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Abstract

In this thesis, we present a catheter navigation system for minimally invasive surgery.
The core of such a navigation system is to register pre-operative high resolution 3D or

4D heart model with intra-operative heart shape model to build a combined heart
shape. With such a combine shape model the intra-operative catheter motion can be
tracked and displayed with it. Then clinicians can easily navigate catheters inside
human heart. The most difficult part of such a registration is how to quickly and

reliably capture intra-cardiac heart shape measurement. We designed a 3D ultrasound
catheter “virtual touch” technique which can capture heart shape measurement during

operation in a much faster and more accurate way than conventional manual
collection method. Our system can use 4D model and points which captures the heart

shape change during one cardiac cycle for registration. To address non-rigid shape
changes from breathing cycles and other sources, our system has a local non-rigid
registration component to further correct the high resolution pre-operative shape

model based on intra-operative realtime shape measurement from “virtual touch”.
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1 Introduction

This thesis is for an image guided catheter navigation system for minimally invasive
interventions inside human heart. The system can automatically register the intra-
operative heart shape information with a pre-operative heart shape model from CT
scan. Then it can render the locations of catheters relative to the heart shape model in
real time to help clinicians to navigate the catheters. We focus on an navigation system
for left atrium ablation procedure in this proposal. But the system is also useful for
general navigation of medical instruments inside human body.

1.1 Minimally Invasive Heart Surgery

Traditionally, in a heart surgery, doctors need to open the chest of patient to operate
on his/her heart. This kind of surgery involves tremendous pain and takes a long time
for patients to recover. Recent years, it is more and more popular to use minimally
invasive surgery methods to do heart surgery. With minimally invasive methods, there
is no need to open patient’s chest. Instead, a thin and flexible plastic tube is inserted
into patient’s heart through veins. This plastic tube is called a catheter. At the tip
of the catheter, various devices can be installed for different interventions or to guide
surgery. For example, an ablation device can be fit at the tip of a catheter to do left
atrium ablation procedure, an retractable needle can be used to inject medicines, or an
ultrasound catheter can be used to inspect heart from inside.

Our system described in this thesis is originally designed for Left atrium ablation
procedure which is to cure atrial fibrillation. During the surgery, an ablation catheter
is inserted into the left atrium through veins. Clinicians need to navigate the ablation
catheter to ablate the areas where left and right pulmonary veins meet the left atrium.

Minimally invasive surgery has so many advantages. It also has limitations. For ex-
ample without opening patient’s chest it is impossible to directly visualize the position
of catheters inside the heart. So far clinicians usually use fluoroscopy (X-ray) imaging
device to see where the catheter is inside a heart. But problems are

1. Fluoroscopy imaging device can not be running for long time because of radia-
tion. It can only provide a few snapshots and then has to be turned off.

2. Heart wall in fluoroscopy images is not clearly visible to human eyes. Usually it
is just a blurred shadow and hardly to precisely see the exact boundary.

3. Each fluoroscopy image is only a 2D image. Multiple images have to be manu-
ally registered in clinicians mind to guess the 3D topology.

1.2 Current Navigation Systems

Navigation of catheter inside heart usually involves registering intra-operative data with
a high resolution pre-operative heart model. After registration, intra-operative real
time position data can be displayed with pre-operative shape models to enable intuitive
navigation. The accuracy and speed of the registration determines the efficiency of the
whole navigation system.
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Figure 1: Current left atrium ablation procedure: (A) An ablation catheter with position
sensor and an ultrasound catheter are inserted into the heart. (B) Clinicians can see the
3D position of ablation catheter in one monitor and (C) the ultrasound image in another
monitor. (D) They have to couple the data together in their mind to figure out the actual
location of the ablation catheter inside the heart. Only highly experienced clinicians
can do it efficiently.

There are systems available for registering solid bone images with position sensors
such as HipNav [11]. HipNav requires clinicians to touch the bone’s surface with po-
sition sensor at several locations, and then register these 3D locations with 3D bone
model from CT or MRI. 3D registration works well with solid objects like bones. For
cases such as left atrium, because it is beating during the procedure, the shape of left
atrium will change periodically. Thus the registration problem becomes more compli-
cated than bones.

Recent years, some registration and navigation systems for left atrium ablation pro-
cedure have been developed [25] as well as commercially available Carto Merge sys-
tem. As seen in Figure 2 left column, these systems register the 3D heart model from
pre-operative CT scan with the intra-operative heart surface points captured by man-
ually moving ablation catheter with magnetic position sensor to touch the inner heart
wall. This registration will align the 3D heart model with the magnetic tracking sys-
tem using ICP [1] algorithm. After the registration, the system can visualize the heart
model and the catheter tip together. Also [17] incorporates 3D MRI image with EAM
points for registration and navigation and suggest aorta points can help the 3D registra-
tion. [9] evaluated the accuracy of such 3D registration between EAM points and CT
model with a dog’s heart.

The problem with such system is that first they use only a rigid 3D model with
ICP [1] algorithm for registration. As we know, the heart is beating and breath cycles
can change the heart shape as well. The protocol of Carto Merge suggest clinicians
to capture surface points at 0% of a cardiac cycle and at the end of expiration. Since
the breath cycle and cardiac cycle are independent of each other, it is very difficult
to capture a point at both end of expiration and 0% of a cardiac cycle. So the accu-
racy of the registration can not be guaranteed. Second, to capture each surface point,
clinicians need to manually move the ablation catheter to touch the heart wall. The
touch is verified by fluoroscopy images. As we have stated before about the shortcom-
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Figure 2: Comparison of current available commercial system and our proposed sys-
tem.

ings of fluoroscopy imaging device, it will eventually affects the quality of registration
points. Now some clinicians are using intra-cardiac ultrasound catheters to guide ab-
lation catheters and verify the touch of ablation catheter to the heart wall [22] [26].
In this case, an ultrasound catheter is inserted into the left atrium. From the real time
ultrasound images captured by the ultrasound catheter, clinicians can clearly see the
ablation catheter touching the heart wall. The verification of touching is much better
than with fluoroscopy images. This is the best scenario currently clinicians can have.
But it doesn’t improve the speed. To capture 50-60 registration points, an experienced
clinician may need approximately 10-25 minutes. Moreover in order to capture points
which are well spread on the heart wall to ensure higher registration accuracy, more
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points are needed.

1.3 Our Approaches

1.3.1 Combining Pre-operative and Intra-operative heart Models

Our approach for navigation inside heart is to combine high quality pre-operative heart
model from CT scan or MRI with realtime intra-operative heart shape measurement
from our new ultrasound “virtual touch” technique. Pre-operative heart model is of
high resolution while the shape may not be exactly the same as the heart during opera-
tion. Intra-operative heart model generated by our ultrasound “virtual touch” is exactly
what the heart looks like during operation. But due to limited flexibility of catheters
and size constraints of the heart chambers, it may not cover everywhere of the heart.
By combining these two models together using registration, we can provide doctors a
high-resolution realtime heart model which has the same shape as the real heart during
the operation. This combined model then has the advantage of both pre-operative and
intra-operative heart models while not their shortcomings. Then the navigation will be
based on this combined model.

To combine the two models, we need to do several registrations. We assume the two
heart models should be the same shape unless some small local shape differences. Then
first we need to do the global shape registration which will put the two models into a
single coordinate systems. Usually this will be the coordinate system of our magnetic
position sensor system during the operation so that later the motion of catheters can
be easily displayed with the heart model. With a beating heart, if both models are
captured as a 4D space-time model, we also need to do time registration. Eventually, to
correct non-homogeneous small local shape changes caused by different breath phases,
we have a non-rigid local registration component to seamlessly wield the two models
into one high-resolution realtime heart model.

After the registration, navigation can be easily done with various way of visualizing
the position of catheters inside the heart. What doctors will see on the monitor is the
combined model representing the current heart shape and a realtime catheter model
representing the current catheter location inside the heart.

1.3.2 Comparison to Current Commercial Systems

The overview diagram of our system is shown in Figure 3. Comparing to the commer-
cial system like shown in Figure 2, our system replaced each component of the system
with better ones and added non-rigid registration component.

For building the intra-cardiac heart model, instead of touching the heart wall manu-
ally with a catheter tip, we use a new catheter which combines ultrasound sensor, mag-
netic position sensor and ablation unit together and encapsulates them in one catheter.
This catheter can capture tens of thousand of high quality surface points within a
few minutes without physically touch the heart wall. We call this technique “Virtual
Touch”. “Virtual touch” can be used to scan heart walls to generate an intro-operative
3D or 4D heart shape model which represent the current shape of the heart during
operation. It works like a laser 3D scanner only with ultrasound.
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Figure 3: System Diagram: (A) A catheter which combines ablation, ultrasound and
position sensor (6 DOF). Clinicians use this catheter to scan the heart wall before reg-
istration. (B) Our system detect heart wall pixels in the ultrasound images. (C) With
the position sensor’s read-out and ECG signals, 4D coordinates of the wall pixels are
automatically reconstructed. (D) 4D heart model reconstructed from pre-operative CT
scan. (E) Using 4D + local non-rigid registration, our system registers the points to the
model. (F) Real-time visualization of catheter position inside heart then is available for
clinicians to guide the ablation procedure.

Unlike laser, ultrasound beams have a finite width of 3-6mm for common intra-
cardiac ultrasound catheters. This beam width makes the ultrasound image plane not a
infinitely thin plane but a plane with 3-6mm thickness. Any 3D ultrasound reconstruc-
tion algorithm ignoring such image plane thickness will introduce errors. Especially
this error is dependent on the intersecting angle of ultrasound image plane and the ob-
ject surface it scans. We provide an easy and reliable way to correct errors caused
by finite image plane thickness and it can further improve the accuracy of the intra-
operative heart model built by “virtual touch”.

When using manual physical touch to collect surface points, we can only assume
the position error for each point is a simple normal distribution with a diagonal covari-
ance matrix, which means error distribution along x,y and z axis is independent from
each other. And in reality, this may not be true. With ultrasound virtual touch, we have
better knowledge about the error distribution of each point and we can incorporate such
prior knowledge into our registration algorithm to correctly minimize the registration
error.

To address the cardiac cycle, instead of using 3D registration, we propose a 4D
time-space registration procedure between 4D heart model and 4D registration points.
4D heart model is from 4D CT scan which captures a series of 3D heart models through
one cardiac cycle. The 4D registration points are captured during operation at different
time spot of a cardiac cycle. Both the heart model and points are synchronized with
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ECG signals as its time coordinates. This 4D registration make use of the motility of
left atrium during registration, this will not only make the registration more accurate
but also make the registration points collecting procedure faster and easier. This 4D
registration procedure does not introduce any new devices so it is easy to deploy in
hospitals quickly.

To reduce the non-homogeneous error that can not be compensated by any global
rigid registration algorithm, we added a local non-rigid registration component. It can
be viewed as a correction of the pre-operative CT model to the real heart shape during
the operation. After the non-rigid registration, the model should be perfectly fit with
the intra-operative surface points and will provide accurate navigation for clinicians.

The components of our navigation system then will be illustrated in the following
sections. Section 2 shows how we build the intra-cardiac 3D ultrasound catheter and
use it to quickly create an intra-operative heart model. Section 4 shows how to do
4D time-space registration for a beating heart. Section 5 shows how to do non-rigid
registration after the global registration to further improve the accuracy. Section 6
shows various way we can visualize the combined model to enable intuitive navigation
inside heart.

2 Intra-operative Heart Model by Ultrasound “Virtual
touch”

To achieve better registration accuracy, we introduce a novel catheter that combines
position sensor, ultrasound sensor together with the ablation unit or other treatment
devices. This new combined catheter uses “virtual touch” technique to quickly scan
the heart surface using ultrasound during the operation and gradually build a intra-
operative heart shape model within minutes. It can greatly improve the speed, accuracy
and stability of shape registration. More importantly, with thousands of surface points
well spread on the heart wall, we can have a realtime intra-operative heart shape. This
heart shape does not have a high resolution as CT scan, but it is the real shape of heart
during operation while CT scan usually is pre-operative under different breath phases.
Later we will see this realtime heart shape can be used to correct pre-operative CT
model using our non-rigid registration component.

Currently, navigation systems like Carto Merge from Biosense Webster developed
by Siemens requires doctors to manually move a catheter with position sensor to phys-
ically touch heart walls during operation to gather intra-operative shape information.
This manually touch process is slow and un-reliable. More important, the registra-
tion accuracy is directly depend on the quality of intra-operative surface points. A
carelessly captured set of surface points by a doctor could generate much worse regis-
tration accuracy than a carefully selected and touched set of points by another doctor.
This slow, un-reliable and in-consistent system may make the navigation difficult while
it is designed to make it easy.

The key idea of our “virtual touch” is to “see” surface points in ultrasound image to
capture them other than to move the catheter tip to and physically touch those surface
points to capture them. If we think the heart is like a room, then the Carto Merge
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Figure 4: Detect wall pixels: (a) the input image, red arrows sent out from the catheter
center represent the direction we search for edge pixels: for each direction, we start
from center and when we meet the first edge pixel, we will stop searching along that
direction and move to next direction. (b) the edge detected by canny edge detector. (c)
Detection result: red crosses represent the accepted wall pixels. By searching along the
red arrows, we can safely discard edges from other chambers of the heart.

catheter is like a blind man who wants to know where the room’s wall are. He has to
go around blindly until he touches a wall. And then repeats this random walk and touch
until he has a rough idea of where the room walls are. Our “virtual touch” catheter on
the other hand is like a man who can see. He just needs to go inside the room, stand in
the middle and look around. Then he immediately knows where the walls are.

To do this, we need to first automatically detect inner heart wall pixels in ultrasound
images (to see the walls) and then reconstruct the 3D coordinates of these pixels (to
know where they are). We will go through these steps one by one in the following
sections.

2.1 Heart Wall Pixel Detection

First, we need to “see” heart walls in ultrasound image. For computers, it means that
we need to have an algorithm to automatically detect wall pixels in ultrasound images.

When the ultrasound frequency, response range, gain and other parameters are
tuned accordingly, the heart wall can be seen clearly in ultrasound images. This makes
the heart wall pixel detection easier. We first use canny edge detector [2] to detect edge
pixels. We usually set the threshold of canny edge detector to a high level because we
only want to collect wall pixels with high confidence (clear edge). This is important to
ensure the quality of our registration points.

Sometimes, other chambers of the heart can be visible in the far side of the ul-
trasound image, to avoid including edge pixels of other chambers, we search along a
bunch of beams sent out from the ultrasound catheter center as the red arrows shown
in Figure 4 (a). When we search along one beam and hit one edge pixel, we accept the
pixel as a wall pixel, stop the search along that beam and switch to next beam. Such
searching strategy allows us to quickly include all the pixels that are on the wall of
the chamber in which the catheter currently is and avoid most wall pixels belongs to
other chamber, as shown in Figure 4 (c). More sophisticated contour detection methods
could be used here. But we found this light-weight technique works just fine and it is
very fast.
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2.2 3D Reconstruction with Intracardiac 3D Ultrasound

After we detected heart wall pixels in an ultrasound image, we need to reconstruct the
3D coordinates of them. A 3D ultrasound catheter can make it. In our prototype sys-
tem, we attached Ascension technology’s Microbird tracking sensor onto a Siemens’s
Acuson intra-cardiac ultrasound catheter to build a 3D intracardiac ultrasound catheter.
We use single plane phantom [16] to calibrate the 3D ultrasound catheter. Temperature
corrections The calibration will find a matrixT and pixel sizeSx, Sy. Then the 3D
coordinates of any pixelp(x,y)in an ultrasound image can be calculated by:

P = MiT




xSx

ySy

0
1


 (1)

whereMi is the direct reading from the magnetic position sensor at the moment
the ultrasound image is captured. It’s a transformation matrix which gives the position
and orientation of the position sensor attached to the ultrasound catheter.Sx, Sy is the
size of pixel’s width and hight in millimeter.T transforms the 2D pixel coordinate to
the 3D coordinate of the position sensor andMi transforms from the position sensor’s
coordinate to the transmitter’s coordinate which is fixed during an operation. And
eventually we get the 3D coordinateP .

2.3 Heart Shape Model Created by “Virtual Touch”

As we can automatically detect heart wall pixels in ultrasound images and reconstruct
the 3D coordinates of the wall pixels, the intra-operative heart shape building procedure
becomes much easier: Clinicians only need to insert the 3D ultrasound catheter and
make the image plane sweep the wall of heart. Our system will automatically capture
the video output of the ultrasound catheter and detect wall pixels. The 3D coordinates
of those pixels can be immediately calculated using equation 1 as shown in Figure 5.
No physical touch is necessary: as long as the ultrasound image plane “touches” the
heart wall, our system can capture all the wall points automatically. That’s why we
call this technique a “virtual touch”. It’s like a man who can “see” where the walls are
and does not need to physically touch walls to locate them. Such strategy can greatly
improve the efficiency of the registration.

Noted that this intr-operative shape model can be improved while capturing more
and more surface points. During the procedure, clinicians can initially scan a rough
model and try to register it with pre-operative high resolution model. Upon the result,
further scans can be done to refine the registration in areas where more inconsistency
between the two models are found.

2.4 Registration Results and Discussion

We tested the prototype system with phantom models built from a real patient’s CT
scan. The phantom model’s inside cavity has the same shape as the patient’s left
atrium. During the test the model was submerged in a water tank. We inserted the
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Figure 5: Virtual Touch: (a) Clinicians only need to move and rotate the 3D ultrasound
catheter so that the ultrasound image plane can sweep large portion of the heart. (b) The
system can automatically reconstruct the 3D wall points seen by ultrasound images.
(c) An example of the heart wall points captured by our system. There are total 12781
wall points from 427 images which is captured within 3 minutes. Noted that by current
protocols, a highly experienced clinician may need 30 minutes to capture only 100
surface registration points.

(a) (b) (c)

Figure 6: Phantom model test: (a) the 3D model of a patient’s left atrium. (b) the inside
hollow model whose cavity has the same shape of the left atrium. (c) the phantom
model built by 3D printer with a catheter inserted into it.

3D ultrasound catheter inside the model and captured some wall points. The points
then is registered using ICP algorithm to the 3D surface model which is used to build
the phantom.

2.4.1 Registration Speed

During the test, we captured 427 ultrasound images within 3 minutes (at 2.5 frames/second)
as shown in Figure 5 (c). Image processing (wall pixel extraction and 3D reconstruc-
tion) can be done in the same rate. And after 3 minutes, we successfully created a
intr-operative shape model with 12871 surface registration points (heart wall points).
Comparing to currently move-and-touch protocol which usually needs about 10 min-
utes for 50-60 points (only achievable by highly experienced clinicians), our method is
more than 700 times faster.

As ICP algorithm only takes seconds to find the registration using currently avail-
able workstations, the majority of time for registration process is spent to collect regis-
tration point. With 700 times faster, the whole registration process time will be greatly
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shortened. In our case, with 12871 surface registration points, the ICP algorithm still
can be done around 1 minute. So the increase of time used by ICP to process more
points is negligible comparing to the time saved to collect these points.

2.4.2 Registration Quality

We registered the surface points captured by “virtual touch” to the 3D model from CT.
The average distance from registered points to their closest points on surface model is
1.2143mm.

As we can see in Figure 7, there are some outliers in our point set. Those are
because of the speckle noise in ultrasound images. We expect there are tens of such
outliers exist in our point data set. But given the total number of points in our point
set is 12781, these less than 1% outliers can not divert the registration from the true
alignment. And with trimmed ICP algorithm [3], the effect of outliers can be easily
fixed.

This is a good registration. But the error measurement of closest distance to surface
model which is minimized by ICP algorithm may be misleading. It is because the clos-
est point on surface model for a surface point is not its true corresponding point on the
surface model. In reality, this true corresponding point usually is not available unless
for some manually selected landmark points. In order to get a more accurate measure-
ment of registration quality, we use the average distance from registered points to their
true corresponding points on the surface. The true corresponding points are found by
manually adjust an automatically found registration to make sure it perfectly fit the sur-
face model. Under this perfect registration, the location of registered points are where
they truly should be. Then a new registration will be compare to this registration. The
registered points by the new registration is measured against these ground truth loca-
tions of surface points. And its average will be our measurement of registration error
in the following tests.

Our registration systems actually sample the intra-operative heart shape using sur-
face points and register this sampled surface shape to pre-operative full shape model
(CT). Because the intra-operative sampled heart shape only have partial information,
the loss of information will introduce ambiguity for registration. A good registration
system can greatly reduce such ambiguity so that it has good chance to find true regis-
tration. David Simon [23] showed us given a shape, how to determine the best locations
to sample it to maximize the stability and accuracy of registration. But in reality, be-
fore registration we don’t know where our catheter is inside heart. Then we can’t move
the catheter to the desired locations to sample the shape. Instead, we can only random
sample the shape. With only a few samples of the shape, registration may have a lot
ambiguity or local minimums. As we add more random samples, we can reduce am-
biguity or local minimums so that registration algorithm can have a better chance to
converge to the true registration and eventually improve its accuracy. Now we would
like to know thelower bound ofhow many random samples we need to ensure a given
stability goal.

We designed a stability test with our phantom data. We generated 100 random
initial alignments:±30 degree of rotation alongx, y andz axis, and±5 millimeter
translation from ground truth registration. And we randomly sub-sampled our 12781
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Figure 7: Registration Result: average distance to closest point on surface model is
1.2143mm.
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Figure 8: Stability Test Result: (a) Average distance to true registration of 5 point
sets. (b) Successful rate of registration with 5 point sets. We define a registration is
successful if average distance of each registered point to its location in true registration
is less than 1mm
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surface registration points down to four other point sets each having 1278, 127, 63
and 31 points. These points are well spread over the left atrium. With these five sets
of sample points we do registration from all the 100 random initial alignments. After
each registration, we calculate the average distance of points from this registration to
the ground truth registration and then the average distance of all 100 tests. In this test
we want to know

1. How registration accuracy is affected by number of surface points?

2. What is the probability of finding true registration with a given number of surface
points?

3. What is the minimum number of surface points we need to capture in order to
achieve a reasonable chance of finding the true registration?

Result of our test is shown in Figure 8 (a).
To show how likely each point set will register to the ground truth, we also calcu-

lated the registration successful rate over 100 tests. We define a registration is success
if the average distance from registered points to its location in ground truth registration
is less than 1mm. Result is shown in Figure 8 (b).

It is shown in Figure 8 that to achieve 95% stability, we need to random sample
more than 1000 points over the left atrium surface. This number is much higher than
any current available registration systems can achieve, which suggests a sample set of
around 50 - 150 points. As shown in our test result, with such few samples of the
shape, registration only has a successful rate of about 50% or less. The reason all
these systems failed such stability requirement is it is too time-consuming (may need
hours) for doctors to physically touch catheters to 1000 locations on heart wall with
these systems. But with “virtual touch”, to capture ten thousand points will not take 3
minutes. This ensures a 99% chance to get a true registration with only a rough initial
alignment. With such superior stability, clinicians can be much more confident about
the registration found with “virtual touch” while with currently available commercial
systems, doctors must face the fact that the registration only has a 50% chance to be
correct.

3 ”Virtual Touch” Model with Ultrasound Image Thick-
ness Correction

To reconstruct 3D heart surface points with “Virtual Touch”, in previous section we
use simple edge detection algorithm to find first edge pixel in ultrasound images from
transducer’s center corresponding the first reflected sound. With a position sensor on
the ultrasound catheter 3D coordinates of those pixels can be computed. This method
assumes ultrasound image plane is infinitely thin so that all the edge pixels detected
on the ultrasound image are thought to be at the image plane. But in reality ultrasound
image plane has thickness, thus introduces noticeable error when reconstructing the 3D
coordinates of heart wall pixels. Eventually it will bring error to the intra-operative 3D
heart model.
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3.1 Error Caused by Image Plane Thickness

Figure 9 (a) shows an ultrasound image plane (bold black line) with finite thickness
(thin black lines) intersect an object surface (horizontal blue line). Because the image
plane is not perpendicular to the object surface, at pointa, part of the image plane
first hits the object surface and reflects some ultrasound energy.o′ is where the center
image plane hits the object surface and reflects energy. Eventually, the object surface
in ultrasound image will be a wide band (Figure 9 (b)),not an infinitely thin line as it
should be with zero thickness image plane. In this case, if we just detect the first edge
pixel from the transducer in ultrasound image (represents the first reflection of sound
waves) as where the surface is and assume it is in the infinitely thin image plane,o will
be taken as a point on the object surface while the real 3D point on the object surface
should bea.

This error is proportional to the ultrasound image plane’s thickness at the depth
o. Thickness of an intra-cardiac ultrasound catheter’s image plane ranges from 3 to
6mm. Navigation error acceptable to doctors is around 2mm or less. Also it is related
the intersecting angle between the ultrasound image plane and the object surface. If
they intersect at a right angle (perpendicular to each other), and the object surface is
flat within 3-6mm range from the intersection point, even assuming the image plane
is infinitely thin, it still will not introduce errors. While if the intersection angle is
smaller, the error will be larger. Such error cause by thickness of image plane has been
observed[16]. But in [16] only suggestion of avoiding intersecting with small angle is
given, no solution to correct this error has been provided.

To address such error from ultrasound image plane thickness, we first propose a
method to measure the thickness of an ultrasound image plane in section 3.2. And we
provide an algorithm to correct 3D surface points errors with measured thickness infor-
mation (section 3.3) and register (section 3.4) the corrected points with pre-operative
3D heart surface models. A phantom model test and its result analysis will be presented
in section 3.5 to verify the improvement with our algorithm.

3.2 Ultrasound Image Thickness Measurement

Thickness of ultrasound image plane is also called the ultrasound beam width. It is
not uniform everywhere and can be thought as a function of depth (distance from the
ultrasound transducer):

T = f(Depth)

We assume the image plane thickness (beam width) is the same for any two loca-
tions who have the same distance to the ultrasound transducer’s center.

Ultrasound image plane thickness can be measured by carefully built phantom
models [18][24]. The basic idea is to intersect the ultrasound image plane with a flat
surface at an angle of 45 degree. In that case, the width of the band in ultrasound image
equals to the thickness of the image plane at the depth. Then either move the ultrasound
transducer up and down or use multiple parallel surfaces to measure the distance at dif-
ferent depth. To precisely measure image thickness those methods need carefully built
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Figure 9: Surface intersect with ultrasound image plane with finite thickness
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models and accurate movement of transducers. Usually it can only be achieved with
special devices and manufacture capabilities.

In this paper we introduce an algorithm that can reduce many restrictions of phan-
tom model of those methods to as simple as a single slope surface with any angle (0-90)
to a flat water tank bottom. It is easy to build and no special devices are needed.

3.2.1 Phantom Model Setup

Our method requires only a single slope on a flat surface (a flat water tank bottom will
do) as shown in Figure 11 (a). Our model has an extended flat surface only because
the material of our model has a better visibility in ultrasound than the water tank bot-
tom. There is no restriction to the slope’s angleα, but an angle close to 45 degree is
suggested. Usually it can be built by cut out wedge shape piece of plastic and then
measure the slope angle. No need to build a slope precisely at a certain angle. Thus the
model is easy to build.

We use a clamp to hold the ultrasound catheter (Figure 11 (a) highlighted by red
lines) so that the ultrasound image plane (blue plane) is perpendicular to the water tank
bottom. It can be verified by rotating the catheter along its proximate direction until
the white band in ultrasound image generated by the tank bottom is at its thinnest. This
can be done by manually rotating the catheter back and forth and inspect the ultrasound
image to find the thinnest band. At this time, the thin straight line in ultrasound image
representing the water tank bottom is called our ”reference line”. Later we will need it
to compute thickness.

Now we can slide the slope into the image plane. As we move the slope back and
forth, the white band representing the slope surface should sweep across the ultrasound
image at different depth. We capture all these ultrasound images for later steps. Noted
that we need to sweeps most part of the ultrasound image multiple times to make sure
we have enough samples at various depth.

3.2.2 Compute the Thickness Function

Consider any one of the ultrasound images captured during this procedure as shown
in Figure 11 (b). It is a general case of the intersection: the blue planeaba′b′ is the
slope surface. The yellow vertical planebcb′c′ is the ultrasound image plane. It is
perpendicular to the flat surface where triangle4abc lies. The ultrasound image we
will see is shown as Figure 11 (c). The white band is the reflection of the slope surface.
The white thin line is the reference line reflected by the flat bottom.

Because the image plane at pointO has a thickness ofac + a′c′, and it intersect
with the slope plane ataa′, in the ultrasound image, we should see a belt centered at
bb′ with a vertical thickness ofcc′. As shown in Figure 11 (c).

The thickness of the belt in ultrasound imagecc′ can be measured. We define
it as w. Then the length ofoc is w/2. In 4odc, 6 ocd is a right angle because we
have calibrated the ultrasound image planebcb′c′ to be perpendicular to the flat bottom
surfaceabc. And 6 odc is the slope anglealpha which is known (it can be measured
when building the model). Then the length ofcd is:
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Figure 10: Measure thickness of an ultrasound image plane

17



|cd| = w

2
ctanα (2)

Also in4obc, 6 ocb is a right angle and6 obc can be measured in ultrasound image
automatically: lineob can be detected in ultrasound image and linecb is parallel to the
reference line. Then the6 obc can be computed. We define it asbeta. Then the length
of cb can be written as:

|cb| = w

2
ctanβ (3)

Now we look at4abc. Becauseac is perpendicular to the image surface, so6 acb
is a right angle. Andcd is perpendicular toab so 6 cdb is also a right angle. Then we
can have:

|cb|
|db| =

|ac|
|cd|

and then

|ac| = |cb||cd|
|db|

replacing|cd| and|cb|with equation (2) and equation (3), and|db| =
√
|cb|2 − |cd|2,

we have:

|ac| = w

2
· 1√

tan2α− tan2β

And the thickness of the image plane is two times of|ac| which is:

Thickness = w · 1√
tan2α− tan2β

(4)

If the model is built with a slope angleα of 45 degree. This simplifies equation (4)
becausetanα = 1 in this case. And if the ultrasound image plane and the slope surface
is intersect carefully to make angleβ close to zero, thenbeta = 0 andtanβ = 0 too.
Then equation (4) is further simplified to

Thickness = w

This is exactly what [18][24] did. Now we can see these models are special case
of our general thickness measuring algorithm. The point is that the cost to simplify
equation (4) is to have special devices to precisely build slope model and control the
intersection angle between ultrasound image plane and the model. In our case, since
alpha can be measured after the slope model is built andbeta can be automatically
measured in ultrasound image (details will be shown below), almost any lab without
special device can use our method to measure ultrasound image thickness.

Now the only problem is how to automatically measurebeta and the widthw of
the white belt in ultrasound image. As shown in Figure 11 (a) is the ultrasound image
with slopped surface as a belt in it. First by applying a smoothing filter and a threshold
for the image, we can get a clear white band shown as in Figure 11 (b). Although we
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can directly measure the thickness of the belt at different locations, because there is
a lot of noise, the thickness tend to be inconsistent. To reduce this noise, we fit two
second order polynomial curve to the upper and lower boundary of the belt as shown
in Figure 11 (c). The reason we fit two second order polynomial curves instead of two
straight lines is that within the band, the depth (distance to transducer) is not the same
for every point. Thus the width of the band should not be the same. Given the fact that
the band could be in any angle and the thickness of ultrasound image plane is not a
linear function of depth, the shape of the band could be very complex. But practically
a second order curve should be enough to capture this complexity and in the mean time
reduce errors caused by poor ultrasound image quality.

Suppose the curve of upper bound and lower bound of the band can be written as:

yupper = p2x
2 + p1x + p0

ylower = q2x
2 + q1x + q0 (5)

The center of the band which should be a straight line which can be approximated
by

y =
p1 + q1

2
x +

p0 + q0

2
(6)

With the center line function of the band, we can compute the angle between it and
the reference line:beta. Reference line will stay static for all ultrasound images so its
line function only need to be measured for once. Now we havebeta.

The widthw of the band at a given point is defined as the length along the direction
perpendicular to the reference line. The function of the reference line is know and we
write it as:

y = r1x + r2 (7)

Suppose we want to measure the width at a point(x0, y0) which is at the center
line of the white band. Then the function of a line perpendicular to the reference line
through(x0, y0) is:

y =
1
r1

(x− x0) + y0

Intersecting points of this line with the upper bound and lower bound of the band
can be easily computed then. And the distance between the two intersecting points is
w. Now we havew.

Put the measuredw andbeta into equation (4) we can compute the thickness at the
point (x0, y0). The depth of point(x0, y0) can be easily computed as the transducer
center is known (during 3D ultrasound catheter calibration). Then we have one sample
of thickness at the depth.

If the we carefully setup the ultrasound catheter so that the reference line is parallel
to the x-axis of the ultrasound image, thew can be simply computed by this formula:

w = (p2− q2)x2 + (p1− q1)x + p0− q0

19



(a) (b) (c)

Figure 11: Measure ultrasound image plane thickness with phantom model.

Now we know how to compute the thickness for a given ultrasound image at a point
of (x0, y0). We can then repeat these steps to other points in the same image, and other
points in other images. By measure more samples at various depth, we can accumulate
enough samples to interpolate the curve of image thickness VS depth.

In Figure 12 is 3D views of the result of our ultrasound image plane’s thickness. It
shows that the region near the image center and far away from image center tends to be
thicker while the region in the middle (focus zone) tends to have minimum thickness.
This is just as we expected because most ultrasound device manufacturer calibrate
their ultrasound sensors so that the middle field has minimum thickness and thus gives
clearest image and less errors. From this result we can see, to maximize the accuracy of
“Virtual Touch” points we need to scan points with the middle region of the image. And
based on this thickness measurement, we can correct 3D reconstruction error caused
by ultrasound image thickness and achieve better accuracy.

3.3 Image Thickness Correction

As stated in section 3.1, finite thickness of ultrasound image plane can cause error for
3D coordinate reconstructed for wall pixels. With the measured thickness of the image
plane, we can correct this error.

Figure 13 (a) shows an ultrasound image plane (yellow surface). With 3D ultra-
sound catheter, the normal of ultrasound image planeNimg is known. t is the trans-
ducer’s center which is also known with 3D ultrasound catheter. Supposeo is a de-
tected point at the first edge from transducer’s center, then there are two possible object
surface point which can generate the edge ato in ultrasound image:a andb. If the
thickness of the image plane ato is T , a andb are±T/2 away fromo along the image
normal directionNimg.

Suppose we know the normal of the object surfaceNobj nearo, we can draw a
plane with the object surface normal throughb as the red plane in Figure 13 (b). As
we can see this plane intersect with line segmentot which meanso is not the first edge
pixel in the ultrasound image from the transducer. Then it contradicts with the fact that
o is detected as the first edge from the transducer. Sob can not be on the object surface.
Similarly we can create a plane througha with object surface normal as the green plane
shown in Figure 13 (c). It doesn’t intersect with line segmentot. Soa should be the
true point on the object surface. By applying this logic to every 3D object surface point,
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Figure 12: Measured thickness of ultrasound image plane. (a) 3D visualization of the
thickness of an ultrasound image. (b) The thickness function we measured. X-axis
is depth (distance from transducer) and Y-axis is thickness (beam width). Depth with
zero thickness means no sample has been captured at that depth.

we correct errors caused by ultrasound image thickness.
To write the correction procedure in a mathematical manner, we first define the

coordinate of the detected edge pointo = (xo, yo, zo), and transducer’s centert =
(xt, yt, zt). The normal of the image plane isNimg = (ximg, yimg, zimg) which is a
unit vector. The normal of the object nearo is Nobj = (xobj , yobj , zobj) which is also
a unit vector. The image plane thickness at the depth ofo is T .

Then two possible real object surface points are

a = o + T
2 Nimg

b = o− T
2 Nimg

(8)

21



The two plane througha andb with normal ofNobj then are

(p− a) ·Nobj = 0
(p− b) ·Nobj = 0 (9)

The line segmentot’s function is:

p = o + r(t− o); 0 ≤ r ≤ 1 (10)

Herer is a parameter of the line. Combining equation (10), (9) and (8), we can find
the parameterr for the intersection of the two planes with the line segment:

ra = T
2 Nimg ·Nobj/((t− o) ·Nobj)

rb = −T
2 Nimg ·Nobj/((t− o) ·Nobj)

(11)

ra is the intersecting point’s parameter for plane that through pointa. rb is for the
plane through pointb. If ra is within the range of[0, 1], it means plane through point a
intersects with line segmentot. It contradicts with the fact thato is detected as the first
edge point. Thena is not the true object surface point, andb must be the true point.
And vise verse.

With equation (11) we can determine which of the two possible points are true
surface points and then correct the reconstructed 3D coordinate of detected surface
pixel o. Now we only need to know the object surface normal near pointo: Nobj .
Noted that without knowing the registration, we can not know exactly which part of
the object the true surface point should be, then we can not know theNobj . But it can
be roughly estimated by first registering the un-corrected 3D points to the 3D surface
model of the object (usually from pre-operative CT or MRI). After registration, we take
the normal of the closest point on the surface model too as the estimated object surface
normalNobj . Because we only use this normal to determine which one ofa andb is
the true object surface point (r is in [0, 1] or not), a rough estimation will work.

3.4 Registration with Image Thickness Correction

If we capture surface registration point one by one with physical touch, each point is
treated independently. We can assume the position of each point’s coordinate has the
same normal error distribution ofN(0, σ) and then we can use standard ICP algorithm
to find space registration which minimizes the error or maximizes the probability of
registered surface points given the error distribution model. All previous result we
shown are using this registration method.

When we use ultrasound virtually touch to collect surface registration points, how-
ever the error distribution changes. Pixels extract from different regions of the ultra-
sound image tend to have different error distribution. Points from same ultrasound im-
age share some similarity in error distribution. Thus the registration algorithm should
be modified accordingly.
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Figure 13: 3D position correction
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3.4.1 3D Position Error Model of “Virtual Touch” Points

In previous section, we analyzed the error distribution We want to know the 3D position
error distribution of a wall pointp whose image coordinate isX = (x, y, 0, 1)T . After
thickness correction, it isX = (x, y, z, 1)T . This correction is based on thickness
measured with error. The image center’s rotation and translation matrix given by the
position sensor reading isR andT . We know there are errors in these position sensor
readings and we want to find how these errors affect the final reconstructed 3D position
of “Virtual Touch” points. We useC to represent the 3D ultrasound calibration matrix
then the 3D coordinate of pointp can be computed as:

P = R · C ·X + T (12)

Rotation and translation matrix are∆R ·R andT + ∆T to represent readings with
error. Similarly the error also exists for the wall pixel’s position after correction as we
stated in the previous section:X + ∆X. With errors, Equation 12 becomes:

P̂ = ∆R ·R · C · (X + ∆X) + T + ∆T

P̂ = ∆R ·R · C ·X + ∆R ·R · C ·∆X + T + ∆T (13)

Then the error of the reconstructed 3D position of pointp is:

∆P = (∆R− I) ·R · C ·X + ∆R ·R · C ·∆X + ∆T (14)

Error from Detected Wall Pixels
First we need to define the error distribution of a corrected wall pixel’s coordinate.

As we have stated in the previous section, it is based on the thickness of the image
plane at the wall pixel location. This thickness is measured by the method we given in
section??. We know the measured thickness has an error distribution of:

∆X ∼ N(0, ΣX); (15)

whereΣX is the variance of the measured error.
Rotation Error from Position Sensor
We define the rotation error alongx, y andz axes are∆θx,∆θy,∆θz, the∆R can

be written as:

∆R =




r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1




r11 = cos(∆θz)cos(∆θy)

r12 = −sin(∆θz)cos(∆θx) + cos(∆θz)sin(∆θy)sin(∆θx)

r13 = sin(∆θz)sin(∆θx) + cos(∆θz)sin(∆θy)cos(∆θx)

r21 = sin(∆θz)cos(∆θy)

24



r22 = cos(∆θz)cos(∆θx) + sin(∆θz)sin(∆θy)sin(∆θx)

r23 = −cos(∆θz)sin(∆θx) + sin(∆θz)sin(∆θy)cos(∆θx)

r31 = −sin(∆θy)

r32 = cos(∆θy)sin(∆θx)

r33 = cos(∆θy) ∗ cos(∆θx) (16)

Given the linear approximation:

sin(θ) ≈ θ

cos(θ) ≈ 1

whenθ is small, we can rewrite equation (16) as:

r11 = 1

r12 = −∆θz + ∆θy∆θx

r13 = ∆θz∆θx + ∆θy

r21 = ∆θz

r22 = 1 + ∆θz∆θy∆θx

r23 = −∆θx + ∆θz∆θy

r31 = −∆θy

r32 = ∆θx

r33 = 1 (17)

Since∆θx,∆θy and∆θz are small (around 1 degree), we can further approximate
∆R by keeping only the linear part of it:

∆R ≈




1 −∆θz ∆θy 0
∆θz 1 −∆θx 0
−∆θy ∆θx 1

0 0 0 1


 (18)

We defineR · C · X = (Px, Py, Pz, 1)T . Then the first term in equation (14)
becomes:

(∆R− I) · (Px, Py, Pz, 1)T =



−∆θzPy + ∆θyPz

∆θzPx −∆θxPz

−∆θyPx + ∆θxPy

1


 (19)

Similarly we defineR · C · ∆X = (∆Px, ∆Py,∆Pz, 1)T , the second term in
equation (14) becomes:
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∆R · (∆Px,∆Py, ∆Pz, 1)T =



−∆θz∆Py + ∆θy∆Pz + ∆Px

∆θz∆Px −∆θx∆Pz + ∆Py

−∆θy∆Px + ∆θx∆Py + ∆Pz

1




Given∆θx, ∆θy, ∆θz, ∆Px,∆Py,∆Pz are small, we keep only the linear part of
the above formula:




∆Px

∆Py

∆Pz

1


 (20)

Finally we represent∆T as(∆Tx, ∆Ty,∆Tz, 1)T , and replace the terms in equa-
tion (14) with equation (19) and equation (20), then we have:

∆P =




−∆θzPy + ∆θyPz

∆θzPx −∆θxPz

−∆θyPx + ∆θxPy

1


 +




∆Px

∆Py

∆Pz

1


 +




∆Tx

∆Ty

∆Tz

1


 (21)

Because∆θx, ∆θy, ∆θz are independent random variables following a normal dis-
tribution of N(0, σθ). The first term of equation (21) follows a normal distribution of
N(0, Σθ) and

Σθ =




σθ(Py + Pz) 0 0
0 σθ(Px + Pz) 0
0 0 σθ(Px + Py)


 (22)

Wall pixel’s position error∆X follows a normal distribution ofN(0, ΣX). Then
the second term of equation (21) follows a normal distribution whose mean value is
still 0, and standard deviation is:

Σ′X = RT · C−1 · ΣX · C ·R (23)

Translation Error from Position Sensor
The translation error from position sensor∆T also has a normal distribution of

N(0, ΣT ). Because thex, y andz component of∆T are independent with each other
and the error distributed in these 3 axes are the same. Then we have:

ΣT =




σT 0 0
0 σT 0
0 0 σT


 (24)

Combining equation (22), (23), and (24) the error of the reconstructed 3D point
∆P follows a normal distributionN(0,ΣP ) where:

ΣP = Σθ + Σ′X + ΣT (25)
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3.4.2 Registration Algorithm with “Virtual Touch” Points

Because the error distribution model of surface registration point has been changed, the
registration algorithm need to be changed accordingly.

Registration algorithm is trying to maximize the probability ofF (P ) andC where
P is the surface registration point set,F () is the current registration function, and
C is the CT heart model. If we assume the error distribution function is a normal
distribution, to maximize the probability equals to minimize the distance:

arg min
F

m∑

i=1

(F (pi)− Cpi)
T Σ−1

pi
(F (pi)− Cpi) (26)

wherem is the number of points inP , pi is thei’th point in point setP , Cpi
is the

corresponding point ofpi on heart modelC. Σpi
is the covariance matrix for pointpi

as defined in Equation (25). In Equation (26), the distance is weighted byΣ−1
pi

, so those
points that have largerΣpi

(larger errors) will be weighted down accordingly. Points
that are captured more accurately will have larger weight in the sum of distance. And
since theΣpi is not diagonal, the correlation of different axes have been considered as
well.

The original ICP algorithm can be thought as a simplified version of our registration
algorithm which has a single diagonalΣp for all the points.

The final registration for “virtual touch” points will be:

1. Reconstruct 3D position of wall pixels.

2. Using ICP to find an initial registration for estimate of intersecting surface nor-
mal for each image plane.

3. Correct 3D position of wall pixels using estimated object surface normal.

4. Register the corrected 3D “virtual touch” points to surface model using equation
(26).

3.5 Experiments and Results

3.5.1 Phantom Model

We use a simple shape phantom model as shown in Figure 14 (a). Because its shape
only consists of several flat surfaces and is not rotational symmetric, it will not intro-
duce any registration difficulties caused by the shape itself. This will make it easier to
evaluate the improvement of our algorithms. The 3D surface model is shown in Figure
14 (b).

3.5.2 Registration Error Measurement

Most common way to measure registration error is to use the average distance from
registered points to their closest surface points. ICP algorithm actually tries to min-
imize such measurement. The problem is that it is usually smaller than the distance
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(a) (b)

Figure 14: Phantom model in registration test: (a) the model (b) its 3D model

from the registered points to their true correspondence on object surface. In this case,
such error measurement could be misleading.

Here we use a separated set of points called evaluation point set whose correspond-
ing points on object surface are known, as shown in Figure 14 (b) the blue stars. During
the test, we will first use 3D ultrasound catheter to scan the model to capture surface
points for registration. Also we use a catheter whose tip is tracked by a 3D position sen-
sor to touch those blue points as shown in Figure 14 (b) and record their coordinates as
our evaluation points. Then we do the registration with only the surface points scanned
by ultrasound catheter. After registration, we apply the transformation matrix found by
registration to evaluation points and measure how far they are from their corresponding
points on the surface model.

This is exactly what doctors want to know for medical navigation systems that after
registration when they maneuver an instrument to a location as shown by the navigation
system, how far it is from the real location they want to go. All the registration error
shows in our result will use such error measurement.

3.5.3 Accuracy Improvement And Intersecting Angles

As we have already shown, the error caused by ultrasound image plane thickness is
related to the intersecting angle of the image plane and the object surface. If the image
plane is perpendicular to the object surface (90 degree), there will be no error (caused
by image thickness). Smaller the intersecting angle is, larger the error will be. To un-
derstand how the intersecting angle will affect registration error and how our thickness
correction algorithm can help, we will do a series of tests.

First we scan the phantom model with ultrasound image plane with various in-
tersecting angles (0-90). Then we sample all those images to form several subset of
ultrasound images each with a different average intersecting angles.

For example one subset may have many images whose average intersecting angle is
80 degree and another set has an average intersecting angle of 40 degree. We expect that
registration error with un-corrected points from first set will have less error than those
from the second set. After thickness correction, they should all have improvements and
both sets should have similar errors. The relation among expected registration errors
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(a)

(b)

(c)

Figure 15: Corrected (red x) and un-corrected (black +) surface registration points and
result of evaluation points
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should be:

P 40
un−corrected > P 80

un−corrected > P 40
corrected = P 80

corrected (27)

whereP x
un−corrected means registration error with un-corrected points from a subset

whose average intersecting angle isx andP x
corrected means registration error with cor-

rected points.

3.5.4 Result and Analysis

Figure 15 (a) and (b) shows the overall and zoomed in view of thickness corrected
(red x) and un-corrected (black +) surface points. We can see that the corrected points
have a tighter fit than the un-corrected ones. After registration, we can see the result of
evaluation points in Figure 15 (c), the result from corrected points (red x) are closer to
ground truth (blue *) than un-corrected points (black +).

Quantitative results are shown in Figure 16. X-axis is average intersecting angle.
Y-axis is registration error. Blue line with green x’s is for the un-corrected points. Red
line with blue circles is for the points corrected using our algorithm. Through the spec-
trum, our corrected points consistently achieves better registration accuracy than points
without thickness correction. This proves that our algorithm can improve registration
accuracy. Averagely, our algorithm can improve accuracy over un-corrected points by
20.45%.

If we look at the range from 40 to 70 degree, it fits the Equation 27 well. First
as we just stated, all corrected points achieve better accuracy than un-corrected points.
Second, all corrected points achieve similar accuracy. It means after using our algo-
rithm to correct points, the registration accuracy is independent of intersecting angle
between ultrasound image plane and object surface. While if we look at un-corrected
points, the dependence is obvious. Smaller the intersecting angle is, larger the registra-
tion error will be. This is important for clinicians because in reality, catheter flexibility
and the size of human heart chambers may prevent doctors from scanning with near
90 degree intersecting angles. Without our algorithm, any ultrasound image scanned
with a smaller intersecting angle will deteriorate registration accuracy. Thus every scan
must be done with great care. With our algorithm, registration can achieve better and
consistent registration accuracy no matter how ultrasound image intersect with object
surface. Thus clinicians can feel free to scan the heart shape in whatever way they feel
convenient. This greatly reduces the work of clinicians while provide better registration
accuracy.

4 4D Registration

The patient’s heart is beating both during the CT scan and during the operation. The
beating heart periodically changes its shape in a considerable magnitude. Such shape
change can not be dealt with 3D registration. To capture all the shape change of the
heart through a cardiac cycle, we scan a 4D heart model which is a series of 3D model
across one cardiac cycle. All surface registration points will also have a time stamp
stating when in a cardiac cycle it is captured.
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Figure 16: Registration accuracy and average intersecting angle between image planes
and model’s surface.

To register the 4D heart model with the magnetic position sensor, our system will
automatically find a transformation functionF that can align 4D surface registration
points to the 4D heart model so that all the points are on the inner heart wall of the
model. In our case, we also need to align the time axis. Next we will describe our
method step by step in a time order.

4.1 4D Heart Model

CT scan is proceeded one day before the operation. We use GE’s CT scanner which can
generate a 3D heart scan at every 10% of a cardiac cycle, and totally 10 3D CT scans
for one cardiac cycle. From the CT data, left atrium is segmented out manually. Then
we extract the surface model from the segmented CT data using Marching Cube(MC)
algorithm. The density threshold of MC algorithm is set to represent the surface be-
tween blood and heart muscle. The extracted surface should represent the inner heart
wall. We remove the small floating parts by discarding all triangles except those in the
largest connecting group of the model. Then we smooth the model based on geometry
cues with an implicit integration method [8].

Each 3D surface model extracted from CT data corresponds to a timet ∈ [0, 1)
(supposet = 0 is at the beginning of a cardiac cycle andt = 1 is at the end of a
cardiac cycle) in a cardiac cycle when the CT was scanned. In the rest of the paper, we
useC = {C0, C1, ..., Cn−1} to represent the 4D heart model,n is the number of 3D
models for one cardiac cycle. In our example we capture a 3D CT scan at every 10%
of a cardiac cycle, we can extractn = 10 surface modelsC = {C0, C1, ..., C9} where
each modelCi represents the heart shape at timet = i/10, i = 0, 1, ...9. This process
is shown in Figure 17.

4.2 4D Surface Registration Points

At the beginning of the operation, the clinician needs to capture some points spread
on the inner heart wall with magnetic position sensor (Figure 18(b)). During this step,
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(a)CT scan (b)Segmented CT (c)Model t = 0.0 (d)Model t = 0.5

Figure 17: CT scan and 4D Heart Model of a patient. It contains 10 3D models for one
cardiac cycle.

(a) Ultrasound Image (b) Captured Point Set

Figure 18: Constraint Point Set. (a) Ultrasound image with the ablation catheter tip
visible in it. Clinicians can verify if the ablation catheter tip is touching the heart wall.
(b) A set of captured points (blue dots) att = 0.0. They are not aligned with the heart
model yet.

usually another catheter with intracardiac echocardiography sensor, which can gener-
ate 2D ultrasound images as shown in Figure 18(a) in real time, is used to verify the
touching of ablation catheter tip on the inner heart wall. As we have stated in section
2, we can use the new combined catheter to do this job. The magnetic tracking system
can be setup to capture points at10 evenly distributed time spots within a cardiac cycle
as the CT scan, so each captured point will have a time coordinate oft = 0, 0.1, ..., 0.9.
We group those points with same time coordinates together (though they may be cap-
tured in different cardiac cycles). Then all the recorded points can be organized into10
groups:P = {P0, P1, ..., P9}. P can be thought as a 4D point set.

4.3 Registration Algorithm

4.3.1 Initial Registration

Space initial registration can be done in a coarse-to-fine scheme. First a rough align-
ment can be found based on the orientation of the patient on the bed. This rough
alignment can be further refined by some points captured on some designated regions
of the heart. These regions should be easy to locate solely from ultrasound images,
such as the entrance region of pulmonary veins. Then we find an alignment so that
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(a) Before time alignment (b) After time alignment

Figure 19: Time Alignment. Upper row represents models, lower row represents point
sets. x axis represents time. (a) Initial time alignment, we assume it’s simple one-
on-one correspondence. (b) The best correspondence scheme will be found after time
alignment.

these points are near the same regions in the heart model as where we know they are
captured.

Time registrationequals to a correspondence schemeS which tells for any point
setPi in P which Cj in C is its correspondence according to time. We know that we
captured heart modelC = {C0, C1, ..., C9} and pointsP = {P0, P1, ..., P9} both at
t = 0, 0.1, ..., 0.9. Ideally the time registration should bePi corresponds toCi for any
i. In reality, both the heart model and surface registration points are synchronized to
ECG signal to determine the time coordinate. Under different conditions, sometimes
the patient’s heart beat rate is not stable, then this one-on-one correspondence ofCi

with Pi may not be true. So time alignment is necessary (Figure 19). For initial time
registration, we just use the correspondence scheme ofPi to Ci for anyi ∈ [0, 9].

Our 4D registration algorithm assumes errors have a gaussian distribution. Then
it need to find a space transformation functionF and a time correspondence scheme
S that maximize the expectation of log likelihood ofp(F (P )|S, C). The probability
p(F (P )|S, C) can be defined as

p(F (P )|S, C) =
∏

i

p(F (Pi)|Csi) =
∏

i

(exp(−||F (Pi), Csi||)) (28)

HereCsi is the corresponding model forPi defined by schemeS. Eachp(F (Pi)|Csi)
can be defined as an exponential function of the average distance from every point in
F (Pi) to modelCsi, which is written as||F (Pi), Csi||.

4.3.2 Space Registration

We can adjust then (number of CT scanned within a cardiac cycle) andm (num-
ber of time spots the magnetic tracking system can record point coordinate) so that
n = m × d whered is an integer. In ideal situation, we assume thet coordinates of
magnetic tracked points and surface models from CT are perfectly synchronized. Then
any magnetic tracked point in point setPi should have the samet coordinate as heart
modelCi×d. Noted that if thet in CT and magnetic tracking system is not perfectly
synchronized, this definite one-on-one correspondence may not exist. If we assumePi

is independent of all otherCj except the corresponding oneCi×d,

p(F (P )|C) = p(F (P1)|C1) · p(F (P2)|C2×d)...p(F (Pm)|Cn) (29)
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wheren = m× d.
We define the probability ofp(F (Pi)|Cj) as the exponential function of the average

square distance from each point inF (Pi) to the surface modelCj :

p(F (Pi)|Cj) = exp(
−∑

pk∈Pi
||pk − Cj ||2
|Pi| ) (30)

we define the distance from a point to a model||pk − Cj || is the distance from point
pk ∈ Pi to its nearest point in the surface modelCj . |Pi| is the number of points inPi.

To maximize the probability in equation (29), we can use a modified ICP[1] algo-
rithm. ICP is widely used to iteratively minimize the distance between a set of points
P and modelC. In standard ICP algorithm, each iteration contains two steps:

• Compute the nearest point in ModelC for each point in point setP .

• Find a transformationF that can minimize the distance fromP to their nearest
points. Then replaceP with F (P ) and repeat.

In our case, during the first step, for each point setPi, we find the nearest point set
Pnear i only from modelCi×d. In order to maximize the wholep(F (P )|C) other
than any single term ofp(F (Pi)|Cj), in the second step, we combine all the point
sets together as well as their nearest point sets:Pcombine = ∪m

i=1Pi, Pnear combine =
∪m

i=1Pnear i, and find a transformationF like in standard ICP for this combined point
setPcombine andPcombine near. In this way, we can findF that maximizes the proba-
bility p(F (P )|C). The modified ICP can be summarized as:

• Compute the nearest point setPnear i for eachPi in their corresponding model
Ci×d.

• Combine point sets:Pcombine = ∪m
i=1Pi, Pnear combine = ∪m

i=1Pnear i, and
find a transformationF that minimize the distance fromF (Pcombine) toPnear combine.
Then replace the originalPi with F (Pi) and repeat.

There are many ways to accelerate ICP and make it more robust. All those algo-
rithms can be applied in our case. We use K-D tree acceleration for nearest neighbor
search, and add random perturbation to found results and re-run ICP to ensure the con-
vergence to global minimum.

4.3.3 Space-Time Registration

During the heart operation, thet coordinates from magnetic tracking system may not
be perfectly aligned with those from CT data because they are captured during different
days. This means point setPi may not truly correspond to modelCi×d. Then we need
to find out thetime correspondenceas well as thespace alignment.

We assume for any point setPi, the possible corresponding model areCi×d and
its close neighboring models such asCi×d±k, for example if we take 4 neighbors then
k = [1, 2]. This assumption is valid since we know the timing difference of magnetic
tracked points and CT models are not very large. We write all the candidate models for
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a point setPi as:Cij wherej = [1, 5] if we use 4 neighbors andCi×d itself. We define
S a scheme that selects oneCij as the corresponding model for each point setPi.

The probability we need to maximize here becomes

p(F (P )|S,C)

which is very difficult to compute directly since we do not knowS. Here we propose
an EM algorithm that can maximize this probability by maximizing the expected log
likelihood log(p(F (P )|S, C)), assumingS is a hidden random variable.

To use EM algorithm, we first need to figure out theQ function, or the expected
log likelihood. If we thinkS is a random variable, then the expected log likelihood
becomes:

Q(F (P ), S, C) =
∑

S

log(p(F (P )|S, C))f(S|C, F (k−1)(P )). (31)

log(p(F (P )|S,C)) is the log likelihood.f(S|C, F (k−1)(P )) is the probability of
a correspondence schemeS given the dataC and alignmentF (k−1)(P ) found in last
iteration. It can be computed by:

f(S|C,F (k−1)(P )) =
p(F (k−1)(P )|C,S)p(S|C)∑
S p(F (k−1)(P )|C,S)p(S|C)

(32)

wherep(F (k−1)(P )|C, S) is the probability of transformed points in last iteration
given modelC, and the corresponding model for each point setPi is determined byS.
p(S|C) is the prior probability of every correspondence schemeS.

Next we will show how to maximize thisQ function.
In the E step We compute the probabilityf(S|C,F (k−1)(P )) for anyS with the

following formula:

f(S|C, F (k−1)(P )) =
1
a
p(F (k−1)(P )|C, S)p(S|C) (33)

Wherea is the normalize term. Probabilityp(F (k−1)(P )|C, S) is computed with
formula

∏m
i=1 p(F (k−1)(Pi)|Cij) where the correspondingCij for Pi is defined byS.

F (k−1) is known, given correspondence fromS, p(F (k−1)(Pi)|Cij) can be computed
with equation (30). Now eachf(S|C,F (k−1)(P )) is known and we represent it by
f(S) in next step.

In the M step As we have thef(S) which is the probability of anyS givenC and
F (k−1), theQ function in equation (31) becomes

Q =
∑

S

log(p(F (P )|C,S))f(S)

then to maximize theQ function is equivalent to maximize the function below:

arg max
F

∑

S

logp(F (P )|C, S)f(S)
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= arg max
F

∑

S

log(
m∑

i=1

p(F (Pi)|Cij)S)f(S)

= arg max
F

∑

S

(
m∑

i=1

log(p(F (Pi)|Cij)S))f(S)

= arg min
F

∑

S

(
m∑

i=1

||F (Pi)− Cij ||S)f(S)

Where the corresponding modelCij is defined byS. Here we can see, the problem
becomes to find aF to minimize a weighted distance function. For each schemeS,
the distance function||F (Pi) − Cij ||S (in which theCij is the corresponding model
of Pi defined by the particularS) is weighted byf(S) computed inE step. This
minimization can be done by our modified ICP algorithm described above. The only
difference is here we add a weight when we combine the points together.

Then we replace theF (k−1) with the newF and repeat.
The EM algorithm stops whenF doesn’t change more than a certain threshold or

the alignment error is below a certain threshold.
Initial Values of F is computed under the correspondence scheme in ideal situation

wherePi corresponds toCi×d.

4.4 Experiment Result

4.4.1 3D Phantom Model Test

To validate our system, we tested it with a real patient’s data. The CT scan’s resolu-
tion is 512 × 512 × 116 × 10 (X×Y×Z×time). Voxel size is X: 0.48mm per voxel,
Y: 0.48mm per voxel, Z: 0.625mm (or 1.25mm) per voxel, time: 10% of a cardiac
cycle(Figure 17). Then we used a fast prototyping 3D printer to build a 3D heart phan-
tom model based on the patient’s CT scan model. Then we a used CARTO system by
Biosense to track the catheter position (1mm average error) and inserted the catheter
into the phantom model. An outside wave generater was used to simulate ECG/EKG
signals and CARTO can capture position at the beginning of each cardia cycle. So here
the points we have isP = P0(Figure 18(b)). We collected 76 constraint points to do
the registration: for every location, we recorded two points. Then the clinician pro-
ceeded the ablation procedurewithoutour system’s help and recorded all the ablation
sites. Our system then mapped where those ablation sites are based on registration. The
correctness of registration is verified by the clinician who knows where those ablation
sites should be mapped to. The registration error is: 1.6347mm. Results are shown in
Figure 20.

4.4.2 4D Synthetic Data Test

We tested our 4D registration with our synthetic data based on real patient’s CT scan.
First we loaded in the 4D CT scan model. Then we simulated a catheter with position
sensor at tip moving into the heart. To fully exploit the information of a 4D heart
model, we recorded surface points in such a way: we moved the simulated catheter to
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(a) (b) (c)

Figure 20: Patient data test (a) Initial alignment (intensionally deteriorated to test ro-
bustness). (b) Outside view of the registration result. Yellow points are ablation sites.
They are correctly mapped to the pulmonary veins entrance regions. (c) Inside view,
these points are right on the surface.
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Figure 21: Constraint point number vs registration error. For each item, we run the
registration test for several times and the average error is shown here. We can see with
4D points, less constraint points can achieve similar registration accuracy as 3D points.

touch the heart wall, stay on the wall for a cardiac cycle, and record all 10 positions
p = {p0, ..., p9} at time t = 0, 0.1, ..., 0.9, generallypi 6= pj if i 6= j because the
heart is beating. For each location data, we added random noise of 1mm to simulate
the position sensor error in reality. We can callp a 4D point. After we record one
4D point, we actually add one 3D point to each point setPi, i = 1 to 10. No extra
efforts are necessary to capture one 4D point than a 3D point. And we used a random
transformationFr to transform the points away from the heart model.Fr has0 − 30
degree of rotation and0 − 20mm of translation. Then we used our algorithm to find
registration transformationF which maps points back to the surface model. We define
the error as the average of||v − F (Fr(v))|| for every vertexv of the heart model. The
result is shown in Figure 21. We also added 3D registration result for comparison.
As we can see, 4D point registration achieves same registration accuracy with fewer
constraint points than 3D point registration in our test. The spacial distribution of
constraint point set is random but same for 3D and 4D points. Registration error also
depends onFr.
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Figure 22: We recorded the 3D positions of ten locations on the left atrium during 3
breath phases: JET ventilation, End of expiration and Inspiration. And then measure
the distances of these locations among the different breath phases. We found that the
distance of JET to End-expiration is universally smaller than JET to Inspiration which
means the heart shape during JET is closer to the heart shape during End-Inspiration
than to the shape during Inspiration.

5 Local Non-rigid Registration

5.1 Medical Significance of Non-rigid Heart Shape Change

The left atrium is a highly motile and non-rigid object. Non-rigid shape changes result
from multiple sources:

1. Cardiac cycle, or heart beat.

2. Breath cycle, the pressure change of the lung.

3. Others, like blood pressure, medicine and medical instruments.

Some shape change sources can be modeled or carefully removed. For the cardiac
cycle, this shape change can be modeled and solved by our 4D registration using full-
motion 4D heart model.

For breath, it changes the pressure of the lung and eventually change the shape
of left atrium because they are adjacent to each other. We can use a high frequency
ventilation machine which can maintain a constant pressure in lung to remove such
shape changes during the operation. But the CT scan is usually done at the end of
expiration or full inspiration. Our experiment data indicate that the heart shape at end-
expiration is closer to the shape at JET ventilation (Figure 22). In this case, we scan
CT at end-expiration. The heart shape at JET is still different from the heart shape at
end-expiration. And such shape difference is non-homogeneous which means it can
not be registered by any global rigid registration algorithm.

To demonstrate such local non-rigid heart shape difference we did the following
experiment. We record the coordinate of 10 locations in left atrium during 3 breathing
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Figure 23: Local non-rigid shape difference among breathing phases at 10 locations in
left atrium. (a) EXP-JET difference. (b) INSP-JET difference.

phase: full inspiration (INSP), full expiration (EXP) and high frequency jet ventila-
tion mode (JET). Then we use rigid global registration algorithm to register the points
captured during the 3 breathing phases to eliminate any global shape differences. The
rest is local non-rigid shape difference. We did this to 7 patients and result is shown
in Figure (23). (a) is the EXP-JET difference. We can see on all 10 locations, there
are around 4mm non-rigid shape differences. For INSP-JET in (b), the difference is
around 5mm. If we do not consider such non-rigid property in our registration, we may
have very unreliable results.

Other sources such as different blood pressure and medicines and instruments used
during operation may also contributes slight non-rigid local shape change of the left
atrium. Such heart shape changes can not be easily modeled.

In this case, we employ a free-form non-rigid registration which will be used after
the 4D registration to further improve the registration accuracy.

5.2 Non-rigid Registration in Medical Image

In medical image society, rigid global registration algorithms have been well estab-
lished and successfully used by many applications. But for operations on brain, liver,
breast and heart, non-rigid registration is necessary. Many researchers have proposed
many different non-rigid registration algorithms, which can be organized into several
main catalogs [7]:

1. Affine and polynomial transformation

2. Optical flow based transformation

3. Physical based transformation

4. Smooth basis function

Affine and polynomial transformation is a natural extension of the traditional rigid
object registration which only considers translation and rotation. Affine transformation
adds shearing and scaling to the registration to adopt some non-rigid properties [27][5].
Basically this is still a global registration method because the non-rigid transformation
will apply to the whole object.
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Optical flow was designed to estimate motion between two consecutive image
frames [14]. [13][12] use optical flow to register medical volumetric images. The
similarity measurement of optical flow methods is based on image pixel intensities and
then continuity constraint is applied to smooth the motion field. It can be a local trans-
formation but with our application, points and surfaces, it is not intuitive to use optical
flow. Also we already have correspondences between points and surfaces, we do not
need image intensities to estimate such correspondence.

Physical based methods assume the images are elastic objects and apply forces to
the object to non-rigidly deform the images for registration [10][6]. In [4] the method is
based on viscous-fluid transformations. All these physical models are computationally
expensive and a lot of parameters need to be fine-tuned to generate a good result. It is
not suitable for our in-operation registration requirement.

[15] [20] [21] [19] use radial basis function as an interpolant to extend the non-rigid
transformation function defined in some landmark points to the whole 3D space. Be-
sides global thin-plate functions, compactly supported radial basis functions are also
used to reduce the computation cost and maintain local properties. This compactly
supported radial basis function registration method fits the requirement of our case:
we know the non-rigid transformation function at some landmark points (surface reg-
istration points) and each landmark point should only affect the transformation locally.
Next we will show the details of how we use radial basis function to do local non-rigid
registration.

5.3 Non-rigid Registration Using Radial Basis Functions

Local non-rigid registration is to be applied after the 4D registration to further improve
the registration accuracy. Suppose the intra-operative surface registration point set is
P = (p1, p2, ..., pn), and the heart model from CT isC. After global rigid registra-
tion, P andC still have differenceD = (d1, d2, ..., dn). HereP is after the global
registration. Eachdi is defined as:

di = pi − Cpi

WhereCpi is the nearest point ofpi in modelC. The free-form non-rigid registration
should find a transformation functionFlocal(C) so that for anyi ∈ {1, 2, ..., n},

pi = Flocal(Cpi) (34)

which means after this non-rigid local transformationFlocal, all the surface reg-
istration points should be on surface the transformed modelFlocal(C). Usually the
Flocal(p) at any 3D positionp = (x, y, z) has the form of:

Flocal(p) = p +
n∑

i=1

ai · Φ(||p− Cpi ||) (35)

|| ∗ || is the distance between two 3D points.ai is a 3D vector, also known as
the coefficient for each pointCpi . Φ() is a radial basis function. For any pointp,
Flocal(p) is to add an offset top. The offset is a weighted sum of all coefficientsai
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(A) (B)

Figure 24: An example of non-rigid local registration. (A) shows the model (green
plane) can not be better aligned to the surface points (red balls) with rigid global reg-
istration. (B) shows after our non-rigid local registration, the surface can be corrected
according to the surface points.

weighted by the radial basis function of the distance fromp to Cpi . ||p− Cpi || can be
easily computed.ai is unknown now. With the constraint in equation (34) we can have
enough equations to solve eachai:

pi = Cpi +
n∑

k=1

ak · Φ(||Cpi − Cpk
||) (36)

We choose one of Wu’s [28] compactly supported positive definite radial basis
function which can ensure there is solution for equation (36):

Φ(X) = φ(
||X||

s
) (37)

φ(r) = (1− r)4+(3r3 + 12r2 + 16r + 4), r ≥ 0 (38)

where(1 − r)+ = max(1 − r, 0), s is a pre-defined scale to determine eachCpi

can affect points how far away. This compactly supported radial basis ensure that each
surface registration points only affect the non-rigid transformation locally. Also it can
reduce the computational cost. Moreover (38) has been shown to haveC2 continuity.
Therefore, theFlocal is C2 continuous in the space and it satisfied the constraint shown
in (34).

One example of this non-rigid local registration is shown in Figure 24. Suppose we
have a 3D model of a plane, and we have several surface points that shows the object is
actually is curved. Rigid global registration can not find a good alignment of the points
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(a) (b)

Figure 25: Visualization: (a) usually what doctors will see with only fluoroscopy. (b)
our system can provide much better visualization.

and the model (Figure 24 (A)). Using our radial basis local non-rigid registration, we
can modify the model according to the surface points locally and non-rigidly. The
result is a much better fit for the points (Figure 24 (B)).

6 Visualization for Navigation

After registration, we need to display the heart model and positions of different medical
instruments such as ablation catheter in the same monitor. This visualization actually
helps doctors to navigate inside the patient’s heart.

With registration and position sensors tracking the catheter tips, we can provide
many ways to visualize the surgery region: we can render the global view as if doctors
can see through skins and muscles and clearly see where their catheters are inside the
heart. This is like a fluoroscopy image just without radiation (Figure 25). Or we can
put a virtual camera at the tip of the catheter so that doctors feel they are sitting at the
catheter tip and they can ”fly” the catheter to where they want to go. This is like a
fiber-optic camera fit to the catheter just without the interference from the darkness and
blood inside heart (Figure 26).

Also doctors can easily make labels on the heart model surface or map data to it.
We can easily load some pre-operative planning data and guide doctors to finish the
surgery. With surface model and position sensor, we can visualize the surgery as any
other system can and enhance it for a better view (Figure 27).

Clipping planes and other graphics techniques can generate views that is impossible
to get in real world and unveil more details of the patient’s heart to doctors to make
better decision (Figure 28).

7 Conclusion

In this thesis, an image guided navigation system for minimally invasive surgery is pre-
sented. The core of this system is a 3D ultrasound catheter which can scan a patient’s
heart with ultrasound image plane during the operation. Because it does not require
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(a)

(b)

Figure 26: Visualization: (a) we can put a virtual camera at the tip of a catheter and
doctors then can ”fly” the catheter to where they want to. It can give much better
visualization and much more freedom than to actually put a fiber-optic camera at the
catheter because there is no illumination problem and there is no blood to block our
sight. (b) super-wide angle of view put both left and right pulmonary veins into the
same picture. It helps doctors to have better global view of the left atrium without
pulling the virtual camera outside the atrium.
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(a)

(b)

Figure 27: Visualization: Data mapping. We can map different data onto the surface
model such as pre-operative planning data and ablation locations. With data mapping,
doctors can get more information than direct visualization of the heart.
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Figure 28: Visualization: with clipping plane we can unveil more details of the patient’s
heart than doctors can see in real world. Pictures show we virtually cut the left atrium
in half and display the detailed inside view of it.
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physical touch on the heart wall, we call it “virtual touch”. This scanning procedure is
hundreds of times faster than current method of manually collecting shape information.
Then it can automatically reconstruct the 3D or 4D shape of the heart it scanned. Our
system have the ability to correct 3D reconstruction error caused by finite ultrasound
image plane thickness. With this intra-operative shape measurement, we can register
it with high-resolution pre-operative heart images such as CT or MRI images. After
registration, high-resolution pre-operative heart models can be displayed with magnet-
ically tracked catheters in one monitor so that doctors can intuitively navigate catheters
to desired locations.

Because patient’s hearts are beating during operation, we extended our system to
4D (time+space). To deal with cardiac cycles, we use 4D heart model and synchronize
all our “virtual touch” model points to ECG/EKG signals. To reduce the effect of
breathing cycle, we use a high frequency ventilation machine to keep the pressure of
lung in a constant state. The registration algorithm then involves space registration as
well as time registration. An EM algorithm is presented to do both time and space
registration iteratively.

Since heart is not a rigid object, the shape of the heart may have slight changes from
day to day under different conditions. This non-homogeneous shape change cannot be
captured by any rigid object registration algorithms. We included a local non-rigid
registration after global rigid registration to deal with this problem.

With all the features we’ve provided, our navigation system can achieve faster
speed, better accuracy and more intuitive navigation experience than current available
system.

Parts of the thesis have been published in [29], [30] and [31].
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Figure 29: The surface model of the pig’s left atrium

APPENDIX

A Animal Test

We have conducted one animal test with the prototype of our system. The result is
mixed. We discovered some practical problems when apply the whole system into real
clinical situations.

A.1 Test Setup

The test subject is a pig. We did CT scan of the pig’s heart 1 week before the test.
We segmented out left ventricle and left atrium of the pig’s heart. During the test, we
only scanned and registered the left atrium. The 3D surface model of the left atrium is
shown in Figure 29.

A.2 Test Result

Both during the CT scan and operation, the pig is under deep sedation and breath with a
high frequency ventilation machine. During the test, our virtual touch catheter inserted
into the left atrium and the doctor tried to scan the chamber with ultrasound image
plane. During the scan, a total of 7786 surface points have been captured and then
registered to the surface model of the left atrium. The registration result is shown in
Figure 30. The average distance from virtual touch surface points to surface model is
3.95mm.
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Figure 30: Registration of the virtual touch points with surface model. Average error
is: 3.95mm.

A.3 Result Analysis

From the animal test, we discovered quite a few ways to improve our system. Also we
found something that we need to avoid to minimize registration errors.

A.3.1 Surface Point Density

With each ultrasound image, our system can capture tens or hundreds of surface points.
During the test, some parts of the left atrium have been repeatedly scanned and other
areas, because of difficulties to access, has hardly been scanned. Thus the distribution
of our virtual touch points is not uniform. From Figure 31 we can see some parts
have dense points while some parts have scarce points. This bias on point density will
eventually affect final registration: the final registration will try to accommodate the
densely scanned areas while ignore less densely scanned areas.

To deal with such density bias, we added a density control component to our vir-
tual touch system. Before the scan, doctors can setup a maximum density value which
means the maximum number of surface points our system can accept in a certain vol-
ume. For example, 1 points for every cubic millimeter. Then the density control unit
will dynamically monitor each newly scanned point to see if adding this point will ex-
ceed the density limit. If not, the point will be added to the intra-operative model just
as before. If it does exceed the density limit, the density control unit will randomly
drop one point in the voxel to maintain the acceptable density. Also the which point to
drop can be done with some sophisticated rules based on the quality or confidence of
the points. Such density control can reduce some bias but not all. Because some part of
left atrium may have zero point scanned. And even by limit the density in easy-to-scan
areas, it is still biased.
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Figure 31: Density of surface registration points

A.3.2 Valve

As seen in our segmented left atrium model, the whole chamber is closed. But in reality,
there is a valve connecting this left atrium with left ventricle. And this valve opens at
0% of the cardiac cycle to which all our CT scan and virtual touch can synchronized.

As shown in Figure 32 (a), left: the segmented model we had is a closed model
while in reality, it should be like the right one. During the virtual touch scan, because
the valve is open at 0% of the cardiac cycle, with our wall pixel detection algorithm,
some surface from left ventricle then is included.

To solve this problem, we can first modify the CT scan model to make the valve
open. And for virtual touch scan, we can add some dynamic outlier control unit to
eliminate points that are too far away from the main point cloud. Usually such points
are from left ventricle. But this method won’t eliminate every point from other chamber
when valve is open because with an open valve the two chamber actually become one.
Possible solution could be: 1) include left ventricle surface model in registration 2)
Synchronize all the scan to some other time of a cardiac cycle when the valve is closed.

A.3.3 Complex Geometry

For pig’s left atrium, the appendage is relatively larger than human’s. As shown in
Figure 33, the shape of appendage has very complex geometry. Such a shape introduces
great difficulties for both CT scan and virtual touch scan to reliably reconstruct the 3D
surface. Unfortunately, during our test, majority of virtual touch scan points are from
the appendage. Such points greatly reduced the accuracy of our registration.
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(a) Valve should be open

(b) Valve leak

Figure 32: Valve on left atrium introduce errors both for CT scan and virtual touch scan

A.3.4 Limited Accessibility

Because of the size of the pig’s left atrium and catheter, and the limited flexibility of the
catheter, our virtual touch can only scan certain areas of the left atrium while left large
areas inaccessible. As shown in Figure 34, the visible area for our virtual touch catheter
are focused at valve (which opens during 0% of the cardiac cycle and reveal the left
ventricle chamber) and appendage (which has complex geometry). More stable parts
are not visible to ultrasound virtual touch due to the insert location and orientation.
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Figure 33: Complex geometry of the appendage affects registration accuracy

Figure 34: Not the whole left atrium can be scanned

Solution for this problem could be: 1) carefully planned insertion location and
orientation. 2) test with some other chamber such as left ventricle which has much
stable and simple geometry than left atrium.

A.4 Conclusion

The first animal test we did confirmed that our system can quickly build an intra-
operative heart model and register it with pre-operative CT scan model to generate
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a combined shape measurement for navigation. With the result and analysis, we also
discovered many practical problems. Most of them can be fixed with our proposed
solution and some of them require further research. After all, the navigation problem
is a hard problem and it needs more effort to put in before it can be fully deployed in
surgical room.
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