MSE Studio reflective practice

Spring 2001
[image: image4.wmf]tracked

data

Software

development

plans

Responsibliti

es

Resouce

and funding

Inputs

t

prepare all inputs

Track changes and

activities in the

development

Record actual and re-

planning data

End of

project

Found big

difference b/

w plan and

actual

Summarize tracked

data and

performance

Track risks and revise

software document

plan, if necessary

tasks

outputs

Software Project Tracking and Oversights

managers

orientation

Review progresses,

plans, and activitews

Take corrective

actions

CarnegieExchange
[image: image1.jpg]
Tailoring CMM for future MSE Studio
teams

Yuzo Ishida

Master of Software Engineering

Carnegie Mellon University

School of Computer Science

Table of Contents

21. Introduction

32. Key practice areas

32.1 Requirement Management

62.2 Software Project Planning

82.3 Software Project Tracking and Oversight

102.4 Software Quality Assurance

112.5 Software Configuration Management

122.6 Software Subcontract Management

123. Conclusion

Abstract: CMM for software [Paulk95] is the most widely used as software development process model developed by SEI. MSE Studio projects are an ideal situation to execute formal software development process or good software practices defined in CMM. But most of students have formal software process experience only through Personal Software Process (PSP), when they start their Studio projects. This paper introduces some practical measures to enable future MSE studio teams to become the CMM level 2 equivalent organizations with minimum efforts. This paper mainly consists of samples and their rational in each key practice area at CMM level 2 based on the MSE studio projects in 2001. Without significant efforts to monitor each process in these process areas, it would be hard to be officially certified. These overheads are unacceptable for 3 persons team with limited time. Therefore the focus of this paper is to extract essences of key practice areas and apply them to current MSE environments in practical ways.
1. Introduction

CMM (Software Capability Maturity Model) is a well-known term in software engineering and system integration industries but it requires some efforts for engineers to understand the concept and much further efforts to implement it in their organization. In MSE studio, the students working MSE projects come from a variety of software related companies with different development cultures ranging from ad hoc startup companies, in which software development process itself is hardly heard, to CMM level 5 companies, where software development processes are highly focused and optimized. But most of ordinal students have experienced no formal software development process before coming here, Master of Software Engineering, even though they had done some good or natural customs in software development practices without knowing that these good customs are very similar to the fundamental key practices defined in CMM.

The purpose of this paper is to provide a practical guideline or step up examples from the CMM level 1 organization, in which most of students were working, to the CMM level 2 for future MSE Studio projects. Since the CMM is a model rather than a manual, we have to implement the actual procedures under the model in order to make these procedures suit to each organization. Assuming that the conditions of MSE Studio projects such as types of clients, development time, and available tools do not change dramatically, the actual processes that 2001 MSE projects are executing can be a reference for future MSE projects. In this paper, these processes are categorized by CMM level 2 key practice areas with the author’s comments and rational behind them.

During the spring semester in 2001, the author was working as process manager in Bravo team as well as a process specialist, which is one of Studio wide specialist roles. And fortunately the author could expose oneself to software development process intensively though the spring semester taking Seminar in Software Development Process at SEI, instructed by Mark C Paulk, who is the development manager of Software-CMM Version 1.1.

2. Key practice areas

To achieve CMM level 2, an organization has to satisfy the following 6 key practice areas. The following each section consists of general description, MSE specific condition, outputs, and activities regarding to each key practice area.

2.1 Requirement Management

General description

This practice area is the most demanding one in the entire software development process since requirement has never fixed in most of projects and requirement related issues such as poor requirement are always in top 5 reasons of failure projects. The reason why requirement management is so important that whatever other software process are in good shape, poorly managed requirements can throw away the benefit of other processes easily.

MSE Studio specific conditions

At the beginning of MSE studio 2001, there were two industrial projects, one government related project, and one academic project. As for industrial projects, both teams had spent significant effort to communicate with their clients since their clients were too busy to take a time for MSE projects, which are usually ranked as low priority or not-urgent projects.

Outputs

The purpose of Requirements Management is to establish a common understanding between the customer and the software project of the customer’s requirements that will be addressed by the software project. Eventually MSE Studio teams should have got signature of their client on Software Requirement Specification (SRS) following Statement of Work (SOW). As requirements usually keep changing to some extent through the project, SRS should be kept maintained during entire project. In some cases, Vision Document, in which client’s business objectives and the vision of the project will be specified, might help MSE students to understand their projects with a different view in the earliest stage (before working on SOW). Since two MSE projects in 2001 lost their client in the middle of a semester due to the client’s business reasons, MSE Studio team should analyze their projects in the view of their client’s business vision not developer’s point of view in order to identify these risks as soon as possible. If they could see the critical risk in the analysis, they had better consult with instructors immediately rather than defer the disaster later.

Activities

Like real world, MSE Studio teams conduct client interviews to collect user requirements. There are some books regarding Requirement Management in SEI library and one of them contains the template for the first interview of a client meeting, which might work as a checklist before the first meeting. Not only the required documents (SOW, SRS in MSE Studio), at least minutes of meetings have to be stored in one place, where all team members can access and refer them easily later. There are different types of difficulty in managing requirements. For example, 1) a primary contact of client is too busy to communicate with MSE team timely. 2) The primary contact does not have enough knowledge about details of requirements. 3) The scope of requirement is too big for MSE project allocated time 4) Client cannot focus on the specific topics. 5) Some requirements require domain specific knowledge. There was no progress by just repeating the same type of meetings. MSE students had to move more proactive to resolve this deadlock situation. Refer the samples of resolutions in examples section.

[image: image2.wmf]Agreem

ents

and

basis

Allocated

requirement

Managers

and staff

Resouce

and funding

Inputs

t

prepare all inputs

Review allocated

requiremen

Establish agreement

Maintain documents

End of

project

request of

revise

Remain consistent

with documents

Produce a basis for

estimating, planning,

tracking activies

Effect changes to the

requirement and

allocation

tasks

outputs

Requirement Management

Figure 1. Diagram of Requirement Management by Petri net

Examples/difficulties

The following process, which is used by one of MSE projects in 2001, might be applied to all projects starting from scratch.

· Conduct client interviews

· Take a minutes

· Send the minutes to all attendees and get the confirmation from the client

· Put the approved information into requirement documents

· Repeat the above steps until the team cover the entire project

· Negotiate with client about the development scope for the team if the entire project does not fit into the time the team has

· Complete SRS and get user approval

You might want to divide the above phase into two phases, high-level requirement elicitation (information gathering with SOW) and SRS completion (verification).

The examples of how MSE 2001 had tried to solve the following problems:

1) A primary contact of client is too busy to communicate with MSE team timely.

· Try to setup regular meeting (ex. bi-weekly fixed time)

· Define maximum response time (ex. within two business days for emails)

· Show the relation of delayed requirement and failure of projects (with the team plan)

· Consult with instructors or mentors

· # Instructors should have prescreened the potential projects before assigning to MSEs.

2) The primary contact does not have enough knowledge about details of requirements.

· Send questions or concerns pretty much before a meeting for the primary contact to provide the answers.

· Kindly ask to set up a meeting with key persons.

· Provide team understanding (documents) with limited resources and some guess (own idea). Just sending questions might lead the project to lose focus.

3) The scope of requirement is too big for MSE project allocated time

· Estimate with size estimation model such as COCOMO II

· Compare the estimated size with those of previous MSE projects

· Draw a whole picture of requirements and make a client prioritize them

· Explain the condition of MSE projects, no option to defer delivery day.

· Negotiate with the tradeoff quality and size of software.

· Define scope by multiple steps (redefine the scope in the later stages based on the time remained).

4) Client cannot focus on the specific topics.

· Provide strict detailed agendas and facilitate meetings as scheduled

· Prepare materials with own ideas and use meetings mainly for the verification

5) Some requirements require domain specific knowledge

· Assign the minimum number of people in the specific research and make it clear who has the responsibility

· Utilize the resources in CMU without thinking and worrying about the topic internally for a long time. (Usually these knowledgeable people are friendly to questions directly related to their research topics)

· Don’t get into the detail of the domain and let clients understand the MSE projects focus, Software Engineering.

· Negotiate with client about the reasonably challenging level in the domain.

· Introduce architectural decisions, which are modifiability and extensibility of products. (ex. MSE provides framework with good architecture then future developers update/add the domain specific components without major impacts on the existing system)

2.2 Software Project Planning

General description

This practice area is probably the most common sense to everybody, who has working experience. Maybe some startup companies or very small organizations might take a way, “do as much and fast as possible” for small size of projects. Like our assignments or home works, we might want to execute takes when we have a time to do. But once we have to work on a project as a team, we have to coordinate the tasks among team members. Therefore planning is mandatory for any group work activities.

MSE Studio specific conditions

Even though most of students have planning experience before starting MSE studio, we have academic/formal training in planning related issues through Managing Software Development (MSD) course. In the course, we will be aware of some formats of planning chart such as PERT chart and Gantt chart with Work Breakdown Structures (WBS). In terms of time allocation for MSE projects, MSE students have 12 units (by definition 12hours/week) during fall and spring semesters and 48 units during summer semester. Therefore the most of efforts are spent in summer but clock time is even through the year. The planning has to incorporate this special condition properly.

Outputs

The purpose of Software Project Planning is to establish reasonable plans for performing the software engineering and for managing the software project. In MSE projects, each team has to provide Software Project Management Plan (SPMP), which is also a semester-long individual project in MSD course. The software planning begins with a statement of the work (SOW) to be performed and other constraints and goals that define and bound the software project. As a part of planning process outputs, MSE teams might want to produce a size estimation report to negotiate with client about the scope of the developments.

Activities

It is impossible to forecast future development activities at the beginning of projects so SPMP needs to be maintained through the project. Basically SPMP is an internal document so MSE teams usually do not submit the document to their client but report progress report or summary of activities to client in reasonable intervals. In general, besides the long-team high level planning a planning manager in a team conducts interviews with team members about tasks each developer have concerned in short team range. And then adjust their activities by balancing their workload within the team. MSE teams might want to use Microsoft project to write Gantt chart and/or follow the TSPi Excel book, which integrates planning, tracking, and more.

Examples/difficulties

Since there is no immediate due for studio work compared with other required courses, most of people defer their works later unless there is strict internal milestones or specific tasks in a team. Moreover no accurate time estimation and task allocation scheme exists, it is impossible to measure and manage everything by the unit of time. Especially during the first two semesters, we are part time studio players so we have different schedules under different conditions including family issues. If a team forgets teamwork effort or analog world (psychological / mental / motivation / human behavior issues), the planning only based on the digital world would be a waste of time.

[image: image3.wmf]Agreement

, plans and

estimates

SOW

Policy

Resouce

and funding

Inputs

t

prepare all inputs

define software life

cycle

Estimate the size of

software and others

Maintain documents

End of

project

unexpected

things

Record software

planning data

Produce a basis for

estimating, planning,

tracking activies

Adjust plans

tasks

outputs

Software Project Planning

Identify risk

risk factors

Figure 2. Diagram of Software Project Planning by Petri net

2.3 Software Project Tracking and Oversight

General description

This practice area is a fundamental of software process. There is a valid argument that “without tracking or measuring, no improvement will be achieved (perceived)”. Feeling and perception are important but these are quite subjective. The numerical difference with conditional information can appeal the improvement to most of people (in real world, higher management’s recognition and appreciation are big issues) and motivate team members toward next clear objectives.

MSE Studio specific conditions

Fortunately there is a prerequisite for MSE studio, Personal Software Process (PSP). In PSP we have been exposed to the detail time tracking world, which must have been quite shocking for no-process background MSE students. And also the most of us must have felt the benefits of processes through the tracked data.

Outputs

The purpose of Software Project Tracking and Oversight is to provide adequate visibility into actual progress so that management can take effective actions when the software project’s performance deviates significantly from the software plans. In MSE Studio, all team members are required to estimate and track their time based on each course weekly basis. Besides Studio wide time tracking, some teams produced own time estimation and tracking sheets weekly basis, which contained the time of each their task.

Activities

One of MSE teams in 2001 used TSPi (Team Software Process) tools as time tracking tool since the format is the almost same as that of PSP and also the embedded Excel macros provide some convenience. Another team made simple own excel sheet for their time tracking to meet their specific needs. The remaining two teams were only taking their time Studio wide level, which is high level and static categorization. But the tasks of the project are changing through a year so tracking level or items need to be changed accordingly for reasonably accurate estimation and strategic planning.

Examples/difficulties

People are likely to forget what are not related with their immediate outputs or interests. Weekly time tracking reports to a team leader would be one example. Sending a notification to team members every week seems to be ridiculous but this is the reality in order to collect all data on time and summarize them for the studio wide time analysis. I would like to advice “don’t complain about behaviors but do change/make a process to achieve the goal”.

Figure 3. Diagram of Software Project Tracking and Oversights by Petri net

2.4 Software Quality Assurance

General description

This practice area and Software Project planning are primary activities responding to “Software Crisis”, which is the start of SEI. The crisis was/is that most of software projects failed to deliver products on time and on budget and moreover the quality of product is not high enough to meet requirements. SQA activities are essential not only the final product (source codes) but also the early stage internal outputs such as requirement documents (SOW, SRS).

MSE Studio specific conditions

Through Personal Software Process (PSP), the most of MSE students have noticed the benefit of design and code reviews compared with code and fix strategy. The SQA fundamental activities are similar to what we have done in PSP. But the difficulty to apply this idea to a whole development life cycle is how to measure qualities in especially early stage products. For example, without knowing concrete requirements yet in early stage, how can we measure the quality of document (SRS)? These are still challenging. But we can at least make sure whether a team is executing what they said to do in order to produce high quality products.

Outputs

The purpose of Software Quality Assurance is to provide management with appropriate visibility into the process being used by the software project and of the products being built. The major output is a QA (Quality Assurance) plan in which the review/inspection processes as well as roles/rules/checklist of a meeting are specified. In the area of QA, Michael Fagan is the famous person advocating Fagan defect free process with Fagan inspections. The summary of his speech at SEI in 2001 is as follows:

· Rework is the major portion of typical developers / Use their time for more productive

In spite of 15% additional work during the earlier stages due to inspection, this investment reduces total development efforts as well as development time. Most of people are struggling with maintenance and bug fixes due to poor quality of products and they cannot concentrate on the productive jobs such as research and development for the future projects.

· Show the benefit (WIIFM) for the process/inspection to motivate people

People cannot be convinced to change their custom without knowing the actual benefit in the process or inspection. With Fagan defect-free process, 15 times reduction in shipped defects, 50% reduction in time to shipment, 40-50% less effort to develop requirements and design due to formal process definition, and 50% reduction in defects injected during development due to removal of systemic defects are expected.

· Be specific for the processes (use no ambiguity entry/exit criteria)
Process definition should be as specific as possible not to lead different understandings and misunderstandings, which lead to defects or rework.

· Apply feedback of inspection to improve the process
The outcomes of inspection are not only defect identifications but also the feedback to identify the root causes for the future developments.

· Conduct effective inspection with the optimal number of people (4 persons) within the maximum length (2 hours)

Based on many samples, Fagan concludes that the optimal number of people to conduct the inspection with specific roles (moderator, author, reader, tester) and the maximum length an inspection.

· Review is QC while inspection is QC as well as QA
Reviews improve, evolve, and certify the work product an operation, which are like quality control (to make sure the built-in quality). On the other hand, inspections find and remove defects in the product (QC), and reduce future defect injection through removing defects in the process, which are similar to quality assurance (to verify that they are doing what they said to do)

Activities

QA managers provide QA plan and then ideally all outputs will be inspected/reviewed with the plan. MSE students might find some samples for QA plans or issues in TSPi book in QA/Process manager section. Based on Fagan defect free process, a development team might follow the following basic process:

· Define system requirements and get a consensus on them with client

(Signature does not mean perfect but we can make it constrain for the future modification)

· Provide specific entry/exit criteria for our development process

· Conduct formal inspection with four members

· Identify root causes in some functions and collect them for future activities

· Iterate this process as much as possible in considering time constraint
Examples/difficulties

· Krypto team QA plan (2001)

· Bravo team QA plan (2001)

· Infocon team QA plan (2001)

The above examples are quality assurance (QA) plans in 2001. In reality, QA cannot be high priority task in the first stage of development life cycle even though it ought to be. Since quality infers the quality of (final) products for most of people, they are likely to produce something at first and then check the quality of what they made. But this is misunderstanding of Quality Assurance. Checking the built-in quality is QC (Quality Control), while assuring the development process (what they said/decided to do) is the role of QA. So, ideally we should have QA plan at the beginning of studio project. But in reality it can’t happen in any team since our development team is one time organization. We could not see the value of QA plan in such limited usages. In the real world, SQA group (an independent group from development) is organized and investigates development processes based on the QA plan, which is valuable for the organization because of the repeated usages and the defined roles of SQA group. In Studio, we cannot establish an independent SQA group but we should be able to inherit the value of previous QA plans and execute QA processes for high quality products in the earliest stage. Even at the time the author is writing this document, QA plans are not available for all projects and a few inspection was executed.

2.5 Software Configuration Management

General description

In roughly speaking or one world, this practice area is a version-control. Through the project, MSE has to keep updating the documents such as SRS and SPMP besides source codes during development and test phase. To avoid a disaster losing valuable outputs by overwriting with something else or inconsistency among products, the integrity of the products among a team has to be maintained.

MSE Studio specific conditions

In MSE cave, there is a server machine, on which we can share the files among team. And the machine has version control /configuration management tool. In 2001, we heard the demonstaration of “MastaVista” as a potential CM tool. One of benefits of the tool is that we can manage documents/source codes through a web site. Future MSE students might have a chance to try other tools including E-Track (mainly for time tracking).

Outputs /Activities

The purpose of Software Configuration Management is to establish and maintain the integrity of the products of the software project throughout the project’s software life cycle. The primary output is SCMP (Software Configuration Management Plan), produced by support manager in a team. And also the environment to follow the SCMP needs to be prepared accordingly. The most popular infrastructure of configuration management in MSE is Microsoft visual source safe to control source/document version. Since some teams need to work outside of campus most of the time, they used a web server to share and maintain documentations. If client really wants confidentiality of all information on the project, team might set up a private machine with encryption over the network to maintain the information only in the team. One team in 2001 had set up an Apache Linux box with SSL to secure the research topics on the box, where even other MSE project members cannot see them.

Examples/difficulties

· Krypto team SCMP (2001)

· Bravo team SCMP (2001)

· Infocon team SCMP (2001)

The above examples are software configuration management (SCM) plans in 2001. The situation is the same for QA plan so all teams are about to complete SCMP by the end of spring semester before the actual development time (coding phase). Since the first two semesters, most of outputs are documents such as SOW, SRS, and SPMP. These are completed by relatively small number of people say one or two except for the review process. Therefore they don’t see immediate need of SCMP until when they are actually updating one file with multiple people. But even for the three documents, we might need to know where the latest version is and how they were modified with client communications (update history). To cover these needs, I would like to emphasize to reuse/tailor the above practical samples for future MSE projects to boost SCM from the beginning with a negligible effort. But a process does not guarantee that everybody do follow the process (in this case, everybody keep all documents in the specified directory). Team level commitments or people are always issues to be considered.

2.6 Software Subcontract Management

Since most of MSE studio projects are not using subcontractors for their Studio projects, this section will be skipped. In one of MSE projects 2001, the scope of client’s ultimate system was much bigger than the capability of a MSE team due to time constraint. Client showed some possibility to hire subcontractors under a MSE team but MSE warned the overhead of dealing with subcontractors while developing system in the scope. An analysis shows that 20 - 30% of development time can be condensed with additional people in a project at maximum because of a bottleneck of must-serial tasks in a product life cycle.

3. Conclusion

As you can see, the CMM level 2 is the just common sense of good practice of software engineering efforts. The most challenging part is how to manage or build a team with a variety of people with different background, culture, and experience. Since people issues significantly affect software projects, SEI also provides people-CMM, which is much larger than CMM for software. To apply CMM in your team, the above information and flame work might be help but they are not everything for software projects. The author of CMM for software said that CMM for software had to focus on software issue to make it clear its objects and make it reasonable size for assessment purpose, even though the other issues (people, system engineering and more) are important for the project success. According to the latest plan of CMM group, the most of CMM related models are integrated into CMMI (CMM Integration SE/SW/IPPD) by 2003 in order to cover broader issues in one model. Ideally people-CMM should be also included in CMMI but it is separated as it is with some reasons (one reason could be the volume of the models: both models are sizable document, more than 500 pages). In conclusion, the author believes that future MSE Studio teams can apply the essence of CMM level 2 key practice areas to their projects/teams with reasonable efforts. The shown examples and the rational behind MSE projects can be help for those who are not familiar with CMM key practice areas, and those who do not know what were actually going on in the past Studio projects. Finally I would like to emphasize the importance of a part of what SW-CMM does not cover, people issues, to achieve the overall project’s success.

Acknowledgement:

My mentor, Len Bass, gave me valuable insights to finalize this paper while supporting our project through the academic year. And also process managers of MSE projects in spring 2001 provided me their process samples.

Reference:

· Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, The Capability Maturity Model: Guidelines for Improving the Software Process, ISBN 0-201-54664-7, Addison-Wesley Publishing Company, Reading, MA, 1995.

4
2

