15-780 — Reinforcement Learning

J. Zico Kolter

March 26, 2014

Outline

Review of MDPs, challenges for RL

Model-based methods

Model-free methods

Exploration and exploitation

Outline

Review of MDPs, challenges for RL

Agent interaction with environment

\A 4

Agent

State s | | Reward r Action a

A

Environment

Markov decision processes

e Recall a (discounted) Markov decision process is defined by:

M = (S,A,T,R)

S set of states

A: set of actions

T:5xAxS —[0,1]: transition distribution,T(s, a, s’) is
probability of transitions to state s’ after taking action a from
state s

- R:S — R: reward function, where R(s) is reward for state s

e The RL twist: we don’t know T" or R, or they are too big to
enumerate (only have the ability to act in MDP, observe states
and rewards)

e Policy m: S — A is a mapping from states to actions

e Determine value of policy (policy evaluation)

=E Z'YtR(St)’30 = 3]
=0
)+ 3 T(s,7(s),)V (s))

s'es

accomplished via iteration

Vs e S, V™(s) —i—’yZTsw
s'eS

(or just solving linear systems)

e Determine value of optimal policy

V*(s) = R(s) +v Y _ T(s,m(s),s)V*(s)

s'es

accomplished via value iteration

Vs €5, V(s) « R(s) + maxy »_ T(s,a,s)V*(s)
s'eS

(optimal policy is then 7*(s) = max, v Y, T(s,a, SYV*(s)

e How can we compute these quantities when 1" and R are
unknown?

Outline

Model-based methods

Model-based RL

e A simple approach: just learn the MDP from data

e Given samples (s;,75,a;,s;),i=1,...,m (could be from a
single chain of experience)

T(s,a,s) = D ie1 }n{si =s,ai=a,s, =5}
Yoy Hsi =s,a; =a}
R(s) = Z%l 1{s; = s}
doicg Hsi=s}

e Now solve the MDP (S, A, T, R)

Will converge to correct MDP (and hence correct value function
/ policy) given enough samples of each state

How can we ensure we get the “right” samples? (a challenging
problem for all methods we present here, stay tuned)

Advantages (informally): makes “efficient” use of data, each

Disadvantages: requires we build the the actual MDP models,
not much help if state space is too large

10

costftrial (log scale)

31623

———— Direct RL: average of 50 runs
——— DirectRL: run 1

— — — DirectRL:run2

10000 |- oo Direct RL: run 3

— — = Model-Based RL

3162 |-

1000

100

1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
trial

(Atkeson and Santamaria, 96)

11

Model-free methods

Outline

12

Model-free RL

e Temporal difference methods (TD, SARSA, Q-learning): directly
learn value function V™ or V*

e Direct policy search: directly learn optimal policy 7*

13

Temporal difference (TD) methods

e TD algorithm is just a stochastic version of policy evaluation

algorithm V™ = TD(r, o,)
// Estimate value function V™
initialize V7™ (s) < 0
repeat
Observe state s and reward r
Take action a = m(s), and observe next state s
V™(s) + (1 — a)V7(s) + a(r +yV7(s'))

A

return V7™

e Will converge to V7 (s) — V™(s) (for all s visited frequently
enough)

14

e TD lets us learn the value function of a policy 7 directly,
without ever constructing the MDP

e But is this really that helpful?
e Consider trying to execute greedy policy w.r.t. estimated v

7'(s) = max Z T(s,a,s" V(s

we need a model anyway

15

SARSA and Q-learning

e Q functions are like value functions but defined over state-action
pairs

Q" (s,a) = R(s) + Z T(s,a,s)Q(s',m(s"))
s'eS

Q*(s,a) = R(s) + Z T(s,a,s) max Q*(s',d)

s'eS

e l.e., Q function is value of starting is state s, taking action a,
and then acting according to 7 (or optimally, for Q*)

16

Q function leads to new TD-like methods

As with TD, observe state s, reward r, take action a (but not
necessarily a = m(s)), observe next state s

SARSA: estimate Q™ (s, a)

Q"(s,a) ¢ (1= a)Q"(s,a) + o (r +7Q7(s', 7(s)))

Q-learning: estimate Q*(s,a)

~

0*(s,a) (1 - a)Q*(s,0) + a (Ty max Q¥ (s a'>)

Again, these algorithms converge to true Q™, Q* if all
state-action pairs seen frequently enough

17

The advantage of this approach is that we can now select
actions without a model of MDP

SARSA, greedy policy w.r.t. Q™(s,a)

7'(s) = max Q™ (s,a)

Q-learning, optimal policy

(s) = max Q*(s,a)

So with Q-learning, for instance, we can learn optimal policy
without model of MDP

18

Function approximation

Something is amiss here: we justified model-free RL approaches
to avoid learning MDP, but we still need to keep track of value
for each state

A major advantage to model-free RL methods is that we can use
function approximation to represent value function compactly

Without going into derivations, let V™ (s) = fy(s) denote
function approximator parameterized by 6, TD update is

0 0+ a(r+fo(s') — fo(s))Vofo(s)

Similar updates for SARSA, Q-learning

19

TD Gammon

e Developed by Gerald Tesauro at IBM Watson in 1992

e Used TD w/ neural network as function approximator (known
model, but much too large to solve as MDP)

e Achieved expert-level play, many world experts changed
strategies based upon what Al found

20

Q-learning for Atari games

e Recent paper by Volodymyr Mnih et al., 2013 at DeepMind

e Q-learning with a deep neural network to learn to play games
directly from pixel inputs

e DeepMind acquired by Google in Jan 2014

21

Direct policy search

Rather that parameterizing Q function, and selecting
m(s) = max, Q(s,a), we could directly encode policy using a
function approximator

7(s) = fo(s)

An optimization problem: find € that maximize V™ (sg) for some
initial state sq

A non-convex problem (even if we can compute it exactly), so
we don't typically expect to find optimal policy

Can't analytically compute gradients, so we need a way to
approximately optimize this function only from samples

22

e A basic machine learning approach:

1.

Run M trials with perturbed parameters 64, ...,60;; and observe
sum of rewards Jy,...,J;, where J; = Zfil ~tr; when
executing policy w/ parameters 6;

. Learn model J; = ¢(0;), Vi =1,...,m using machine learning
method
Update parameters 6 < 6 + aVyg(6)

e This and more involved variants are surprisingly effective in
many situations

23

Exploration and exploitation

Outline

24

Exploration/exploitation problem

e All the methods discussed so far had some condition like
"assuming we visit each state enough”

e A fundamental question: if we don't know the system dynamics,
should we take exploratory actions that will give us more

information, or exploit current knowledge to perform as best we
can?

e Example: a model based procedure that does not work

1. Use all past experience to build models T and R of MDP

2. Find optimal policy for (&A,T, R) using e.g. value iteration, act
according to this policy

25

e Issue is that bad initial estimates in the first few cases can drive
policy into sub-optimal region, and never explore further

e The procedure does work if we add an additional reward of

O(1/+/n(s,a)) to each state-action pair, where n(s, a) denotes
the number of times we have taken action a from state s.

— But, this effectively take every action from every state in the
MDP enough times: not a very practical solution

e A large outstanding issue for research: how can we perform
guided exploration for large domains,

26

Take home points

e Reinforcement Learning lets us solve Markov decision problems,
but in cases where we do not have a prior model of the system,
or it is too large to allow computing an exact solution

e A number of possible approaches: model-based, value function
model-free, policy search model-free, each with
advantages/disadvantages

e Task of learning good model/value function/policy while
simultaneously acting in the domain is still an open problem,
except in extremely simple cases

27

	Review of MDPs, challenges for RL
	Model-based methods
	Model-free methods
	Exploration and exploitation

