Research into the interoperability of enterprise information technologies

Fall 2000

Yoshishige Hasegawa

Table of contents

11
Introduction

11.1
Overview

32
Distributed Technologies

32.1
Enterprise JavaBeans

32.1.1
Overview

32.1.2
J2EE Framework

52.1.3
High level architecture

72.1.4
Communication mechanism

82.1.5
Naming resolution

92.1.6
Transaction mechanism

102.2
CORBA

102.2.1
Overview

112.2.2
High level architecture

122.2.3
Object Request Broker (ORB)

122.2.4
CORBA Services

132.2.5
Interoperable communication mechanism

142.2.6
Naming resolution

152.2.7
Transaction Management

152.3
DCOM

152.3.1
Overview

162.3.2
High level architecture

192.3.3
Naming object instances

202.3.4
Connection Management

212.3.5
Concurrency Management: Threading Models

222.3.6
Object RPC (ORPC)

243
Research on interoperability

243.1
EJB and CORBA

243.1.1
Communication protocol

243.1.2
Naming service

253.1.3
Transaction service

263.2
CORBA and DCOM

263.2.1
Communication protocol

293.2.2
Naming service

293.2.3
Transaction service

303.2.4
Discussion

314
Summary

33References

Table of figures
4Figure 1 J2EE Components and Containers (source: [SUN 2000e])

6Figure 2 The relationship between EJB servers and EJB containers

7Figure 3 Implementation of client view of enterprise Beans

8Figure 4 Stubs and Skeletons

9Figure 5 JNDI architecture

10Figure 6 J2EE transaction framework

11Figure 7 Object Management Architecture (OMA)

12Figure 8 Mechanism of ORG and IDL

15Figure 9 Sample CosNaming IDL

16Figure 10 DCOM architecture

24Figure 11 The structure of interoperability model

25Figure 12 CORBA and EJB Naming environment

26Figure 13 CORBA and EJB Transaction environment

27Figure 14 CORBA server and client using CORBA object reference

27Figure 15 CORBA server and client using COM interface reference

28Figure 16 CORBA server and Automation client using CORBA object reference

28Figure 17 CORBA server and Automation client using automation interface

29Figure 18 Location transparency service

30Figure 19 Transaction management for CORBA and COM systems

Table of tables

5Table 1 The Enterprise Java APIs

13Table 2 CORBA services

17Table 3 COM functions

Table of Acronyms
	ACID
	Atomicity, Consistency, Isolation, and Durability

	API
	Application Programming Interface

	CDR
	Common Data Representation

	CLSID
	Class Identifier

	COM
	Component Object Model

	CORBA
	Common Object Request Broker Architecture

	DCE
	Distributed Computing Environment

	DCOM
	Distributed Component Object Model

	EJB
	Enterprise Java Beans

	GIOP
	General Inter-ORB Protocol

	GUID
	Globally Unique Identifier

	HTTP
	Hypertext Transfer Protocol

	IDL
	Interface Definition Language

	IIOP
	Internet Inter-ORB Protocol

	IPID
	Interface Pointer Identifier

	J2EE
	Java 2 Platform, Enterprise Edition

	JDBC
	Java Database Connectivity

	JMS
	Java Messaging Service

	JNDI
	Java Naming and Directory Interface

	JSP
	JavaServer Pages

	JTA
	Java Transaction API

	JTS
	Java Transaction Service

	LDAP
	Lightweight Directory Access Protocol

	MIDL
	Microsoft Interface Definition Language

	MTA
	Multithreaded Apartment

	NDR
	Network Data Representation

	NDS
	Novell Directory Services

	ODL
	Object Definition Language

	OLE
	Object Linking and Embedding

	OMA
	Object Management Architecture

	OMG
	Object Management Group

	ORB
	Object Request Broker

	ORPC
	Object RPC

	RMI
	Remote Method Invocation

	ROT
	Running Object Table

	RPC
	Remote Procedure Call

	SCM
	Service Control Manager

	SQL
	Simple Query Language

	SSL
	Secure Sockets Layer

	STA
	Single-Threaded Apartment

	UI
	User Interface

	TP
	Transaction Processing

	
	

Introduction

1.1 Overview

During the early days of the enterprise information system development, software developers did not pay attention to the integration of enterprise information systems. Therefore, most systems were not working collaboratively. Moreover, there were no distributed object component standards, so they had to develop all necessary functionality from primitive (e.g., operating/file system) to higher (e.g., transaction, life cycle) level. However, it was extremely costly, because each organization had to develop their enterprise information systems from scratch. It was almost impossible to connect these systems, which had completely different architectures. Thus, the industry began to develop component based architecture standards [COM 1995][OMG 1991] in the mid 1990s. There are currently several important standards in terms of distributed component based architecture. First standard is the Common Object Request Broker Architecture (CORBA) [OMG 1998a, 1999a] developed by the Object Management Group (OMG), which is an open-membership, not-for-profit consortium that produces and maintains computer industry specifications. Second standard is the Component Object Model (COM) [COM 1995] developed by Microsoft Corporation. The extended standard from COM is the Distributed Component Object Model (DCOM) [DCOM 1998], which was also developed by Microsoft Corporation. Third standard is the Enterprise Java Beans (EJB) [SUN 1998, 1999b, 2000a][RM 1998] developed by Sun Microsystems, Inc. These standards dramatically reduced the burden of software developers, because common functionality (e.g. operating/files systems, transaction services) is provided by third party software packages, which implements the contents of these standards.

However, these standards have not solved important issues regarding the integration with other systems using different standards. If two different systems use the same standards (e.g., CORBA, COM/DCOM, EJB), then it is relatively easy to connect with each other. But, to connect different standard based systems is extremely difficult. OMG and Sun have collaborated to build some new standards in order to solve this interoperability problem. In addition, many products support both EJB and CORBA. Since Microsoft builds its own standard within Windows world, there has been no movement toward interoperable standards between COM/DCOM and CORBA, or COM/DCOM and EJB. As the number of Microsoft-based enterprise information systems has rapidly increased, the lack of these standards has become a critical problem. Some researchers have proposed mapping architectural models in terms of primitive interoperability (e.g., data mapping, communication protocol conversion), but they have not mentioned the interoperability regarding higher level services (e.g., transaction, location, life cycle services). The purpose of this paper is to propose, design and implement architectural models, which attain the interoperability between COM/DCOM and CORBA. Since EJB can utilize CORBA services, EJB based systems will be able to connect to COM/DCOM based systems through CORBA services. Hence, this paper mainly focuses on the interoperability between COM/DCOM and CORBA.
In section 2, three distributed technologies are briefly described. In section 3, the interoperability issues among three technologies are examined. Since EJB and CORBA have good interoperable characteristics in common, this section focuses on the interoperability issues between CORBA and COM/DCOM. Section 4 concludes this independent study.

Distributed Technologies

1.2 Enterprise JavaBeans

1.2.1 Overview

Enterprise JavaBeans (EJB) is a server side component architecture that enables and simplifies the process of building enterprise-class distributed object applications written in Java. EJB enables software developers to build scalable, reliable, and secure applications without writing complex distributed object framework. EJB is a core component in Java 2 Platform, Enterprise Edition (J2EE) [SUN 2000c], and can be utilized in conjunction with Web application systems. Therefore, EJB servers are accessed from EJB client, Web server, and other legacy systems.

1.2.2 J2EE Framework

EJB is one of the most important components in J2EE framework. Figure 1 describes the overview and important components for J2EE. There are four different containers in this framework: Applet, Application Client, Web, and EJB containers. Applet container represents web browser functionality, and connects to Web container through Hypertext Transfer Protocol (HTTP) [HTTP 1997] or Secure Sockets Layer (SSL) [SSL 1995, 1996] communication protocols. Application client container represents Java application programs. This container also connects to Web browser through HTTP or SSL communication protocols. Moreover, it can connect to EJB container through Remote Method Invocation (RMI) or Internet Inter-ORB Protocol (IIOP) [SUN 1999a] mechanism. Web container can connect to EJB container using naming mechanism. Within Web container, JavaServer Pages (JSP) [SUN 2000d] or Servlet function as presentation or application logic. EJB container has Enterprise Beans, which function as business logic. Database can be accessed through Java Database Connectivity (JDBC) [SUN 1999d] mechanism.

[image: image1.wmf]

Applet

Container

J2SE

Applet

Application

Client

Container

J2SE

Application

Client

JDBC

RMI

-

IIOP

JNDI

JMS

Web Container

JSP

Servlet

J2SE

JDBC

RMI

-

IIOP

Java Mail / JAF

JTA

JNDI

JMS

EJB Container

JSP

Servlet

J2SE

JDBC

RMI

-

IIOP

Java Mail / JAF

JTA

JND

I

JMS

Database

HTTP

SSL

HTTP

SSL

RMI

-

IIOP

Figure 1 J2EE Components and Containers (source: [SUN 2000e])

As shown in Figure 1, J2SE provides various APIs (e.g. JDBC, JTA, JNDI) .Using these APIs, Java application can access to commercial database, transaction services, or naming services. The definition of various terminologies are described in Table 1:

Table 1 The Enterprise Java APIs

	API
	Description

	EJB
	The Enterprise JavaBeans API defines a server component model that provides portability across application servers and implements automatic services on behalf of the application components.

	JNDI
	The Java Naming and Directory Interface API provides access to naming and directory services, such as DNS, NDS, NIS+, LDAP [YHK 1995], and COS Naming.

	RMI
	The Remote Method Invocation API creates remote interfaces for distributed computing on the Java platform.

	Java IDL
	The Java Interface Definition Language API creates remote interfaces to support CORBA communication in the Java platform. Java IDL includes an IDL compiler and a lightweight, replaceable ORB that supports IIOP

	Servlets and JSP
	The Java Servlets and Java Server Pages APIs support dynamic HTML generation and session management for browser clients.

	JMS
	The Java Messaging Service API supports asynchronous communications through various messaging systems, such as reliable queuing and publish-and-subscribe services.

	JTA
	The Java Transaction API provides a transaction demarcation API.

	JTS
	The Java Transaction Service API defines a distributed transaction management service based on CORBA Object Transaction Service.

	JDBC
	The Java Database Connectivity API provides uniform access to relational databases, such as DB2, Informix, Oracle, SQL Server, and Sybase.

1.2.3 High level architecture

EJB Server/Container

EJB Server/Container is provided by middleware products. The EJB container provides a place where enterprise beans can run. There can be many beans running within container. Bean containers are responsible for managing the beans running within them. They interact with the beans by calling a few required methods that the bean must expose. Containers may also provide access to a legacy system. The EJB server provides a runtime environment for one or more containers. EJB servers manage low-level system resources, allocating resources to containers as necessary. Currently, there is no clear distinction between EJB servers and containers, because the EJB specification does not explicitly define the separation of roles. However, some companies are forming a consortium for defining standard API between EJB servers and containers. Thus, in the near future, different vendors’ container will be able to run under one EJB server.

Figure 2 shows the relationship between EJB servers and EJB containers. Within EJB servers, multiple EJB containers can exist. A client can be Java Servlets, applets, or application program. EJBs may collaborate with each other within EJB containers or across different EJB containers.

[image: image2.wmf]

Enterprise Java

Bean 1

Enterprise Java

Bean 2

Enterprise Java

Bean 3

Enterprise Java

Bean 4

EJB Container 1

EJB Container 2

Client

(Servlets, Applets, EJB Client)

Figure 2 The relationship between EJB servers and EJB containers

Beans

EJB defined two different types of enterprise beans: session beans and entity beans. A session bean represents business processes performed for client. That is, session beans implement business logic, business rules, and workflow. There are two kinds of session beans: stateful and stateless session bean. As the word represents, a stateful bean is a bean that is designed to service business processes that span multiple method requests or transactions. On the other hand, a stateless bean only serves single method request or transaction.

Another kind of beans is entity beans. Entity beans model business concepts that can be expressed as nouns. In other words, an entity bean is a component that represents persistent data.

Both session and entity beans reside within EJB container. Clients can access these beans through remote/home interfaces, and the implementation of these interfaces are written within the session/entity beans. There are two ways to persist entity beans: bean-managed persistence and container-managed persistence. With bean-managed persistence, developers need to write database manipulation languages (SQL) in program directly. This can be realized by JDBC or SQL/J. On the other hand, developers can attain entity beans persistence just by declaring to EJB container. In this case, EJB container needs to manage entity beans persistence. EJB 1.0 did not mandate container-managed persistence, but EJB 1.1 mandates to provide container-managed persistence to EJB container providers.

Figure 3 shows implementation of client view of Enterprise Beans. Session beans and entity beans are both accessed from EJB Home object and EJB Object. When client access to EJB container, first the client needs to access home interface implemented by EJB Home object. Then, the EJB Home object creates EJB object implementing remote interface. After creating EJB Object, the client accesses to EJB Object. EJB Objects are embedded within EJB Container, so if the client call some remote interface, then EJB container will catch the call and execute necessary session or entity beans implementing remote interface.

[image: image3.wmf]

EJBHome

EJBObject

SessionBean

EJBHome

EJBObject

EntityBean

Client

EJB Container

Figure 3 Implementation of client view of enterprise Beans

1.2.4 Communication mechanism

EJB utilizes Java remote method invocation (RMI) for distributed object invocation. Java RMI is the Java language's native mechanism for performing simple, powerful networking. This mechanism takes Remote Procedure Call (RPC) concept one-step further. RPC is a procedural invocation from a process on one machine to a process on another machine. On one side, RPC provides a simple way to perform cross-process networking. On the other hand, RMI allows you to invoke methods on objects remotely.

[image: image4.wmf]

Client

Stub

Skeleton

Stub

Network

Figure 4 Stubs and Skeletons

RMI knows a local object, which is called stub. This stub and remotely located skeleton collaborate with each other, and solve distributed object location problem. Thus, remote object will be called from the skeleton. Stub and skeleton are responsible for marshalling and unmarshalling parameters passed from client/remote objects. Figure 4 shows the relationships between stubs and skeletons.

The mechanisms for RMI are composed of two functions: bootstrap and registry. Bootstrap works like initially acquiring network connection between client and server. RMI registry is used to resolve naming and address information. One RMI registry is used per Java Virtual Machine.

1.2.5 Naming resolution

Java naming and directory interface (JNDI) provides naming and directory functionality. It provides applications with methods for performing standard directory operation, such as associating attributes with objects and searching for objects using their interfaces. Using JNDI, an application can store and retrieve any type of named Java object. JNDI is independent os sny specific implementations, so applications can use JNDI to access multiple naming and directory services (e.g. LDAP [YHK 1995], NDS [NDS], DNS, and NIS). As shown in Figure 5, client code (e.g. EJB client, applet, Servlet) can access various directory services through the JNDI client API. JNDI client API can access through service provider interface which are developed by directory service provides. Using these service providers, client can retrieve different directory service information uniquely.

[image: image5.wmf]

Client code

JNDI Client API

Service Provider Interface

LDAP Service

Provider

NIS Service

Provider

File System

Service

Provider

Figure 5 JNDI architecture

1.2.6 Transaction mechanism

One of the most powerful mechanisms of EJB is transaction capability. By using transaction mechanism, ACID (Atomicity, Consistency, Isolation, and Durability) properties are guaranteed. The model of EJB’s transaction is flat transactions, which is a series of operations that are performed atomically as a single unit of work. Using this simple transaction model, EJB enables developers to implement transaction mechanism in two ways: programmatic and declarative transactions.

Programmatic transactions means that software developers explicitly demarcate transaction boundaries programmatically. Therefore, using programmatic transactions, software developers are responsible for programming transaction logic into application codes. J2EE provides two transaction APIs: Java Transaction API (JTA) and Java Transaction Service (JTS) API. Application developers do not directly access to JTS API, but they need to use JTA API to implement transaction mechanism. JTA. The relationships among application, application server, JTA, JTS, EJB, and others are described in Figure 6.

[image: image6.wmf]

Application

Application

Server

Resource

Manager

Transaction

Manager

(JTS)

JTA

UserTransaction

JTA

TransactionManager

JTA

XAResource

EJB

JDBC, JMS

Figure 6 J2EE transaction framework

The other method, declarative transactions, allow for components to automatically be enlisted in transactions. That is, enterprise beans never explicitly issue a begin, commit, or abort statement. Rather, the EJB container performs it for application developers. In the appropriate deployment tool provided by EJB container providers, application developers can set transaction attributes values: TX_BEAN_MANAGED, TX_NOT_SUPPORTED, TX_REQUIRED, TS_REQUIRES_NEW, TX_SUPPORTS, and TX_MANDATORY. Detail explanation of these attributes can be found in EJB specification 1.1.

1.3 CORBA

1.3.1 Overview

The object management architecture (OMA) was developed by the Object Management Group (OMG). The OMA defines the architecture and set of services that enables object-based, and heterogeneous distributed computing. The OMA uses the object request broker (ORB) as core technology. The ORB provides the fundamental communication mechanism and deals with various services: locating and starting servers, and exchange and marshaling of data between clients and servers. Figure 7 shows overview of the OMA.

[image: image7.wmf]

Object Request Broker

Applications

CORBAdomains

CORBAfacilities

CORBAservices

Figure 7 Object Management Architecture (OMA)
The Common Object Request Broker Architecture (CORBA) is a part of OMA, which consists of ORB function, object services, domain interface, common facilities and application objects. CORBA’s role in the OMA is to implement ORB functions. As shown in Figure 7, OMA has CORBA-related objects: CORBAservices [OMG 1998b], CORBAfacilities, and CORBAdomains. CORBAservices provide low-level, base-type services such as transactions, security, life-cycle, and naming. CORBAfacilities provide a higher-level set of services such as printing management. CORBAdomains represent vertical domain-related standards such as manufacturing, telecommunication, healthcare, financial and so on. Other than these CORBA related objects, application objects are not standardized as part of OMG activities.

1.3.2 High level architecture

CORBA defines architecture for distributed objects. The basic CORBA scheme is that of a request for services of a distributed object. Everything else defined by the OMG is in terms of this basic scheme. The services are given by its interfaces, which are defined in OMG's Interface Definition Language (IDL). Distributed objects are identified by object references, which are described by IDL interfaces.

Figure 8
 graphically describes a request from client to server. A client holds an object reference to a remotely distributed object. The object reference is defined by an IDL. The ORB delivers the request to the object and returns a result to the client.

[image: image8.wmf]

Client

Object Implementation

ORB Core

Client

Stubs

Dynamic

Invocation

ORB Interface

(IDL)

Object

Adapter

Skeleton

Dynamic

Skeleton

Interface

IF

Repository

Implementatio

n Repository

Figure 8 Mechanism of ORG and IDL

1.3.3 Object Request Broker (ORB)

The ORB is the distributed service that implements the request to the remote object and location transparency. The CORBA client calls exactly the same request mechanism regardless of the place of the objects (local or remote). The client cannot distinguish the difference between local and remote objects. Moreover, the ORB implements programming language independence for the requests. The client issuing the request can be written in a different programming language from the implementation of the CORBA object, because OMG IDL is programming language independent and ORB uses OMG IDL for its interface. Language bindings are defined for all popular programming languages.

1.3.4 CORBA Services

Another important part of the CORBA standard is the definition of a set of distributed services to support the integration and interoperation of distributed objects. As shown in Figure 7, CORBA Services, sometime called COS, are defined on top of the ORB. That is, they are defined as standard CORBA objects with IDL interfaces, which are referred to as "Object Services."

There are several CORBA services. Table 2 is a list of services and brief descriptions:

Table 2 CORBA services

	Service
	Description

	Object life cycle
	Defines how CORBA objects are created, removed, moved, and copied

	Naming
	Defines how CORBA objects are registered, looked up, and bound

	Events
	Decouples the communication between distributed objects

	Externalization
	Coordinates the transformation of CORBA objects to and from external media

	Transactions
	Coordinates atomic access to CORBA objects

	Concurrency Control
	Provides a locking service for CORBA objects in order to ensure serializable access

	Property
	Supports the association of name-value pairs with CORBA objects

	Trader
	Supports the finding of CORBA objects based on properties describing the service offered by the object

	Query
	Supports queries on objects

1.3.5 Interoperable communication mechanism

The ORB Interoperability Architecture provides a conceptual framework for defining the elements of interoperability and for identifying its compliance points. It also characterizes new mechanisms and specifies conventions necessary to achieve interoperability between independently produced ORBs. Specifically, the architecture introduces the concepts of immediate and mediated bridging of ORB domains. The Internet Inter-ORB Protocol (IIOP) forms the common basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to implement both immediate bridges and to build “half-bridges” to mediated bridge domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of that ORB’s implementation, such as what particular IPC or protocols (such as ESIOPs) are used to implement the CORBA specification. The IIOP may be used in bridging two or more ORBs by implementing “half bridges” that communicate using the IIOP. This approach works for both stand-alone ORBs, and networked ones that use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired. Since ORBs are not required to use the IIOP internally, the goal of not requiring prior knowledge of each others’ implementation is fully satisfied.

General Inter-ORB Protocol (GIOP)

The GIOP element specifies a standard transfer syntax (low-level data representation) and a set of message formats for communications between different ORBs. The GIOP is specifically built for ORB to ORB interactions and is designed to work directly over any connection-oriented transport protocol that satisfies a minimal set of assumptions. Higher level RPC mechanisms is not mandatory for GIOP.

While versions of the GIOP running on different transports would not be directly interoperable, their commonality would allow easy and efficient bridging between such networking domains.

The GIOP specification consists of the following elements:

· The Common Data Representation (CDR) definition: CDR is a transfer syntax mapping OMG IDL data types into a bicanonical low-level representation for “on-the-wire” transfer between ORBs and Inter-ORB bridges (agents).

· GIOP Message Formats: GIOP messages are exchanged between agents to facilitate object requests, locate object implementations, and manage communication channels.

· GIOP Transport Assumptions: The GIOP specification describes general assumptions made concerning any network transport layer that may be used to transfer GIOP messages. The specification also describes how connections may be managed, and constraints on GIOP message ordering. The IIOP specification adds the following element to the GIOP specification:

· Internet IOP Message Transport: The IIOP specification describes how agents open TCP/IP connections and use them to transfer GIOP messages. The IIOP is not a separate specification; it is a specialization, or mapping, of the GIOP to a specific transport (TCP/IP). The GIOP specification (without the transport-specific IIOP element) may be considered as a separate conformance point for future mappings to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in Section 15.10, “OMG IDL,” on page 15-56. Fragments of the specification are used throughout this chapter as necessary.

1.3.6 Naming resolution

The naming service specification of CORBA defines the CosNaming module in which the NamingContextinterface is defined. The naming context contains names and objects that have been bound together. Names are unique within a context. Naming contexts can also be a compound name, and the resolution of the object name is conducted by traversing the graph. In order to provide the utmost flexibility, the Naming Service specification does not specify semantics or conventions that constrain the implementation choices of the Naming Service.

Each ORB vendor has a Naming Service, and implementations vary with each other. For example, IBM’s ComponentBroker naming implementation uses Distributed Computing Environment (DCE) naming, PeerLogic’s DAIS uses X.500 [CCITT 1988], and IONA’s Orbix and Inprise’s VisiBroker offer a proprietary file-based implementation.

Basically, the Naming Service utilizes IDL to define its interface to ORB. The defined IDL contains the bind and resolve operation used to register and retrieve names from the naming service. Figure 9 shows sample IDL of CosNaming module:

[image: image9.wmf]

module CosNaming {

…

typedef string lstring;

struct NameComponent {

lstring Id;

lstring Kind:

};

typedef sequence <NameComponent> Name;

interface NamingContext {

…

void bind(in Name n, in Object obj);

raises (NotFound, CannotProceed, InvalidName);

…

Object resolve (in Name n)

Raises(NotFound, CannotProceed, InvalidName);

};

…

};

Figure 9 Sample CosNaming IDL

1.3.7 Transaction Management

Transaction services are one of the most important services in any critical distributed system (e.g. telecommunication systems, financial systems). Such services ensure that a thread of actions maintains a relationship, so that information related to this actions is only committed if all the necessary actions complete successfully. CORBA provides this transaction management service as Object Transaction Service (OTS). The OTS is a complete and powerful specification that has been implemented and is currently available from multiple software vendors, primarily ORB vendors. OTS implementations are typically tightly coupled with an ORB product. As a result, selection of ORB should lead to an OTS from the same vendors.

There are two ways to start transactions like EJB: implicit and explicit mode. For implicit mode, by adding transaction related IDL, software can detect whether the transaction context should be set up and propagated. For explicit mode, developers can explicitly write transaction context of OTS specification.

1.4 DCOM

1.4.1 Overview

The Distributed Component Object Model (DCOM) is designed by Microsoft Corporation. DCOM is an application-level protocol for object-oriented remote procedure calls and is thus called "Object RPC" or ORPC. The protocol consists of a set of extensions, layered on the distributed computing environment DCE RPC specification, with which familiarity is assumed. Familiarity is also assumed with The Component Object Model (COM) specification.

COM is a component software architecture that allows applications and systems to be built from components supplied by different software vendors. COM is the underlying architecture that forms the infrastructure for higher-level software services, like those provided by Object Linking and Embedding (OLE). OLE services span various aspects of component software, including compound documents, custom controls, inter-application scripting, data transfer, and other software interactions.
1.4.2 High level architecture

DCOM locates right in the middle of the components of client/server application; it provides the invisible scheme that combines remote applications together. Figure 1 shows how it all fits together.

[image: image10.wmf]

Client

Component

Protocol Stack

Security

Provider

DCE RPC

Proxy

Object

Protocol Stack

Security

Provider

DCE RPC

Stub

OLE32

“CoCreate

Instance”

SCM

(Remote)

Activation

SCM

“CoCreateInstance”

DCOM Network

Protocol

Figure 10 DCOM architecture

Following shows the explanation of each component and function.

1. Locating Objects: Activation

One of the central components of COM is a mechanism for establishing connections to components and creating new instances of components. These mechanisms are commonly referred to as activation mechanisms.

2. Creating Objects, Local or Remote

One of the most basic requirements of a distributed system is the ability to create components. In the COM world, object classes are named with globally unique identifiers (GUIDs). When GUIDs are used to refer to particular classes of objects, they are called Class IDs. These Class IDs are nothing more than fairly large integers (128 bits) that provide a collision free, decentralized namespace for object classes. If a COM programmer wants to create a new object, she calls one of several functions in the COM libraries, as displayed in Table 3.

Table 3 COM functions

	Function
	Explanations

	CoCreateInstance(Ex) (<CLSID>…)
	Creates an interface pointer to an uninitialized instance of the object class <CLSID>.

	CoGetInstanceFromFile
	Creates a new instance and initializes it from a file.

	CoGetInstanceFromStorage
	Creates a new instance and initializes it from a storage.

	CoGetClassObject (<CLSID>…)
	Returns an interface pointer to a "class factory object" that can be used to create one or more uninitialized instances of the object class <CLSID>.

	CoGetClassObjectFromURL
	Returns an interface pointer to a class factory object for a given class. If no class is specified, this function will choose the appropriate class for a specified Multipurpose Internet Mail Extension (MIME) type. If the desired object is installed on the system, it is instantiated. Otherwise, the necessary code is downloaded and installed from a specified Universal Resource Locator (URL).

The COM libraries look up the appropriate binary (dynamic-link library or executable) in the system registry, create the object, and return an interface pointer to the caller.

For DCOM, the object creation mechanism in the COM libraries is enhanced to allow object creation on other machines. In order to be able to create a remote object, the COM libraries need to know the network name of the server. Once the server name and the Class Identifier (CLSID) are known, a portion of the COM libraries called the service control manager (SCM) on the client machine connects to the SCM on the server machine and requests creation of this object.

DCOM provides two fundamental mechanisms that allow clients to indicate the remote server name when an object is created (a third mechanism involves monikers and is described below):

1. As a fixed configuration in the system registry or in the DCOM Class Store

2. As an explicit parameter to CoCreateInstanceEx, CoGetInstanceFromFile, CoGetInstanceFromStorage, or CoGetClassObject

3. External RemoteServerName configuration

The first mechanism is extremely useful for maintaining location transparency: clients should not know whether a component is running locally or remotely. By making the remote server name part of the server component's configuration information on the client machine, clients do not have to worry about maintaining or obtaining the server location. All a client ever needs to know is the CLSID of the component. It simply calls CoCreateInstance (or CreateObject in Microsoft Visual Basic or "new" in Java), and the COM libraries transparently create the correct component on the preconfigured server. Even existing COM clients that were designed before the availability of DCOM can transparently use remote components using this mechanism.

Note that a server machine cannot forward creation requests to yet another machine using RemoteServerName. If machine X uses RemoteServerName to indicate that objects of CLSID C should be created on machine Y, and if machine Y has a RemoteServerName specified for CLSID C pointing to machine Z, objects requested by machine X will still only be created on machine Y.

For many applications, having a single, externally configured server name for each component is sufficient. It keeps the client's code free from managing this configuration data: if the server name changes, the registry (or the class store) is changed and the application continues to work without further action.

4. Programmatic control over RemoteServerName

Some applications require explicit run-time control over the server a client connects to. Examples include chat applications, multiplayer games, and administrative tools that need to perform remote administration on specific machines.

For this kind of application, COM allows the remote server name to be explicitly specified as a parameter to CoCreateInstanceEx, CoGetInstanceFromFile, CoGetInstanceFromStorage, or CoGetClassObject. The developer of the client code is in complete control of the server name being used by COM for remote activation.

5. Running in-process components remotely: Surrogate

In order to run in-process components remotely, a surrogate process on the remote machine is required. In addition to enabling remote execution, surrogate processes offer the following benefits:

· Faults in the in-process server are isolated to the surrogate process.

· One surrogate process can service multiple clients simultaneously.

· Clients can protect themselves from untrusted server code, while accessing the services the server provides.

Windows NT 4.0 Service Pack 2.0 and DCOM for Windows 95 introduced a default surrogate process, as well as a protocol for writing custom surrogates. The default implementation of the surrogate process is a mixed-threading, model-style, pseudo-COM server. When multiple DLL servers are loaded into a single surrogate process, this process ensures that each DLL server is instantiated using the threading model specified in the registry for that server. If a DLL server supports both threading models, then COM will choose multithreading. This surrogate process is written so that COM handles both the unloading of DLL servers and the termination of the surrogate process.

An in-process server will be loaded into a surrogate process under the following conditions:

· There must be an AppID value specified under the CLSID key in the registry, and a corresponding AppID key.

· In an activation call, the CLSCTX_LOCAL_SERVER bit is set, and the CLSID key does not specify LocalServer32, LocalServer, or LocalService.

· The CLSID key contains the InProcServer32 subkey.

· The DLL specified in the InProcServer32 key exists.

· The DllSurrogate value exists under the AppID key.

If there is a LocalServer or LocalServer32 or LocalService, indicating the existence of an EXE, the EXE server or service will always be launched in preference to loading a DLL server into a surrogate process.

The DllSurrogate named-value must be specified for surrogate activation to occur. To launch an instance of the system-supplied surrogate, set the value of DllSurrogate either to an empty string or to NULL. To specify the launch of a custom surrogate, set the value to the path of the surrogate. For remote surrogate activation, specify RemoteServerName but not DllSurrogate on the client, and specify DllSurrogate on the server.

It is best to configure a DLL server that is designed to run alone in its own surrogate process and to service multiple clients across a network with a RunAs value specified under the AppID registry key. Whether the RunAs specifies "Interactive User" or a specific user identity depends upon the user interface (UI), security, and other server requirements. Specifying a RunAs value ensures that only one instance of the server is loaded to service all of the clients, regardless of the identity of the client. On the other hand, do not configure the server with RunAs If the intention is to have one instance of the DLL server running in surrogate to service each remote client identity.

Multiple servers will share a surrogate if they are launched under matching security identities and share the same AppID value. If two servers are launched under different security identities, they must be in different surrogates, regardless of whether their AppIDs match.

6. Connecting to Specific Object Instances

Often object instances are not replaceable or interchangeable; once certain methods have been called, the object has a valuable state that differentiates it from other instances of the same class. Clients need to be able to recognize this and reconnect to a specific object instance easily.
1.4.3 Naming object instances

COM defines a naming mechanism for object instances. Object instances can be characterized by different identifiers. The instance-naming mechanism of COM is designed to be flexible and extensible. To achieve this, instance names for COM objects are instantiated as objects. These naming objects contain the logic necessary to find an instance of the object that they are naming. They also can recreate and initialize an object instance in case there is no running instance. COM defines a standard interface to these naming objects, IMoniker, which can be used to bind to a named-object instance. Whatever the moniker object needs to do to connect to the actual object instance is hidden from the client.

Object instances are in charge of naming themselves; they create a moniker object and hand it out to any client that is interested in reconnecting to them at a later time. Object instances also register their moniker object with the COM libraries. The system maintains a table of currently running, explicitly named, object instances called the Running Object Table (ROT).

Moniker objects use the ROT to find a running-object instance. When a moniker object is asked to bind to the object instance it names, it looks in the ROT for a moniker object containing the same name. If it finds a match, it simply returns the pointer to the active object instance that is stored in the ROT. If the object instance is neither running nor registered, the moniker uses the object creation mechanisms described above to create an uninitialized instance. The moniker then restores the object's state through whatever mechanism is appropriate for the naming scheme, the moniker, and the object implement.

Most moniker objects can provide a human-readable representation of the name they are encapsulating. The typical name of a moniker conforms to fundamental URL syntax as defined by the Internet Engineering Task Force (IETF): the type of the moniker corresponds to the protocol prefix of a URL and the remainder of the URL is defined entirely by the moniker object.

1.4.4 Connection Management

1.4.4.1 Distributed Garbage Collection

The primary mechanism for controlling an object's lifecycle is reference counting, using the AddRef and Release methods of IUnknown. AddRef and Release are called quite often, and sending every call to a remote object would introduce a serious network performance penalty. Therefore, DCOM optimizes AddRef and Release calls for remote objects.

The optimization process uses OXID objects, which implement the IRemUnknown interface. An OXID determines the RPC string bindings used to contact a group of objects. Remote reference counting is conducted per interface (per IPID) using the RemAddRef and RemRelease methods of IRemUnknown. Using a single call, RemAddRef and RemRelease can increment or decrement the reference count of many different IPIDs by an arbitrary amount; this allows for greater network efficiency.

1.4.4.2 Connection Points

Many real-world distributed applications require bi-directional communication between two objects. An object may need to notify a client of a certain event or objects might want to push data in real time as it becomes available.

COM's symmetric programming model makes it extremely easy for both clients and objects to implement this kind of infrastructure. A client simply passes an interface pointer to the server; the server can use this interface pointer to send notifications or data. This is the COM equivalent of callback interfaces.

Connection points standardize passing an interface pointer to an object. The mechanism also solves the problem of a cyclic reference between two objects: since both objects hold references to each other neither object can ever be released if not through some out-of-band mechanism beyond AddRef and Release. With connection points, the object implementing the interface for registering the IConnectionPoint is required to be a separate object from the actual object.

1.4.4.3 Referrals

An useful feature of the COM programming model that proves valuable for distributed applications is the ability to efficiently pass object references from one machine to the other; the marshaling infrastructure described previously handles interface marshaling transparently. Suppose that a client has an interface pointer to an object on another machine. This object in turn holds an interface pointer to a second object on a third machine. The client can then call a method on the first object, which returns the interface pointer to the second object. If the client uses this interface pointer the calls go directly to the second object without even involving the other object or the other machine. Even if the first object (or the machine it is running on) disappeared, the client could still call the second object.

When the client calls the first object and the object returns the interface pointer to the second object, COM's marshaling code will generate an NDR buffer containing all out parameters of the call. One of these parameters is the interface pointer. As described before, COM will call CoMarshalInterface on this interface pointer, which in turn checks for custom and handler marshaling. If the object does not request custom marshaling, COM writes a standard object reference (OBJREF_STANDARD), which contains the endpoint information (OXID, OID, and IPID) for the second object.

1.4.5 Concurrency Management: Threading Models

DCE RPC requires that RPC messages be processed on arbitrary threads. RPC manages a thread pool from which it freely draws a thread whenever an RPC call arrives from the network. RPC developers need to make sure that shared data structures are sufficiently protected against potential simultaneous access from multiple threads.

Most operating systems provide simpler threading models for user interface elements. Win32 for example, only dispatches messages for a particular window to the thread which created that window. This means that a message handler for a particular window need only be reentrant if it explicitly releases the thread to the Win32 dispatcher. In no case does a message handler have to be prepared for parallel execution with two or more threads. This immensely simplifies the programming model since the developer has to deal with concurrency only in very special and limited situations.

COM's programming model scales with the need of the application developer. It provides totally free-threaded method invocations, just like RPC does, but it also provides an automatic synchronization of method invocations to a single thread, even synchronized with the dispatching of window messages.

1.4.5.1 Single-Threaded Apartments (STA)

In a single-threaded apartment, each object lives in a thread. Each thread must initialize COM using CoInitialize or using CoInitializeEx. Each thread must also have a message pump that dispatches window messages, since COM creates a hidden window that it uses to synchronize incoming RPC calls with messages to other windows that might be created on the same thread. If the thread does not dispatch messages, certain messages sent to the hidden window created by COM (for example, a SendMessage call to all windows on a system, as used by the shell) will never be retrieved, causing the caller to wait infinitely.

If a client running on another thread (in another "apartment") wants to call an object in a single threaded apartment, the two threads need to be forcibly synchronized. COM achieves this by marshaling interface pointers across threads, just as it does for marshaling across process or across machines; because the two threads have different stacks, the parameters need to be copied from one stack to the other.

1.4.5.2 Multithreaded Apartment (MTA)

From a multithreaded apartment (MTA), incoming RPC calls directly use the thread assigned by the RPC run time. No message pump or hidden window is used for communication between the client and object. The object does not live in any specific thread. Within a process, clients from any thread can directly call any object inside the MTA. (There is only one MTA per process.) Interface pointers between threads do not need to be marshaled.

However, an MTA requires extreme caution on the part of the object implementor. Multiple threads can call an object method at the same time. Therefore the object must provide synchronized access to any instance using synchronization primitives like events, mutexes, or semaphores. It must be completely thread safe and reentrant.

Although complex to implement, MTA-aware objects offer the possibility of higher performance and better scalability than STA objects. The generic synchronization that COM performs on STA is relatively expensive. On each method call across apartments, two window messages need to be sent. On remote calls, two additional thread switches are required on the server side: the RPC thread switches to the apartment thread, calls the method, and switches back to the RPC thread upon completion. Thus objects in MTAs provide better scalability in terms of the fixed COM-related overhead per message call, even if they process only one call at a time.

1.4.6 Object RPC (ORPC)

The DCOM protocol, known as Object RPC (ORPC), is a set of definitions that extend the standard DCE RPC protocol. It has been designed specifically for the DCOM object-oriented environment, and specifies how calls are made across the network and how references to objects are represented and maintained.

At the wire level, ORPC uses standard RPC packets, with additional DCOM-specific information - in the form of an Interface Pointer Identifier (IPID), versioning information, and extensibility information - conveyed as additional parameters on calls and replies. The IPID is used to identify a specific interface on a specific object on a server machine where the call will be processed. The marshaled data on an ORPC packet is stored in standard Network Data Representation (NDR) format, so that issues of byte order and floating point formats are automatically handled. DCOM uses one new NDR type, which represents a marshaled interface. DCOM client machines are also responsible for periodically ensuring that objects are kept alive on server machines by 'pinging' between machines in the background, a process that has been optimized to reduce unnecessary pinging and minimize network traffic.

Programmers for the most part do not have to work at the ORPC level. The Microsoft Interface Definition Language (MIDL) compiler can be used to automatically generate the code that is needed to transfer the data across the network, based simply on an IDL file. Strictly speaking, MIDL is not part of DCOM, and any tool can be used to generate marshaling code, but it is convenient to use MIDL, with its C-like semantics.

As part of the migration to DCOM, IDL has been extended to include the functionality found in the Microsoft Object Definition Language (ODL) and, as a result, the MKTYPLIB utility is no longer needed, its functionality having been subsumed into version 3.0 of MIDL. The MIDL compiler can take an IDL specification and generate the C++ code needed to transfer, or marshal, the information across the network. Marshaling is only required where the client is calling a server that exists in another address space or on another machine.

MIDL was a key part of pre-DCOM and, in most cases, the standard proxy and stub marshaling code generated by MIDL are all that is needed to ensure that DCOM can communicate with a remote object. However, there are situations in a remote environment when an object may wish to use its own form of custom marshaling, perhaps to optimize performance, as discussed previously.

Research on interoperability

This section discusses the architectural models for the interoperability among three distributed technologies. As can be seen in Figure 11, I examined the problems between EJB and CORBA, and between CORBA and COM/DCOM. Since between EJB and COM/DCOM is interoperable through CORBA systems, the interoperability issue is skipped here.

[image: image11.wmf]

EJB system

COM/DCOM

system

CORBA

system

Figure 11 The structure of interoperability model

1.5 EJB and CORBA

The interoperability work between EJB and CORBA is being actively done by Sun Microsystems, Inc. and OMG. We can consider interoperability from three points of view: communication protocol, naming, and transaction.

1.5.1 Communication protocol

The gaps of communication protocols are solved by RMI-IIOP package developed by JavaSoft. As explained in the previous section, CORBA uses IIOP for communication methods in the Internet environment. Although initial EJB used RMI for communication methods, current EJB mandates to use RMI-IIOP for communication methods. Since EJB based systems use IIOP for the fundamental communication protocol, they can communicate with CORBA based systems seamlessly. Other than communication protocol, Java-IDL compiler is available from JavaSoft and other third vendor packages. Thus, by compiling IDL, Java classes for IDL can be obtained, and EJB based systems can access to CORBA objects through compiled IDL using IIOP protocol.

1.5.2 Naming service

EJB and CORBA have perfect compatibility regarding location transparency mechanism. The CORBA’s built-in naming service (COS Naming) can be wrapper by JNDI. Therefore, CORBA client and server use COS Naming service in order to look up remote CORBA objects. Because the COS Naming server runs within the network, any client can access to the server through COS Naming service API. EJB client and server can access this COS Naming server through JNDI, which will use COS naming service provider. The COS Naming service provider allows looking up CORBA objects over the network using JNDI. Figure 12 shows naming mechanism in the CORBA and EJB environment.

[image: image12.wmf]

Object Request Broker

COS

Naming

Server

CORBA

Server

CORBA

Client

JNDI

EJB

Client

JNDI

EJB

Server

lookup

Figure 12 CORBA and EJB Naming environment

1.5.3 Transaction service

The interoperability mechanism for transaction services is almost same as naming services. As can be seen in Figure 13, the common transaction server is object transaction server in the CORBA environment. For EJB server and client, JTA provides interface for transaction services, and JTS works as a transaction server. However, JTS can be agent for other transaction servers, such as OTS, or third party TP monitors (e.g. Encina from Transarc, Tuxedo from BEA Systems, Orbix Object Transaction Monitor from IONA, TP/Broker from Hitachi, Component Broker from IBM). Actually, OTS just specifies framework for CORBA transaction services, and these third party products implement this specifications.

[image: image13.wmf]

Object Request Broker

Object

Transaction

Service

(OTS)

CORBA

Server

CORBA

Client

JTS

EJB

Client

JTS

EJB

Server

JTA

Figure 13 CORBA and EJB Transaction environment

1.6 CORBA and DCOM

The interoperability of CORBA and COM is investigated in terms of basic communication-level and service-level interpretabilities. First, several architectural models for basic communication conversion are proposed. These models use a COM/CORBA bridge in order to convert different syntax between CORBA and COM applications. Next, mechanisms for some distributed systems services are proposed. Examined services are object naming and transaction management.

1.6.1 Communication protocol

In order to communicate between CORBA and COM applications, a COM/CORBA bridge resides between them and convert one technology’s syntax to the other. There are two major architectural categories for COM/CORBA and DCOM/CORBA conversion. Figure 14 and Figure 15 show the architectural models for COM/CORBA conversion, and Figure 16 and Figure 17 show the architectural modes for DCOM/CORBA.

Figure 14 shows the first architectural model providing a mapping mechanism from CORBA objects to COM objects, so that a CORBA object looks like a COM object from a CORBA client. In a CORBA client, a COM object resides and is accessed by a COM application through COM interface pointer. The COM/CORBA bridge associates a COM object and CORBA object reference, so accessing the associated COM object means accessing the CORBA object in the CORBA server. A CORBA object in a CORBA client can access a CORBA object in a CORBA server without a COM/CORBA bridge. In this model, requests are processed by a CORBA client, and corresponding responses are returned to the CORBA client.

[image: image14.wmf]

CORBA server

CORBA

object

COM/CORBA Bridge

reference

CORBA client

COM

object

COM interface

pointer

call

CORBA

object

reference

Figure 14 CORBA server and client using CORBA object reference

Figure 15 shows the second architectural model providing same mapping as first model (CORBA object to COM object). However, this model uses COM interface pointer for accessing a COM object in a CORBA client. Figure 14 realizes object request interoperability from client to server, and Figure 15 realizes object request interoperability from server to client. In this model, a COM interface pointer is embedded in a COM/CORBA bridge. An application in a CORBA server refers a CORBA object through a CORBA object reference, and the referred CORBA object calls functions embedded in a COM/CORBA bridge. As a result, the COM/CORBA bridge described in Figure 14 and Figure 15 enables two-way communication protocol conversion.

[image: image15.wmf]

CORBA server

CORBA

object

COM/CORBA Bridge

reference

CORBA client

COM

object

COM interface

pointer

call

Figure 15 CORBA server and client using COM interface reference

Next architectural model expands the notion of COM/CORBA bridging to DCOM and DCOM Automation servers. Figure 16 and Figure 17 show architectural models for CORBA and Automation client/server bridging. These models are very similar to a COM/CORBA bridging models. Figure 16 shows how a CORBA object in a CORBA server is referenced as an Automation object in an Automation client.

[image: image16.wmf]

CORBA server

CORBA

object

DCOM/CORBA Bridge

reference

Automation client

Automation

object

Automation

interface pointer

call

Figure 16 CORBA server and Automation client using CORBA object reference

Figure 17 shows how an Automation object in an Automation server is referenced as a CORBA object.

[image: image17.wmf]

CORBA server

CORBA

object

DCOM/CORBA Bridge

reference

Automation server

Automation

object

Automation

interface pointer

call

Figure 17 CORBA server and Automation client using automation interface

All of these models use a bridge which converts different syntaxes of CORBA and COM/DCOM. The main differences between CORBA and COM/DCOM syntax are data types, and exception handlings. In a bridge, data type mappings should be processed based on CORBA and COM syntax rules. Type mapping differs depending on the direction of the information (e.g. from CORBA to COM/DCOM, and from COM/DCOM to CORBA). One example of data type mapping from COM/DCOM to CORBA is that appropriate attributes and operations for CORBA objects are constructed using Object Management group (OMG) Interface Definition Language (IDL) from COM objects, because COM/DCOM does not support complicate constructed structures. The other necessary conversion processes include mapping unsigned types, and sequence and arrays to automation safe arrays.

Exception handlings should be reconciled in terms of error bit expression. Most COM methods and Automaton calls return 32-bit error using HRESULT (Microsoft standard return value), whose 31-bit value holds error status. On the other hand, CORBA exceptions do not return COM/DCOM standard error values. In order to compensate for this gap, CORBA exceptions are automatically mapped to pseudo-exceptions in a COM/CORBA bridge. In the case of user defined CORBA exception, error bit in HRESULT will not be set, but additional pseudo-exception information will be carried.

1.6.2 Naming service

Using communication interoperability models, CORBA and COM/DCOM applications can communicate with each other, but some advanced services cannot operate without adequate processes. One of the services to be considered is object naming service, which provides location transparency mechanism for distributed objects. The other service is transaction management service, which provides safe and consistent operations for distributed systems.

CORBA and COM/DCOM applications use different object naming services. CORBA applications use an OMG standard CosNaming service, which can utilize LDAP [YHK 1995], X.500 [CCITT 1988], and relational database management systems. On the other hand, COM/DCOM applications use Microsoft registry, which is a Microsoft proprietary naming service. If a CosNaming service supports Microsoft registry, these two different applications can operate transparently. However, CORBA does not provide any functionality for Microsoft registry, so some mechanisms for object naming service should be embedded. In this paper, we proposed a proprietary naming service in a COM/CORBA bridge. Figure 18 shows an architectural model for object naming service. A COM/CORBA bridge exposes OMG IDL for a CORBA object and COM interface for a COM object. These interfaces provide register/lookup/bind functions to CORBA and COM applications.

[image: image18.wmf]

CORBA server

CORBA

object

COM/CORBA Bridge

CORBA client

COM

object

Naming service

OMG IDL

COM interface

lookup

register

bind

lookup

register

bind

Figure 18 Location transparency service

1.6.3 Transaction service

For transaction management service, CORBA and COM/DCOM have their own transaction management services: Object Transaction Service (OTS) for CORBA and Microsoft Transaction Service (MTS) for COM. There is no interoperability capability between these two transaction management services. There are some approaches for handling this difference: 1) exposing OTS IDL to COM/DCOM applications via the bridge, 2) implementing agents in both CORBA and COM/DCOM applications which communicate with each other, and 3) not using standard transaction management service. In this paper, we proposed our own agents in both applications regarding future extension, current OMG trends, and scalability. In this approach, an agent application resides in both CORBA and COM/DCOM nodes to communicate using an external Transaction Internet Protocol (TIP). Figure 19 shows the interworking between CORBA and COM/DCOM applications. Each application talks with a transaction agent in each node, and the agents manage information transaction. As transactions are invoked across each node, the external service maintains the transaction context and passes necessary information between the environments.

[image: image19.wmf]

Computer

-

A

COM/CORBA Bridge

Computer

-

B

initiate

commit

rollback

Transaction

agent

CORBA

application

COM

application

initiate

commit

rollback

TIP

Transaction

agent

Figure 19 Transaction management for CORBA and COM systems
1.6.4 Discussion

Here, I presented architectural models in order to solve the interoperability problems between COM/DCOM and CORBA. The result showed that two different systems using COM/DCOM and CORBA can interoperate with each other in terms of basic communication, object life cycle, object naming and transaction services. Since the proposed gateway can reside in both client and server machines, the architectural models are highly portable. Moreover, since the gateway cannot be recognized by either CORBA or COM/DCOM systems, the gateway attain high transparent functionality. Existing systems do not only have to be modified, but also can access to remote objects in other systems as same as other local objects. This enables developers to select any standard and intemperate without any changes.

However, there are some issues regarding performance and reliability. One of the most important benefits, which developers gain from these standards, is to reduce development cycle, because these standards provide most shared services. Since these standards produce additional overhead processes, such systems that use these standards tend to be slow. Moreover, our developed gateway is an additional component between these systems, and works as communication/service conversion. In the case of large number of different systems, performance may be degraded. Second, this paper mainly examined normal functionality, but did not examine any functionality under various abnormal situations (e.g. machine shutdown, power/network down). In order to develop reliable and robust systems, our gateway should also be robust against abnormal situations.

Summary

In this paper, three distributed technology standards are briefly explained: EJB, CORBA and COM/DCOM. All of these standards are frameworks for software developers in order to effectively build distributed systems. These standards are very useful and can help developers to shorten software development cycle. However, considering interoperability of developed systems, the developers need great labor to connect different systems.

This paper shows architectural models in order to solve interoperability problems. The first issue of interoperability is between CORBA and EJB. Since these standards collaborate with each other, several standards are available from Sun Microsystems, Inc. and OMG. Java-based standards wrap heterogeneous technologies with standard APIs. By using these standards, EJB-based and CORBA-based systems can easily interoperate with each other.

Second issue of interoperability is between CORBA and COM/DCOM. Several proprietary architectural models are proposed in terms of gateway conversion. This gateway solution can effectively minimize modification of each system using CORBA and COM/DCOM, because these systems can access opposite objects as if accessing local objects.

In order to implement a gateway for CORBA and COM/DCOM, Several issues need to be taken into consideration: location of gateway, language, cache management, and replication. First of all, location of gateway is very important issue to solve. This issue is closely related to computer languages which will be used to implement. Basically, this gateway can be implemented using independent computer process. By using Java Virtual Machine (JVM), the gateway process will attain high portability and be able to operate in almost any computer machines. However, there are some demerits for utilizing JVM. Although JVM will attain good portability, maintenance labors will increase accordingly. If the gateway needs JVM, then the versions of gateway and JVM should be identical. Moreover, customers or maintenance personnel must install JVM locally. This may lead to increase maintenance costs. Performance is also another issue, when Java is selected to implement this gateway because conversion workloads of basic and higher level services require large main memory and CPU resources. Moreover, Java is said to be slow for processing. Other languages (C/C++) can be good alternatives for Java, but good balance between portability, maintenance, and performance needs to be examined.

Second issue is related to the last discussion of previous paragraph: performance. In order to attain high performance, cache mechanism may be effective. However, cache will cause complicated mechanisms like distributed systems. In addition, developers need to design appropriate cache size in terms of the size of available main memory. Consequently, this mechanism will make developers to consider the management of error situations in terms of internal cache memory. Thus, tradeoffs between performance and reliability of cache should be very complicated. Developers need to carefully design cache mechanism.

Final issue is availability and reliability: replication mechanism. In this paper, no discussion about replication mechanism is conducted, but considering abnormal situation is very important for practical distributed systems. One possible solution for improvement of availability and reliability is replication. There are many ways to improve these quality attributes: watchdog, hot/cold standby, hardware/software dual structure. These mechanisms are provided by many third software vendors. However, all software failures cannot be rescued by these mechanisms, because computer processes can become panic and this abnormal situation cannot be detected by those mechanisms. Thus, one possible solution is to implement replication mechanism and increase availability and reliability.

Thus, considering application of gateway development, many issues will need to be solved. Here are some tips for these issues. CPU performance and main memory will continue to improve based on the Moore’s law. Most expenses of software are spent on maintenance period considering whole software development. Therefore, better software systems might mean more easily maintainable ones. On the other hand, behaviors of software users are sometimes hard to predict. One computer may be overloaded, and the others can be free for computer resources. Therefore, dynamic allocation of software components may help system administrators to mitigate performance degrade. Java-based systems can run anywhere if JVM is available. Thus, Java may be natural in order to lessen maintenance works.

Finally, the proposed gateway in this paper is useful, because it enables systems to interoperate in EJB, CORBA, and COM/DCOM environment. The architectural model is very simple but powerful. Further extension to this gateway will realize perfect interoperable world in the future.

References

[CCITT 1988]
The Directory: Overview of Concepts, Models and Service. CCITT Recommendation X.500, 1988.

[COM 1995]
Microsoft Corporation, “The Component Object Model Specification.” 1995.

[DCOM 1998]
Microsoft Corporation, “The Distributed Component Object Model Protocol Version 1.0.” 1998.

[GF 1998]
Guttman, M., and D. Frankel. “Resolving Differences in the Life Cycle of COM vs. CORBA Objects.” Genesis Development Corporation White Paper, 1998. www.gendev.com/pubs/whitePapers.htm.

[GLL 1997]
Gray, Steven D., Rick A. Lievano, and Roger Jennings. Microsoft Transaction Server 2.0 (Roger Jennings' Database Workshop). Indianapolis, IN: Sams Publishing, 1997. ISBN 0-672-31130-5.

[HTTP 1997]
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” RFC 2068, January 1997

[NDS]
Novell, Inc., “NDS White Paper” http://developer.novell.com/whitepapers/nds1.htm
[OMG 1991]
OMG, “The Common Object Request Broker Architecture and Specification Version 1.0.” Framingham, MA, 1991.

[OMG 1995]
OMG, “Object Management Architecture Guide, OMG Revision 4.0, November 1995.

[OMG 1998a]
OMG, “The Common Object Request Broker Architecture and Specification Version 2.2.” Framingham, MA, 1998.

[OMG 1998b]
OMG, “CORBAservices: Common Object Services Specification” OMG, Framingham, MA, 1998.

[OMG 1999a]
OMG, “CORBA Components.” OMG Document Number orbos/99-02-05. www.omg.org/docs/orbos/99-02-05.pdf.

[OMG 1999b]
OMG, “The Common Object Request Broker Architecture and Specification Version 2.3.” Framingham, MA, 1999.

[OMG 2000]
OMG, The Object Management Group Web Pages. http://www.omg.org.

[RM 1998]
Ruh, W.A., and T.J. Mowbray. “An Introduction to Enterprise java Beans Technology” JavaSoft, 1998. http://Developer.java.sun.com/developer/technicalArticles/Beans/IntroEJB/index.html.

[SSL 1995]
Hickman, Kipp, "The SSL Protocol", Netscape Communications Corp., Feb 9, 1995.

[SSL 1996]
A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape Communications Corp., Nov 18, 1996.

[SUN 1998]
Sun Microsystems, Inc., “Enterprise Java Bean Specification version 1.0” 1998. ftp://ftp.javasoft.com/docs/ejb/ejb.10.pdf.

[SUN 1999a]
Sun Microsystms, “JavaTM Remote Method Invocation (RMI)”, 1999 http://java.sun.com/products/jdk/rmi/index.html.

[SUN 1999b]
Sun Microsystems, Inc., “Enterprise Java Bean Specification version 1.1” 1999. http://java.sun.com/products/ejb/docs.html.

[SUN 1999c]
Sun Microsystems, Inc., “Java Message Service API version 1.0.2” 1999. http://java.sun.com/products/ejb/docs.html.

[SUN 1999d]
Sun Microsystems, Inc., “Java Database Connectivity version 2.1 API” 1999.

[SUN 2000a]
Sun Microsystems, Inc., “Enterprise Java Bean Specification version 2.0 Final draft” 2000. http://java.sun.com/products/ejb/docs.html.

[SUN 2000b]
Sun Microsystems, Inc., “Java Naming and Directory Interface version 1.2 beta 3” 2000. http://java.sun.com/products/jndi/index.html.

[SUN 2000c]
Sun Microsystems, Inc. “Java 2 Platform Enterprise Edition” 2000 http://java.sun.com/j2ee/
[SUN 2000d]
Sun Microsystems, Inc., “JavaServer Pages specification version 1.1” 2000

[SUN 2000e]
Kassem, N., and Enterprise Team, Designing Enterprise Applications with the Java 2 Platform, Enterprise Edition. Addison-Wesley, 2000. ISBN 0-201-70277-0.

[YHK 1995]
Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access Protocol," RFC 1777, Performance Systems International, University of Michigan, ISODE Consortium, March 1995.

PAGE
35

_1032602286.doc
[image: image1.jpg]

[image: image2.jpg]

Applet Container

J2SE

Applet

Application Client

J2SE

Application Client Container

JDBC

RMI-IIOP

JNDI

JMS

Web Container

JSP

Servlet

J2SE

JTA

Java Mail / JAF

RMI-IIOP

JDBC

JNDI

JMS

JMS

JNDI

JTA

Java Mail / JAF

RMI-IIOP

JDBC

J2SE

Servlet

JSP

EJB Container

Database

HTTP

SSL

HTTP

SSL

RMI-IIOP

_1036165348.doc

Client

Object Implementation

ORB Core

Client Stubs

Dynamic Invocation

ORB Interface (IDL)

Object

Adapter

Skeleton

Dynamic Skeleton Interface

IF Repository

Implementation Repository

_1037173977.doc

Object Request Broker

COS Naming Server

CORBA Server

CORBA Client

EJB Client

EJB Server

JNDI

JNDI

lookup

_1037176646.doc

EJB system

CORBA system

COM/DCOM system

_1037168311.doc

Client

Component

Security Provider

DCE RPC

Protocol Stack

Proxy Object

DCE RPC

Security Provider

Protocol Stack

Stub

OLE32

“CoCreateInstance”

SCM

(Remote) Activation

SCM

“CoCreateInstance”

DCOM Network Protocol

_1037173897.doc

Object Request Broker

Object Transaction Service

(OTS)

CORBA Server

CORBA Client

EJB Client

EJB Server

JTS

JTS

JTA

_1035198844.doc

CORBA server

CORBA object

COM/CORBA Bridge

reference

COM object

CORBA client

COM interface pointer

call

_1035198990.doc

CORBA server

CORBA object

DCOM/CORBA Bridge

reference

Automation object

Automation client

Automation interface pointer

call

_1036163592.doc

CORBA server

CORBA object

COM/CORBA Bridge

reference

COM object

CORBA client

COM interface pointer

call

CORBA object

reference

_1035201305.doc

Computer-A

CORBA

application

COM/CORBA Bridge

TIP

COM

application

Computer-B

Transaction agent

initiate

commit

rollback

Transaction agent

initiate

commit

rollback

_1035198988.doc

CORBA server

CORBA object

DCOM/CORBA Bridge

reference

Automation object

Automation server

Automation interface pointer

call

_1033885971.doc

Object Request Broker

Applications

CORBAdomains

CORBAfacilities

CORBAservices

_1033918628.doc

module CosNaming {

…

typedef string lstring;

struct NameComponent {

	lstring Id;

	lstring Kind:

};

typedef sequence <NameComponent> Name;

interface NamingContext {

…

	void bind(in Name n, in Object obj);

	raises (NotFound, CannotProceed, InvalidName);

…

	Object resolve (in Name n)

	Raises(NotFound, CannotProceed, InvalidName);

};

…

};

_1035118964.doc

CORBA server

CORBA object

COM/CORBA Bridge

OMG IDL

COM object

CORBA client

COM interface

Naming service

lookup

register

bind

lookup

register

bind

_1032604972.doc

Application

Application

Server

Resource Manager

Transaction Manager

(JTS)

JTA UserTransaction

JTA TransactionManager

JTA XAResource

EJB

JDBC, JMS

_1031742022.doc

EntityBean

EJBObject

SessionBean

EJBObject

EJBHome

EJBHome

Client

EJB Container

_1031742251.doc

Client code

JNDI Client API

Service Provider Interface

LDAP Service Provider

NIS Service Provider

File System Service Provider

_1031663570.doc
[image: image1.jpg]

Enterprise Java Bean 1

Enterprise Java Bean 2

Enterprise Java Bean 3

Enterprise Java Bean 4

EJB Container 1

EJB Container 2

Client

(Servlets, Applets, EJB Client)

_1031741774.doc

Client

Stub

Skeleton

Stub

Network

