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1. INTRODUCTION
OLTP (online transaction processing) database sys-

tems are essential building blocks for many popular web
services (e.g. Amazon) [13]. Traditionally, OLTP sys-
tems are no different than other database management
systems (DBMS), as they all use some popular and gen-
eral relational DBMS, such as DB2 [9] and Shore [1].
In the past few years, however, a number of multicore
main-memory OLTP databases, including Hekaton [6],
VoltDB [4], HStore [10] and Silo [15], have emerged
and have been gaining more and more attention due to
their extraordinary performance. For example, Silo can
achieve 700,000 transactions per second running TPC-
C benchmark on a 32-core machine [15], which is a 2-
order-of-magnitude improvement over disk-based rela-
tional DBMS. Silo-R, a recent extension of Silo, adds
durability to the database and can also achieve 550,000
transactions per second under the same settings [16].

Pushes from 2 aspects contribute to this technical
transition. First, OLTP market characteristics make
main memory a desirable choice. OLTP market usu-
ally deals with business data processing [7], which re-
quires high peak throughput. For example, China’s
e-commerce giant Alibaba receives 278 million orders
($9.3 billion worth) during a 24-hour online shopping
festival on November 11th, 2014 [14], with its 1st billion
worth of orders placed in less than 20 minutes [7]. Such
high throughput might be challenging for current disk-
based databases to match. On the other hand, main
memory has become sufficiently cheap (and faster) to
host OLTP datasets. A modern commercial server typ-
ically has several terabytes of RAM [15], which is more
than enough for most OLTP workloads. Moreover, the
size of OLTP systems usually do not scale exponentially
as RAM capacity does, because customer and real world
entities do not obey Moore’s law [8].

Seven years ago, Harizopoulos et. al. presented a
performance breakdown graph running Shore in mem-
ory [8]. In this work, we conducted a detailed perfor-
mance study on Silo [15], a recent state-of-the-art main-
memory database. Compared to Shore, the elimination
of buffer manager (centralized page manager) signifi-

cantly improves table operation (record access) perfor-
mance, and we found that index operation is now the
new bottleneck in Silo. In terms of cache performance,
misses mostly happen at last-level cache for table op-
erations, indicating poor locality among table records.
The RCU (read-copy-write) region (to support concur-
rent access) of the underlying B-tree indices also causes
a significant number of last-level write misses.

In addition, we examined the overhead of Silo’s OCC
protocol. We found that under normal workloads, OCC
still imposes a significant overhead during commit time,
especially when transaction is short and write inten-
sive. As the workloads become skewer or there are
more threads, OCC overhead starts to dominate mainly
because the data read during transaction execution is
more likely to be modified by other threads, causing
transaction abort. We also report our findings as we
vary the transaction types. For example, we found that
the abort rate peaks at the point where there are 50%
read transactions and 50% write transactions.

The remainder of this report is organized as follows.
Section 2 gives an overview of our target system Silo.
Section 3 introduces the measurement methodology as
well as the benchmark we are using. We report our
measurement result in section 4. Finally, we conclude
our report in Section 5.

2. SILO OVERVIEW
Silo is a state-of-the-art main-memory relational database

that is optimized for multi-core machines. Silo can
achieve up to 700,000 transactions per second running
standard TPC-C benchmark, and up to 15 million trans-
actions per second running YCSB workload A bench-
mark using 32 cores [15].

Silo’s underlying backbone is Masstree [12], a high-
performance concurrent key-value store that also sup-
port range queries. In fact, tables in Silo are logical.
They are implemented as collections of Masstrees (as in-
dex trees), with all the tuples (database records) hang-
ing on the leaves of Masstrees [15]. The basic structure
of Masstree is a concatenation of layers of B+-trees that
conceptually form a trie [12]. In other words, the point-
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timer_start (gettimeofday) 
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timer_end (gettimeofday) 

(a) Example of self-
instrumented timer

timer_foo_start(gettimeofday) 

timer_foo_stop(gettimeofday) 
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bar() {…} 

timer_bar_end(gettimeofday) 
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P’ 

(b) Overhead of surrounding
timer

Figure 1: Timer overhead analysis

ers in a leaf node may either point to a data record (if
the key is already unique at that point), or to a lower-
level B+-tree for further search on the next keyslice.
The shared prefixes of keys, chopped into fixed-length
(8 bytes by default) keyslices, are indexed by layers of
the B+-trees, while the unique suffix for each key is
stored separately in the leaf node.

Masstree achieves high-performance for 2 major rea-
sons. First, its trie-like structure is optimized for key
comparison [15]. Each layer of B+-trees is only re-
sponsible for indexing an 8-byte keyslice. That means
keyslice comparison at each layer only involves integer
comparison instead of string comparison (which is much
slower). Second, the structure and fanout of the B+-
tree nodes are carefully designed such that every node
occupies almost exactly 4 cachelines (experiments show
that 4 cahcelines is the optimal size in this case) [12].
Such cache-friendly design significantly not only reduces
data cache misses, but also utilizes the prefetching hard-
ware well.

Silo implements a variant of optimistic concurrency
control (OCC) in its transaction layer on top of Masstree
to ensure required serializability. As the transaction is
running, it maintains a read-set and a write-set that
identifies all the read records and modified records re-
spectively, along with its transaction ID (functioning as
a timestamp) [15]. The commit protocol is divided into
3 phases. In phase 1, the transaction tries to acquire
write locks for every record in the write-set. Phase 2
does the read validation. If some record in the transac-
tion’s read-set no longer has the latest transaction ID
(i.e. it has been modified by some other thread), the
whole transaction will abort. And finally, in phase 3,
the transaction commits its updates to the underlying
Masstree and releases the write locks [15]. OCC is con-
sidered beneficial for scalability because it only has a
very short period (at commit time) to write to shared
memory, which reduces contention [11].

3. MEASUREMENT MECHANISM
To the best of our effort, we want to use existing

profiling tools as much as we can to measure the perfor-
mance of Silo, since our focus is to understand Silo’s be-

havior but not to invent new measurement tools. How-
ever, through our measurement, we found that existing
profiling tools often have limitations regarding either
multithreading support or programming language sup-
port. To get a more accurate understanding of Silo, we
will use our own timers to instrument the original code
in some specific scenarios.

3.1 Valgrind
For most of our measurements, we use Valgrind [3]

as the profiling tool. Valgrind is a popular profiler that
runs every target program in a virtual machine based on
just-in-time compilation. The program that runs on top
of Valgrind will be first translated into an intermediate
state, in which it can be analyzed using modular tools.
Multiple tools have been created. We use Callgrind, a
popular tool which is able to capture instruction fetch
and cache performance. We also use the –toggle-collect
option in Callgrind to easily collect interesting events
regarding to one kind of transaction at a time.

Because of the virtual machine layer, the program
running on Valgrind has a slightly different working en-
vironment than running on the host. Therefore, the
program’s behavior can also be different. These dif-
ferences are usually acceptable to us except that Val-
grind serializes the program so only one thread runs at
a time [2]. This will cause a huge difference to Silo’s
behavior under contention between threads.

We have tried some other profiler tools to see if they
have better multithread support. Gprof seems to be a
good candidate. However, as far as we know, we can-
not use gprof to collect information from only one class
function in C++. We finally decided to use our own
timers to study Silo’s performance under contention.

3.2 Self-instrumented timers
Our own timers are based on the gettimeofday system

call, which is consistent with the original measurement
method in Silo’s paper. Figure 1(a) explains how we
instrument the original Silo code to measure the time
spent on function foo(). Basically, we get the system
time before and after calling the function we are inter-
ested in. The difference is than roughly the function
execution time.

However, since a lot of the function we want to mea-
sure is quite fast, maybe even faster than a timer itself,
we must remove the timer overhead in the measure-
ment. There are two kinds of timer overhead we are
considering.

First, timer overhead within the function under mea-
surement. For example, in Figure 1(b), bar() is a sub-
function inside of foo(). We add timers around both
foo() and bar(), since both of them are of our inter-
est. Therefore, the measurement of execution time of
foo() has an overhead of about twice the gettimeofday
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execution time.
Second, timer overhead around the function under

measurement. Again, in Figure 1(b), when measuring
the function execution time of foo(), the timer around
it also has an overhead. Now let’s calculate it. get-
timeofday gets the system time at one specific point.
Although we do not know which point it is, we know it
is somewhere within the execution of the gettimeofday
system call. Assume it’s at point P, as in figure 1(b).
We assume the relevant position of the time point is
consistent each time we call it, so that the time point
we get for timer foo stop will be somewhere near P’. It
is then obvious that the surrounding timer overhead of
measuring any function is the same as one gettimeofday
execution time.

For both kinds of overhead mentioned above, we ex-
clude them in our measurement. We wrote a small pro-
gram to run gettimeofday for 1 billion times and cal-
culated that running it once has an overhead of about
20ns in our system.

3.3 Workload
We use two standard benchmarks to study Silo’s per-

formance. The first one is TPC-C, a popular OLTP
benchmark which tries to simulate real-world online trans-
action workloads. Among the five transaction types,
New Order and Payment account for around ninty per-
cent of transactions in a standard workload [8]. There-
fore, we measure Silo’s performance in such two trans-
action types.

Another benchmark we use is YCSB. It is a popular
key value store benchmark, providing tunable parame-
ters to specify the data access pattern. Therefore, this is
the ideal benchmark for us to study Silo’s performance
under contention.

However, Silo’s codebase does not provide an inter-
face implementation to use the full YCSB features. It
only implements a random distribution. In order to
better understand Silo’s behavior under contention, we
implemented the Zipfian distribution to fit Silo’s inter-
face. Zipfian distribution has been regarded as a good
way to characterize contention for database systems. [5]

4. PERFORMANCE STUDY

4.1 Experiment setup
All of our experiments run in an Dell Optiplex 9010

machine. It has four Intel Core i7 3.40 GHz cores with
hyperthreading support. The memory size is 32 GB.
The machine is running Ubuntu 12.04.

For section 4.2 and 4.3, we use Valgrind to profile the
original Silo code. The codebase is nearly unchanged.
However, since Valgrind cannot capture function infor-
mation if a function is inline, we have specifically made
several functions not inline to ease collection of relevant
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Figure 4: Performance Under Contension:
Varying Number of Threads

data. For these two sections, we use the YCSB bench-
mark with random distribution. For secion 4.4, we use
our own timers and the Zipfian distribution.

In all TPC-C workloads, we have set the number of
warehouse to be 8. This gives us a database of 70MB in
total size. For performance breakdown of YCSB work-
loads, we used eight hundred thousand keys, which gave
us a 40MB database. When using Zipfian distribution,
we set the database to be much smaller, with only two
thousand keys. This is because we are loading the pre-
computed Zipfian distribution into memory since gen-
erating random key according to Zipfian distribution at
run time is too much an overhead for a transaction.
We set the pre-loaded Zipfian workloads small enough
so that it won’t introduce too much additional cache
misses. However, since the whole database is much
smaller, the cache performance for this set of experi-
ments may not reflect its real-world characteristics.

4.2 Instruction count
Figure 2(a) shows the performance breakdown of Silo

in terms of instruction count for four different transac-
tion types, new order and payment in TPC-C, as well
as read and write in YCSB. We classify all Silo oper-
ations into four categories, index operation, table op-
eration, operations related to concurrency control, and
the benchmark overhead. Since this result is collected
through Valgrind, it can be regarded as single thread
performance breakdown of Silo, without any inter-thread
contension.

It is clear in the figure that index operations account
for a significant amount of instruction counts for all
the transaction types. Particularly, in the two TPC-
C transactions, index operations can take more than
half of the total instruction counts. Concurrency con-
trol overhead is not significant for TPC-C transactions,
but rather large for YCSB transactions. This is because
YCSB transactions are usually very short. In all four
transactions, table operations are usually very fast, ac-
counting for less than 20 percent of the instructions.

We compare our performance breakdown of Silo to
that of Shore. Since Shore only reported results for
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Figure 2: Performance Breakdown of Silo
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Figure 3: Performance Breakdown Compared to Shore using Instruction Count
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Figure 5: Performance Under Contension: Varying Workloads (Skewness = 2)
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Figure 6: Performance Under Contension: Varying Skewness (Read/write ratio = 1 : 1)
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TPC-C workload, we compare our results using the
same two transactions. The comparison is shown in
figure 3. In shore, index operation, table operation,
and concurrency control take roughly the same amount
of instruction count, but in Silo, it is clear that in-
dex operation is now a bottleneck. This is consistent
with the past several years of development in major
database systems. The removal of buffer manager has
significantly reduced the time overhead of managing ta-
ble data. OCC is also a better fit for main memory
databases for concurrency control. However, the im-
provement of index operations is not much.

4.3 Cycle estimation and cache performance
Using the same set of workloads, we show the perfor-

mance breakdown of Silo in term of cycle estimation.
The cycle estimation used in Valgrind takes into ac-
count both instruction count and cache performance.
Specifically, we set the parameters so that a L1 cache
miss accounts for 25 cycles and a last-level cache miss
(access of memory) accounts for 300 cycles. The result
is shown in Figure 2(b), from which we can see that
index operation is still a bottleneck.

Compared to Figure 2(a), we can see that table op-
eration accounts for a larger portion in terms of cycles
than in terms of instruction counts, indicating there are
more cache misses in table operation. According to the
Valgrind cache simulation, table operation has a 4% to
7% L1 data miss rate, and a 3% to 5% last-level data
miss rate for TPC-C workloads. These numbers are
siginificantly higher than other operations. We also no-
ticed that for table operations, misses mostly happen at
last-level cache, indicating that table records generally
have poor locality. This is because tables in Silo are log-
ical. They are implemented as collections of Masstrees
(as index trees), with all the tuples (database records)
hanging on the leaves of Masstrees [15].

Concurrency control operations also has a relatively
high last-level cache miss rate. This is because Masstree
uses an RCU (read-copy-write) region for versioned val-
ues to support concurrent access. Memory allocation of
the RCU regions usually causes significant amount of
last-level misses. On the other hand, index operations
have a relatively lower last-level miss rate, usually no
more than 1.5%.

4.4 OCC overhead under skewed workload
In this section, we use our own timers to study Silo’s

performance under contention. In addition to index,
table, and concurrency control operations, we also look
at how much time is wasted because of a transaction
being aborted. Figure 4 shows how many time is spent
on each transaction using different number of threads.
In this experiment, the skewness of YCSB workload is
set to 2, and half of the transactions are read, half are

writes. As we can see from the figure, as there are
more threads, there are more time wasted on aborted
operations because it is more likely that the data read
has been modified during transaction execution. The
concurrency control overhead also becomes dominant,
since there will be a larger collection of write sets to be
checked for each transaction.

There is a surprisingly large performance differnce
between 4 threads and 8 threads. We believe this is
becasue the machine we run experiment on does not
have eight real cores, so that eight threads cannot be
run in parallel. The hyperthreading support can only
siginificantly increase system’s performance for multi-
threaded programs when a single thread cannot fully
leverage all the functional units in one core. This is
probably not the case for the database workloads under
our test.

We also test Silo’s performance under contension by
varying read-write ratio (Figure 5) and skewness (Fig-
ure 6). As expected, when there are more write trans-
actions, or the workload is more skewed, there is more
time spent on concurrency control operations. Another
interesting observation is that abort rate is the high-
est when the number of read/write transactions in the
workload is roughly the same. This is because aborts
happen only when a transaction’s read set has been
modified by other thread. If read ratio is high, OCC
works best; If write ratio is high, abort rate is relatively
low because there are not enough reads to be invali-
date. However, it is obvious in the figure that as the
workload becomes write intensive, OCC commit over-
head increases significantly. Based on this observation,
we conclude that write lock acquiring (and contention),
other than transaction abort, is the main killer of OCC
under write intensive workloads.

5. CONCLUSION AND FUTURE WORK
In this work, we conducted a detailed performance

study of a state-of-art main-memory database system,
Silo. We used both existing profiling tools as well as
our own instrumented timers to analyze Silo’s perfor-
mance under normal and skewed workloads. We found
that for normal OLTP workloads, index operations are
a clear bottleneck. As the number of threads, the skew-
ness of workloads increases, the concurrency overhead
becomes dominant, especially for shorter transactions.
The number of transaction aborts peaks at the point
where the number of read transactions is equavalent to
that of write transactions.

We believe siginificant effort is needed in index op-
timization to further improve database performance.
For example, instead of storing the whole key for each
unique suffix, we can store only the hash of the key and
check at read. This will reduce the total size of index
tree and speed up index operations. To deal with the

5



high overhead of concurrency control under contension,
it may be benifitial to dedicate one thread to schedule
different transactions to different cores. By grouping
transactions that access the same data and assigning
them to one core, there can be a siginifcant reduction
in concurrency control overhead and aborted transac-
tions.
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