
15-780 – Reinforcement Learning

J. Zico Kolter

March 26, 2014

1

Outline

Review of MDPs, challenges for RL

Model-based methods

Model-free methods

Exploration and exploitation

2

Outline

Review of MDPs, challenges for RL

Model-based methods

Model-free methods

Exploration and exploitation

3

Agent interaction with environment

Agent

Environment

Action aReward rState s

4

Markov decision processes

• Recall a (discounted) Markov decision process is defined by:

M = (S,A, T,R)

– S: set of states

– A: set of actions

– T : S ×A× S → [0, 1]: transition distribution,T (s, a, s′) is
probability of transitions to state s′ after taking action a from
state s

– R : S → R: reward function, where R(s) is reward for state s

• The RL twist: we don’t know T or R, or they are too big to
enumerate (only have the ability to act in MDP, observe states
and rewards)

5

• Policy π : S → A is a mapping from states to actions

• Determine value of policy (policy evaluation)

V π(s) = E

[∞∑

t=0

γtR(st)|s0 = s

]

= R(s) + γ
∑

s′∈S
T (s, π(s), s′)V π(s′)

accomplished via iteration

∀s ∈ S, V̂ π(s)← R(s) + γ
∑

s′∈S
T (s, π(s), s′)V̂ π(s′)

(or just solving linear systems)

6

• Determine value of optimal policy

V ?(s) = R(s) + γ
∑

s′∈S
T (s, π(s), s′)V ?(s′)

accomplished via value iteration

∀s ∈ S, V̂ π(s)← R(s) + max
a

γ
∑

s′∈S
T (s, a, s′)V̂ ?(s′)

(optimal policy is then π?(s) = maxa γ
∑

s′∈S T (s, a, s
′)V̂ ?(s′))

• How can we compute these quantities when T and R are
unknown?

7

Outline

Review of MDPs, challenges for RL

Model-based methods

Model-free methods

Exploration and exploitation

8

Model-based RL

• A simple approach: just learn the MDP from data

• Given samples (si, ri, ai, s
′
i), i = 1, . . . ,m (could be from a

single chain of experience)

T̂ (s, a, s′) =

∑m
i=1 1{si = s, ai = a, s′i = s′}∑m

i=1 1{si = s, ai = a}

R̂(s) =

∑m
i=1 1{si = s}ri∑m
i=1 1{si = s}

• Now solve the MDP (S,A, T̂ , R̂)

9

• Will converge to correct MDP (and hence correct value function
/ policy) given enough samples of each state

• How can we ensure we get the “right” samples? (a challenging
problem for all methods we present here, stay tuned)

• Advantages (informally): makes “efficient” use of data, each

• Disadvantages: requires we build the the actual MDP models,
not much help if state space is too large

10

32

100

316

1000

3162

10000

31623

co
st

/tr
ia

l (
lo

g
sc

al
e)

0 10 20 30 40 50 60 70 80 90 100
trial

Model-Based RL
Direct RL: run 3
Direct RL: run 2
Direct RL: run 1
Direct RL: average of 50 runs

32

100

316

1000

3162

10000

31623

co
st

/tr
ia

l (
lo

g
sc

al
e)

90 100 110 120 130 140 150 160 170 180 190
trial

Model-Based RL: pretrained
Direct RL: pretrained
Direct RL: not pretrained

(Atkeson and Santamaŕıa, 96)

11

Outline

Review of MDPs, challenges for RL

Model-based methods

Model-free methods

Exploration and exploitation

12

Model-free RL

• Temporal difference methods (TD, SARSA, Q-learning): directly
learn value function V π or V ?

• Direct policy search: directly learn optimal policy π?

13

Temporal difference (TD) methods

• TD algorithm is just a stochastic version of policy evaluation

algorithm V̂ π = TD(π, α, γ)
// Estimate value function V π

initialize V̂ π(s)← 0
repeat

Observe state s and reward r
Take action a = π(s), and observe next state s′

V̂ π(s)← (1− α)V̂ π(s) + α(r + γV̂ π(s′))

return V̂ π

• Will converge to V̂ π(s)→ V π(s) (for all s visited frequently
enough)

14

• TD lets us learn the value function of a policy π directly,
without ever constructing the MDP

• But is this really that helpful?

• Consider trying to execute greedy policy w.r.t. estimated V̂ π

π′(s) = max
a

∑

s′

T (s, a, s′)V̂ π(s′)

we need a model anyway

15

SARSA and Q-learning

• Q functions are like value functions but defined over state-action
pairs

Qπ(s, a) = R(s) +
∑

s′∈S
T (s, a, s′)Q(s′, π(s′))

Q?(s, a) = R(s) +
∑

s′∈S
T (s, a, s′)max

a′
Q?(s′, a′)

• I.e., Q function is value of starting is state s, taking action a,
and then acting according to π (or optimally, for Q?)

16

• Q function leads to new TD-like methods

• As with TD, observe state s, reward r, take action a (but not
necessarily a = π(s)), observe next state s′

• SARSA: estimate Qπ(s, a)

Q̂π(s, a)← (1− α)Q̂π(s, a) + α
(
r + γQ̂π(s′, π(s′))

)

• Q-learning: estimate Q?(s, a)

Q̂?(s, a)← (1− α)Q̂?(s, a) + α

(
r + γmax

a′
Q̂?(s′, a′)

)

• Again, these algorithms converge to true Qπ, Q? if all
state-action pairs seen frequently enough

17

• The advantage of this approach is that we can now select
actions without a model of MDP

• SARSA, greedy policy w.r.t. Qπ(s, a)

π′(s) = max
a

Q̂π(s, a)

• Q-learning, optimal policy

π?(s) = max
a

Q̂?(s, a)

• So with Q-learning, for instance, we can learn optimal policy
without model of MDP

18

Function approximation

• Something is amiss here: we justified model-free RL approaches
to avoid learning MDP, but we still need to keep track of value
for each state

• A major advantage to model-free RL methods is that we can use
function approximation to represent value function compactly

• Without going into derivations, let V̂ π(s) = fθ(s) denote
function approximator parameterized by θ, TD update is

θ ← θ + α(r + γfθ(s
′)− fθ(s))∇θfθ(s)

• Similar updates for SARSA, Q-learning

19

TD Gammon

• Developed by Gerald Tesauro at IBM Watson in 1992

• Used TD w/ neural network as function approximator (known
model, but much too large to solve as MDP)

• Achieved expert-level play, many world experts changed
strategies based upon what AI found

20

Q-learning for Atari games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . , K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a, ⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

• Recent paper by Volodymyr Mnih et al., 2013 at DeepMind

• Q-learning with a deep neural network to learn to play games
directly from pixel inputs

• DeepMind acquired by Google in Jan 2014

21

Direct policy search

• Rather that parameterizing Q function, and selecting
π(s) = maxaQ(s, a), we could directly encode policy using a
function approximator

π(s) = fθ(s)

• An optimization problem: find θ that maximize V π(s0) for some
initial state s0

• A non-convex problem (even if we can compute it exactly), so
we don’t typically expect to find optimal policy

• Can’t analytically compute gradients, so we need a way to
approximately optimize this function only from samples

22

• A basic machine learning approach:

1. Run M trials with perturbed parameters θ1, . . . , θM and observe
sum of rewards J1, . . . , J1, where Ji =

∑∞
t=1 γ

trt when
executing policy w/ parameters θi

2. Learn model Ji ≈ g(θi), ∀i = 1, . . . ,m using machine learning
method

3. Update parameters θ ← θ + α∇θg(θ)

• This and more involved variants are surprisingly effective in
many situations

23

Outline

Review of MDPs, challenges for RL

Model-based methods

Model-free methods

Exploration and exploitation

24

Exploration/exploitation problem

• All the methods discussed so far had some condition like
“assuming we visit each state enough”

• A fundamental question: if we don’t know the system dynamics,
should we take exploratory actions that will give us more
information, or exploit current knowledge to perform as best we
can?

• Example: a model based procedure that does not work

1. Use all past experience to build models T̂ and R̂ of MDP

2. Find optimal policy for (S,A, T̂ , R̂) using e.g. value iteration, act
according to this policy

25

• Issue is that bad initial estimates in the first few cases can drive
policy into sub-optimal region, and never explore further

• The procedure does work if we add an additional reward of
O(1/

√
n(s, a)) to each state-action pair, where n(s, a) denotes

the number of times we have taken action a from state s.

– But, this effectively take every action from every state in the
MDP enough times: not a very practical solution

• A large outstanding issue for research: how can we perform
guided exploration for large domains,

26

Take home points

• Reinforcement Learning lets us solve Markov decision problems,
but in cases where we do not have a prior model of the system,
or it is too large to allow computing an exact solution

• A number of possible approaches: model-based, value function
model-free, policy search model-free, each with
advantages/disadvantages

• Task of learning good model/value function/policy while
simultaneously acting in the domain is still an open problem,
except in extremely simple cases

27

	Review of MDPs, challenges for RL
	Model-based methods
	Model-free methods
	Exploration and exploitation

