instance
they often appear in systems composed of several “similar” processes (an ex-
ample is the chain of cells in Section 6.2). In (3) the input patternp(a, b).a
and the continuation̄p〈a, b〉 | b̄ have the same weight, which makes ruleT-rep
of T ′′ inapplicable. In the new system, termination is proved by incorporating
partial orders into certain link types. For instance, (3) will be accepted if the
partial order extracted from the type ofp shows thatb is belowa.

6.1 The type system

We present the new type systemT ′′′. The general structure of the associated
termination proof goes along the same line as the proof in Section 5.1. But now
we need a measure which combines lexicographic and multiset orderings.

To begin with, we introduce some preliminary notations. LetA be a set and
R ⊆ A ×A be a partial order on elements ofA. The set of names appearing
in elements ofR is n(R) = {a | aRb ∨ bRa for some b}. Let x̃ be a tuple of
namesx1, · · · , xn. The partial orderS on the index set{1, . . . , n} induces a
partial order oñx, defined asS ∗ x̃ = {(xi, xj) | iSj}.

Remark: In this paper we use partial order in a very narrow sense. For-
mally, for a partial order on names to be well defined, we require that it satis-
fies the following two conditions: (i) mathematically it is a strict partial order
(irreflexive, antisymmetric and transitive); (ii) all names inn(R) are of the
same type (this type is writtenTR).

The operatoros(·) of Section 3 is now refined to bemosR(·), which defines
a multiset recording all subject occurrences of names in active outputs and with
typeTR. The operatormosR(·) can be extended to input patterns by defining:
mosR(κ) = mosR(āx̃1 | · · · | āx̃n) if κ = a1(x̃1). · · · .an(x̃n).

LetR be a partial order andRmul be the induced multiset ordering on mul-
tisets overn(R). The binary relationR̂ defined below will act as the second
component of our measure, which is a lexicographic ordering with weight of
processes as its first component.

Definition 9 Suppose thatR is a partial order,Q is a process,P is either
an input pattern or a process. It holds thatP R̂ Q if the following three
conditions are satisfied, for some multisetsM1,M2 andM: (i) mosR(P ) =
M]M1; (ii) mosR(Q) = M]M2; (iii) M1 Rmul M2.

Essentially the relation̂R is an extension of the multiset orderingRmul. So
it is also well-founded: ifR is finite, then there exists no infinite sequence
P0 R̂ P1 R̂ P2 R̂ · · ·
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Now we are well-prepared to present our types and type system. Here we
consider polyadicπ-calculus and redefine link type as follows.

L ::= ]n
S T̃ where ∀i, j ∈ n(S), Ti = Tj

whereS ⊆ Nat× Nat is a partial order on the indexes ofT̃ . If i andj are two
indexes related byS, then thei-th andj-th components of̃T have the same
type. Supposeκ = a1(x̃1). · · · .an(x̃n) and eachai has type]mi

Si
T̃ . We extract

a partial order fromκ by definingRκ = S1 ∗ x̃1 ∪ · · · ∪ Sn ∗ x̃n. It is well
defined as all the bound names are assumed to be different from each other.

If νaP is a subprocess ofQ, we say that the restrictionνa is unguardedif
νaP is not underneath any input or output prefix. Besides the two sortsAN
andSN introduced in the beginning of Section 5.1, now we need another sort
RN . It requires that if a name of sortRN appears in the subject position
of a prefix, then the continuation process has no unguarded restrictions. This
technical condition facilitates the presentation of the definition below.

Definition 10 Let κ = a1(x̃1). · · · .an(x̃n). The relationκ :� P holds if
one of the following two cases holds: (i)wt(κ) � wt(P ); (ii) wt(κ) = wt(P ),
κ R̂κ P andan ∈ RN .

The second condition indicates the improvement ofT ′′′ overT ′′. We allow
the input pattern to have the same weight as that of the continuation, as long as
there is some partial order to reflect a tendency of decrement. The constraint
imposed onan prohibits dangerous extension of partial orders underneath an
input pattern and also simplifies our proof of Theorem 11. For the new type
systemT ′′′, the most important rule is the following one:

T-rep R ` κ.P κ :� P
R `!κ.P

Now the judgmentR ` P means thatP is a well-typed process underT ′′′ and
the free names inP respect the (possibly empty) partial orderR. All other
rules are easily adapted fromT ′′ by adding some appropriate partial order in-
formation to the type environment. Finally we have the following termination
theorem forT ′′′. The proof heavily relies on the well-foundedness ofR̂.

Theorem 11 If R ` P thenP terminates. Moreover, letn andk be its size
and the highest level, thenP terminates in polynomial timeO(nk+3).

6.2 Example: symbol table

This example comes from [8, 15]. It implements a symbol table as a chain
of cells. Below:G is a generator for cells;ST0 is the initial state of the symbol
table with only one cell;STm is the system in which the symbol table hasm
pending requests.
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Every cell of the chain stores a pair(n, s), wheres is a string andn is a key
identifying the position of the cell in the chain. A cell is equipped with two
channels so as to be connected to its left and right neighbors. The first cell has
a public left channela to communicate with the environment and the last cell
has a right channelnil to mark the end of the chain. Once received a query for
string t, the table lets the request ripple down the chain until eithert is found
in a cell, or the end of the chain is reached, which means thatt is a new string
and thus a new cell is created to storet. In both cases, the key associated tot
is returned as a result. There is parallelism in the system: many requests can
be rippling down the chain at the same time.

G ≡ !p(a, b, n, s).a(t, x).
if t = s then

x̄〈n〉.p̄〈a, b, n, s〉
else if b = nil then

x̄〈n + 1〉.νc(p̄〈c, nil, n + 1, t〉 | p̄〈a, c, n, s〉)
else b̄〈t, x〉.p̄〈a, b, n, s〉

ST0 ≡ νp(G | p̄〈a, nil, 1, s0〉)
STm ≡ ST0 | ā〈t1, x1〉 | · · · | ā〈tm, xm〉

As to termination, the example is interesting for at least two reasons. (1)
The chain exhibits a syntactically challenging form. The replicated processG
has a sophisticated structure of recursive inputs: the input pattern has inputs
at p anda, while the continuation has a few outputs atp and one output atb,
which should have the same type asa. (2) Semantically, the chain is a dy-
namic structure, which can grow to finite but unbounded length, depending on
the number of requests it serves. Moreover, the chain has a high parallelism in-
volving independent threads of activities. The number of steps that the symbol
table takes to serve a request depends on the length of the chain, on the number
of internal threads in the chain, and on the value of the request.

SupposeT ≡ ]2∅(String, ]1Nat), S ≡ {(1, 2)} and let the type ofp be
]1S(T, T, Nat,String). We considernil as a constant name of the language
studied in this section and take it for the bottom element of any partial order
R ⊆ N2 × N2 with TR = T . For anym ∈ N, processSTm is well typed
underT ′′′ and thus terminating.

7. Final remarks

Since we are not able to encode the simply typedλ-calculus, our systems
do not include those of [16] and [19]. Nevertheless, a large class of processes
(including all examples analyzed in this paper) are excluded by the above two
works. One way of interpreting the results of this paper is to consider combi-
natory approach (on which this paper is based) as a complementary technique
to logical relations (on which [16] and [19] are based) for showing termination
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of processes. It would be interesting to see whether the two approaches can be
successfully combined.
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