
15-780: Problem Set #1

February 14, 2014

1. Convex sets, functions, and optimization problems [20pts]. This question will
ask you to prove or disprove whether certain sets, functions or optimization problems
are convex. For the first part, you will need to rigorously prove why each set, function
or problem is convex or not, but for the second part you can give a more intuitive or
graphical explanation.

Rigorous proofs Prove whether the follow sets, functions, or optimization problems
are convex or not. If you want to claim they are convex, you need to: 1) for a set,
show that convex combinations of elements within that set are also within that set,
or show that the set is a sub-level set of some convex function (where you can prove
it is convex by the same methods as follows); 2) for a function you need to directly
verify that convex combinations lie above the function, prove that the second derivative
(Hessian, for multivariate function) is positive (positive semidefinite) for all inputs, or
show that it is a combination of valid rules for producing new convex functions from
the slides; 3) for optimization problems, you need to prove that the the objective and
constraint set are convex.

If you claim that a set, function, or problem is not convex, you need to: 1) for a convex
set, show that there exist two points x1 and x2 that are within the set but that there
is a 0 ≤ θ ≤ 1 such that θx1 + (1 − θ)x2 is not in the set. For functions, you need to
show the equivalent thing for function values, and for optimization problems you need
to show that the objective or one of the constraints is non-convex.

(a) The set of all points x ∈ Rn closer to a point x0 ∈ Rn than another point x1 ∈ Rn

{x|‖x− x0‖2 ≤ ‖x− x1‖2}.

(b) The hyperbolic set
{x ∈ R2|x ≥ 0, x1x2 ≥ 1}.

Hint : You may want to use the arithmetic-geometric mean inequality, which says
that for a, b > 0 and 0 ≤ θ ≤ 1 aθb1−θ ≤ θa+ (1− θ)b.

(c) An ellipsoid in Rn, defined by

{x ∈ Rn|xTPx+ qTx ≤ r}

for positive definite P ∈ Rn×n, q ∈ Rn, r ∈ R.

1

(d) The function f : R2 → R

f(x) =
x21
x2

for x2 ≥ 0. Hint : For this and the next problem you can use the fact that a

2x2 symmetric matrix

[
a b
b c

]
is positive definitive if and only if a + c ≥ 0 and

ac ≥ b2.

(e) The function f : R2 → R
f(x) =

x1
x2

for x2 ≥ 0.

(f) The optimization problem

minimize
x

‖Ax− b‖22 + ‖x‖2

subject to ‖x‖2 ≥ 1

with problem data A ∈ Rm×n, b ∈ Rm.

Intuitive arguments Describe in a few sentences why you think the following prob-
lems are convex or not. You do not need to provide a rigorous proof, but you need to
capture the main intuition that would render these problems convex or not.

(a) Plan a sequence of “waypoints” for a robot in 2D space that 1) minimize the
squared distance between the waypoints and 2) avoid any obstacles (dark regions).

Start

Goal

(b) The same question as above for the following room configuration

Start

Goal

2

(c) Given a set of 2D points, find the line the minimizes the sum of the distances
from all points to that line, measured perpendicularly from the line. What about
if we used squared distances instead of the distances (this question will come up
in an upcoming programming problem).

a2

a1

perpendicular distance

2. Adversarial search [10pt] These questions refer to the game tree below. For all
questions, assume that the player making the move at the root is a “maximizing”
player, i.e. he or she wants to get to a state with a high utility value.

d
0

a
0

b
0

c
0
 c
1

b
1

c
2
 c
3

d
1
 d
2
 d
3
 d
4
 d
5
 d
6
 d
7

6
 2
 3
 3
 3
 9
 4
 7
 2
 2
 0
 4
 6
 8
 4
 6

e
0
 e
1
 e
2
 e
3
 e
4
 e
5
 e
6
 e
7
 e
8
 e
9
 e
10
 e
11
 e
12
 e
13
 e
14
 e
15

(a) What is the solution? That is, which move should be made next and what is the
expected value of that move?

(b) Using α − β pruning (and standard left-to-right evaluation of nodes), how many
leaves get evaluated? Indicate all parts of the tree that are cut off. Indicate the
winning path or paths. Strike out all static evaluation values that do not need to
be computed.

(c) How does the answer to the previous problem change if right-to-left evaluation of
nodes is used?

3. Local search [15pt] For this problem, you are to describe how you would structure
a hill-climbing approach to solving the Traveling Salesperson Problem (TSP). Specifi-
cally, you should provide descriptions for the following:

• The data structure used to represent a solution

3

• The method for generating the initial solution(s)

• The method for generating neighbors.

• The method for evaluating solutions.

• The method for selecting the best neighbor.

• The method for terminating the search.

In addition, you are to describe a situation where your hill-climbing approach would
not provide an optimal answer and what techniques you could apply to improve the
result.

4. Optimization programming [20pt]

In this question you will implement several optimization algorithms for different prob-
lems in Python. You are encouraged to use cvxpy whenever possible, as this will make
your life a lot easier, but it is not required. We are providing the file optimization.py
as the template for you to fill out for this assignment. Instructors for setting up cvxpy
on different architectures (will be available shortly if it is not already) is at http:

//www.cs.cmu.edu/~zkolter/course/15-780-s14/cvxpy.html. All your functions
should return values as cvxopt.matrix variables (the Weber point example does this).
You will need to write four functions (we also provide the weber point function from
class as a way of illustrating the desired format for these functions)

(a) Least squares Given a matrix A ∈ Rm×n and vector b ∈ Rm, find the vector x
that solve the optimization problem

minimize
x

m∑
i=1

(aTi xi − bi)2 (1)

where aTi denotes the ith row of A. Write this code in the least squares(A,b)

function.

(b) Least absolute errors Similar to the above, given a matrix A ∈ Rm×n and
vector b ∈ Rm, find the vector x that solves the optimization problem

minimize
x

m∑
i=1

|aTi xi − bi| (2)

where aTi denotes the ith row of A. Write this code in the least abs(A,b)

function.

(c) Linear programming Write a function that will solve general problems of the
form

minimize
x

cTx

subject to Ax = b

Fx ≤ g

(3)

4

http://www.cs.cmu.edu/~zkolter/course/15-780-s14/cvxpy.html
http://www.cs.cmu.edu/~zkolter/course/15-780-s14/cvxpy.html

where x ∈ Rn is the optimization variable, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, F ∈ Rp×n,
and g ∈ Rp are the problem data. Write this code in the linear program(c,A,b,F,g)

function.

(d) Minimum distance hyperplane This problem is a bit trickier and may or may
not be convex (we ask this in question 1 above). A hyperplane is defined by the
variables x ∈ Rn and y ∈ R and the equation xTa + y = 0, and the squared
distance from the hyperplane to a point ai ∈ Rn is given by

dist2(ai, (x, y)) =
(xTai + y)2

‖x‖22
.

Now, given a set of points a1, . . . , am, find the hyperplane parameters x and y
that minimize the sum of squared distances

minimize
x,y

m∑
i=1

(xTai + y)2

‖x‖22
.

If this is not a convex problem, you can develop alternative methods (perhaps
using the least-squares approach above), in order to solve this problem. Write
this code in the min distance hyperplane(A) function, where the rows of A will
correspond to the different points; this function should return the tuple (x, y).

5. Search programming [35pt] For this problem, you will write a program that can
discover the series of moves that transform a moving tile puzzle from an initial state
into a desired goal state. For example, for a 4x4 puzzle, given the following initial
state:

1 2 3 4
5 6 7 8
9 10 12

13 14 11 15

and the following goal:

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

your program should return something like [‘down’, ‘right’], i.e., to solve this puzzle
the blank has to be first moved down and then moved to the right. A number of
different search algorithms may be used to solve this problem with varying degrees
of success. In this assignment, you are required to try to solve it using the following
search algorithms: breadth-first, iterative-deepening, A*. For A*, you will implement
both the misplaced-tiles and Manhattan-distance heuristics. The possible moves are
‘left’, ‘right’, ‘up’, and ‘down’, and the successor function should generate children by
applying those operators in that order.

5

For this assignment, you will need to implement four functions within the search.py:
breadth first, iterative deepening, astar manhattan and astar misplaced. These
functions each take as input an initial configuration for the 4x4 puzzle as a 16 element
list (with the zero represented the empty tile), e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 12, 13,
14, 11, 15], and will output a tuple where the first elements contains a list of commands
to reach the goal, and the second element contains the total number of nodes visted
(i.e., the number of times you check if a node is a goal state). You should try your
program on a number of puzzles with different initial states. Because the goal state
cannot be achieved from all possible states generated by randomly placing the tiles on
the board, you should write a function that shuffles a puzzle from the goal state to an
initial state by repeatedly moving the blank to a position randomly chosen from the
possible moves. The depth of the solution for your shuffled puzzle will be no greater
than the number of times the blank is moved.

Here are some general hints on this problem (we may follow up with additional ones
depending on any issues that arise):

• Although some search algorithms were presented using recursion in the class slides,
Python doesn’t handle recursion particularly well, and so it is better to maintain
the list of nodes explicitly as a Python list; you can emulate a stack or a queue
by appending items either to the beginning or the end of the list.

• For A*, you typically want some form of “priority queue” to be able to find
elements with minimum cost; for real implementations, you would want to use
a data structure like a heap to implement this queue effectively, but here you
can just maintain two lists (one with nodes and one with costs), then find the
minimum cost element using the min and index calls in Python (must less efficient,
but simple).

• Your life will be a lot easier if you create a class to represent nodes in the search
tree. This should emulate the structure from the initial slides lecture. This way,
your node list can consist of Node variables. If you implement the eq operator
for this class to simply check if two nodes represent the same state (that is, they
don’t need to have the same parents, path costs, etc, to be considered equal),
then you can quickly check to see if a node already exists in your list.

• Because states can repeat, you may also want to maintain a separate list of all
explored states, and only add nodes to the list if they have not already been
explored.

6

