Assignment 4 (Architectural Standard: CORBA)
Yuzo Ishida

Common Object Request Broker Architecture (CORBA)

Part 1 - Introduction:

Briefly introduce the standard and its history. For what purpose was the standard created?

Who created it? Who uses it? Are there any related standards? If so, list them and briefly explain how they differ from the standard that you selected.

CORBA and its history

[image: image1.png]

Figure 1. Rational behind CORBA

Purpose of CORBA

Vendor independent Interoperability (high level definition)

- Middleware that’s everywhere - is the main purpose of CORBA, which try to provide perfect interoperability among any OS, hardware, and system. We might see the immediate benefit by integrating legacy systems on mainframe computers and/or traditional client-server models with relatively new component based systems on web technologies. Not only the interoperability among the variety of system (architecture) styles but also interoperability among different vendors produces significant benefit for users. “Open system” was the first step for vendor independent interoperability but still had a limitation in architecture point of views. CORBA could be rephrased to “the road to the perfect open system”.

Implement ORB functions (narrow definition in OMA)

The purpose of CORBA in OMA is to implement ORB functions. OMA has CORBA-related objects: CORBAservices [OMG 1998b], CORBAfacilities, and CORBAdomains.

· CORBAservices provide low-level, base-type services such as transactions, security, life-cycle, and naming.

· CORBAfacilities provide a higher-level set of services such as printing management.

· CORBAdomains represent vertical domain-related standards such as manufacturing, telecommunication, healthcare, financial and so on.

· Application objects, other than these CORBA related objects, are not standardized as part of OMG activities.

Figure 2. Mapping among CORBA-related objects (OMA)

Who created it? Who uses it?
CORBA was created by OMG (Object Management Group) as a part of OMA (Object Management Architecture) and now about 800 companies participated in this standard architecture. This architecture is used in a variety of industrial application systems all over the world.

Related standards

EJB and DCOM are other widely known architecture as distributed system architecture. The following table shows the similarities and dissimilarities among three architectures.

	
	CORBA
	DCOM
	EJB

	Similarity1:

Component based methodology
	To maximize reusability and rapid application development, component based approach is applied. Component based approach heavily depends on interface definition. OMG IDL, COM IDL, and so called Java IDL (simply mapping for Java to the OMG IDL) are used.

	Similarity2:

Distributed Network
	Components can be distributed over network.

	Similarity3:

Naming and locating service
	Al services provide some sort of registry or repository to help locate the corresponding service.

	Dissimilarity1:

Vendor and players
	Multiple vendor support
	Microsoft with some third parties
	Sun microsystem with other vendors

	Dissimilarity2:

Language
	A variety of languages
	Some languages such as VB/ VC++ / MS-Java
	Java

	Dissimilarity3:

Platform
	Platform independent with specification
	Win32
	Platform independent

by JVM

Table 1. Architecture comparison (CORBA, DCOM, EJB)

EJB vs. JINI – Sun Microsystem’s two architectures -

EJB requires a J2EE server as container of beans while JINI is quite open architecture even for device or other service providers. The method of invoking remote object is also different. EJB use only RMI/IIOP but The JINI architecture lets programs use services in a network without knowing anything about the wire protocol that the service uses. One implementation of a service might be XML-based, and another RMI-based, and a third CORBA-based.
Part 2 - Description of the Standard:

Describe the standard from an architectural point of view. What is the underlying basic architecture of the standard? What style(s) does it represent or define? Describe the component and connector mechanisms.

Figure 3. Architectural description of CORBA (basic case)

with layered and sequential diagram on physical view basis

Figure 3 describes the sequential flow of the basic object invocation mechanism from client to server. Both stub in a client and skeleton in a server are compiled with IDL. So clean separation of interface and implementation is achieved. The caller (client) does not have to know where the actual implementation (object) resides since a client uses name services (object reference) to access a remotely distributed object. The object reference is defined by an IDL, which is the essential information of Name service in CORBAService. The ORB delivers the request to the object and returns a result to the client through Transaction service, which is also one of CORBAServices. Components/objects applications on both client and server sides can be program language independent with client ORB interface and server CORBA interface. The network protocol used in this communication is GIOP/IIOP.

The underlying basic architecture of CORBA is a layered architecture since the main object of CORBA is to provide interoperability among a variety of vendors and systems. Therefore CORBA needs encapsulation approach to make the external interfaces consistent among them (IDL, ORB/CORBA interfaces, stub/skeleton) and fundamental communication mechanism/layer to connect one another (ORB, GIOP/IIOP). Hiding implementation (program independent) and providing common interfaces (vendor/system independent) leads to ultimate goal, “Middleware that’s everywhere”.

CORBA is the architecture for distributed systems so it might be well described with physical view, in which multiple machines can be specified. At the same time, IDL (interface specification language) is also the key technology to integrate everything at heterogeneous environment, which leads to the necessary of a layered architecture representation. And finally the sequential diagram helps express the relations and roles of each component. Therefore Figure 3 is a hybrid of two diagrams (layered and sequential) and one view (physical).

Part 3 – Analysis of Properties and Tradeoffs:

Analyze the standard: Discuss the quality attributes that the standard supports. How are these quality attributes supported? Discuss the quality attributes that are not well supported by the standard. Why are these quality attributes not supported? What tradeoffs did the developers make in creating the standard? Does it support any type of analysis or consistency checking? Does the standard meet its stated intent?

Supported Quality Attributes

Reusability (Interoperability)

A variety of systems, computer languages and vendors can be integrated into one total enterprise system. This attribute goes into two “well known” Quality attributes. The significant benefit of CORBA could be the integration of huge legacy systems such as mainframe systems and new systems. For example, it is too costly to reengineer the huge COBOL programs and systems in order to integrate with new systems while they want a seamless integration for a total enterprise system. CORBA allows these companies to reuse the most of legacy systems for the total system with minor modification.

Modifiability

Since all implementation was hidden by IDL, the internal logic in a component can be easily modified. And also the component location (server location) can be changed without affecting calling components (clients) since Naming service provide the latest information of server side components dynamically.

Extensibility

Since the number of vendors is growing, existing CORBA systems have a significant probability to integrate more systems, devices and software into themselves. And also naming service contributes extensibility by allowing the system to expand with more servers.

Productivity

We can integrate variety of software components written by different languages so developer might be able to choose the best or most familiar language to develop each component, which has favorable impact on productivity.

Not well Supported Quality Attributes

Performance

Since all communication with remote components has to go through CORBA mechanism, the response time could be an issue because of more layers among communication. So, platform dependent own socket programs over TCP/IP with C language will produce much faster through put than the combined CORBA components.

Security

Since the total system will be highly distributed with multiple vendor products, more security holes are likely to be embedded into the system. Moreover the root cause of system troubles could be difficult to be identified in highly integrated environment.

Tradeoffs
Reusability (Interoperability) vs. Performance

To integrate a variety of systems in heterogeneous environment, developers had to add more layers and steps for the communication mechanism and sacrifice performance due to additional steps.
Extensibility vs. Security

The ability to extend system by adding new servers for load balanced or business needs might increase the number of weak points (security holes) in the system. In theory, the more network communications are executed, the more chances are raised for intrusion (Distribution systems have weaker than centered systems).

Consistency and original intent

OMG provides ISO standards for some core specifications such as IDL and keeps consistency among the products from a variety of vendor. In spite of the small number (11) of the original organizations, the number of participants is growing up to 800 now. The original intent, “middleware that’s everywhere” seems to meet. Even though one of the original organizations, Sun Microsystem, has started own architecture, EJB, but Sun is positioning EJB to provide seamless integration with CORBA environment by RMI-IIOP methods for communication. Another big architecture, DCOM from Microsoft, can also be integrated with CORBA with DCOM/CORBA bridges. Overall CORBA’s original intention is kept and the industry trend seems to be going forward to support CORBA.

Part 4 - Applicability:

As an architect, what features do you feel confident that you could exploit in the standard in practice? Give an example of an application that might cause you to select this standard. Give an example where you would advise someone not to select this standard.

An example of application to use CORBA
If an organization has already had huge business logics and intellectual assets in legacy system such as mainframe or traditional client/server model (fat client and thin logic in server side with RDBMS), I would recommend to use CORBA to integrate web servers with the legacy system. In most cases, the existing systems have to be run continuously without stopping services. And also reengineering the whole system from scratch takes time and a significant risk to release. Actually it is possible to integrate mainframes, Unix servers and PCs on variety of OS without using CORBA, but which requires a special development to accomplish the interoperability, leads to ad hoc environment and reduces the flexibility in the total system. For the security weakness of CORBA architecture, I might apply Firewall and/or routing configuration to protect the entire system from potentially harmful attacks.

An example of application not to use CORBA
If we need to develop a specialized, high performance and relatively closed system, which does not expect future integrations with outside of the system, I would not use CORBA. On the other hand, I might make own distribution mechanism for high performance by bypassing the overhead layers.

Part 5 - Documentation:

Evaluate the existing documentation of the standard. How good or bad is the documentation? How could the documentation be improved? Be specific and give examples.

Example 1

[image: image3.png]
Figure 4. Example of ambiguous representation

Figure 4 tries to show the interoperability using ORB-to-ORB communication, but it is hardly to understand the arrows on the figure. Some questions for the diagram would be “Do the two allows show the concurrency access to two objects?” or “Does client have to access local object at first before accessing the object on the remote machine?” and “What interfaces are provided between the components such as client, object stub, and ORB?” And moreover this figure makes confusing about simple question, “What is ORB? The arrows or boxes?”

Improvement

I would recommend that the figure should include legends at least for the meaning of allows. Usually one architecture view cannot express the architectural essences so that I would recommend using different architecture views, which are suited most for the specific purpose. For example if the architecture needs to focus on interface issues, the following collaboration diagram would be ideal view on this purpose:

Figure 5. Collaboration diagram focusing interface representation

(From Tony Lattenze’s lecture slides)

Example 2

[image: image2.png]
Figure 5. Example of simple architecture

Figure 5 tries to show the sequence of client’s request to object implementation. This is quite simple one but concise and easy to understand the fundamental mechanism of CORBA. Client uses IDL stub to send a request, ORB forwards request, Object implementation is accessed through IDL skeleton. These are the essences of CORBA and this simple architecture diagram show the almost everything in such a simple way. Moreover the title of this architecture, “A request passing from client to object implementation”, contributes to make the meaning of this diagram consistent.

Improvement

I might recommend that the figure should include legends but this simple architecture plus the title tell the main points. Considering the space allowed to explain the concept, this architecture would be acceptable as it is.
[Bibliography]

http://www.omg.org/gettingstarted/specintro.htm#CORBA
http://www.omg.org/news/about/index.htm
http://www.bejug.org/new/pages/articles/corba/node35.html
Lecture slides of Architecture of Software Systems CMU-SCS Spring 2001

Research into the interoperability of enterprise information technologies (Yoshi Hasegawa MSE May 2001)

OMG

(organization)

use

OMA

(architecture)

develop

ORB

(technology)

Communication mechanism

Services

Provide & deal

CORBA

(architecture)

CORBA is a part of OMA

Founded in 1989 with 11 companies.

Now includes about 800 members and is moving forward in establishing CORBA as the “middleware that’s everywhere” through its worldwide standard specifications: CORBA/IIOP, Object Services, Internet Facilities and Domain Interface Specifications, UML and other specifications supporting analysis and design.

CORBA Definition

OMG’s open, vendor independent specification for an architecture and infrastructure that computer applications use to work together over networks.

CORBA Key parts

OMG Interface Definition Language (OMG IDL)

Standardized protocols GIOP and IIOP

CORBA Benefits

Interoperability among any vendor, almost any computer (including handheld or small embedded device), OS, program language

Load-balancing on multiple machines

OMG’s standard fault tolerant architecture

ORB (Object Request Broker)

CORBAServices

Application objects

CORBA

Domain

CORBA

Domain

CORBA

Domain

CORBAfacilities

ORB (Object Request Broker) GIOP/IIOP

Stub

Skeleton

Application (client)

Client don’t know where the object is

Language independent

Object/Component (server)

Language independent

Response the reference

IDL (compiled into stub)

IDL (compiled into skeleton)

Invocation (explicit / implicit)

: Object request

Object Reference

Object reference

Response the reference

Object Reference

(define by IDL)

Naming service

(part of CORBAServices)

Request of object

Request of object

Client ORB interface

Transaction service

(part of CORBAServices)

Request of object

Request of object

Server CORBA interface

Request of object

Response the request

Response the request

Response the request

Response the request

Response the request

Response the request

Architecture of Software System

Spring, 2001

