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Abstract

Endoscopy is attracting increasing attention for its role in minimally inva-
sive, computer-assisted and tele-surgery. Analyzing images from endoscopes
to obtain meaningful information about anatomical structures such as their 3D
shapes, deformations and appearances, is crucial to such surgical applications.
However, 3D reconstruction of bones from endoscopic images is challenging
due to the small field of view of the endoscope, large image distortion, fea-
tureless surfaces and occlusion by blood and particles. In this thesis, a novel
methodology is developed for accurate 3D bone reconstruction from endo-
scopic images, by exploiting and enhancing computer vision techniques such
as shape from shading, tracking and statistical modeling.

We first designed a complete calibration scheme to estimate both geomet-
ric and photometric parameters including the rotation angle, light intensity
and light sources’ spatial distribution. This is crucial to our further analysis of
endoscopic images. A solution is presented to reconstruct the Lambertian sur-
face of bones using a sequence of overlapped endoscopic images, where only
partial boundaries are visible in each image. We extend the classical shape-
from-shading approach to deal with perspective projection and near point light
sources that are not co-located with the camera center. Then, by tracking the
endoscope, the complete occluding boundary of the bone is obtained by align-
ing the partial boundaries from different images. A complete and consistent
shape is obtained by simultaneously growing the surface normals and depths
in all views. Finally, in order to deal with over-smoothness and occlusions,
we employ a statistical atlas to constrain and refine the multi-view shape from
shading. A two-level framework is also developed for efficient atlas construc-
tion.
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Chapter 1

Introduction

One of the main goals of contemporary surgery is to enable minimally invasive procedures.
During surgery, an endoscope consisting of a camera and one or more light sources is
inserted through a small incision into the body to acquire images for analysis. In addition
to visualizing the interior of the anatomy, its role can be significantly enhanced by tracking
the endoscope in conjunction with surgical navigation systems or robotic surgical systems.

There are many kinds of endoscopes: rigid or flexible, forward viewing or oblique
viewing. The oblique viewing endoscope is the one most commonly used in orthopaedic
surgery. Fig. 1.1 shows an oblique endoscope illuminating and observing an artificial
spine. This endoscope has two light sources placed at its tip for illumination.

1.1 Challenges from Endoscopic Images

Because the tip of the endoscope is typically a few millimeters away from the bone surface,
we are only able to observe a small portion of the bone. As a result, it can be difficult even
for a skilled surgeon to deduce actual bone shape from a single 2D endoscopic image.
Thus, there is an immediate need for explicit computer reconstruction of bone shapes
from endoscopic images. There are many advantages to reconstructing 3D shape from
endoscopic images, such as real-time, radiation free and low cost in-vivo visualization.

In the past several years researchers have explored many 3D reconstruction approaches
[48]. For example, endoscopic images are overlaid on models from CT and MRI to local-
ize the endoscopic views in a larger anatomic context [51, 13, 21, 86], where an expensive
CT or MRI and a complex registration procedure are required. Some researchers use spe-
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(a) (b)

(c)

(d)

Figure 1.1: Illustration of an endoscope (a) and endoscopic images of an artificial spine (b,c,d).
(It is difficult to perceive the shape of the object in the images because of small field of view,
distortion, lack of texture, partial boundaries, and shading caused by near-field lighting.)

cial devices such as structured light [31, 45, 37]. This method requires the installation of a
specially designed high speed laser projector at the tip of the endoscope, which is not com-
monly used in the operation rooms. For soft tissues with good features, standard computer
vision technologies can be easily applied to track and reconstruct the 3D information.

Classical approaches, including shape-from-shading [68, 111, 29, 66, 95, 110, 39] and
shape-from-motion [19, 66, 67, 97, 7, 88, 108] cannot be directly applied to featureless
bone images. Besides, due to the small distances between the sources, the camera and the
scene, the endoscopic images are very different from the images of natural scenes under
distant lighting, such as from the sun or the sky. Moreover, during minimally invasive
surgery, many substances (such as blood, pieces of bone, tissue) may obscure the bone
surface. This can mislead any local constraints used in shape recovery. In addition, envi-
ronmental noise including fog, tools interaction, specularity, etc. need to be considered as
well.

1.2 Assumptions

This thesis takes the first step towards meeting the above challenges. We build a simplified
setup for ex-vivo experiments under the following assumptions:
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1. Artificial bones with Lambertian reflectance are used in our experiments.

2. A monocular oblique endoscope is used for capturing images.

3. A surgical navigation system is used for tracking the endoscope.

4. Neither random occlusions nor environmental noise are taken into account.

5. The focus of the endoscope is fixed during experiments.

1.3 Goals and Contributions

Our goal for the ex-vivo setup is to reconstruct a large field of view of the bone using all
the information available during surgery. We will combine the shading information of the
bone images and the motion information from the tracking system to achieve this goal.
Specifically, this thesis makes the following contributions:

1. We developed a complete calibration scheme to obtain the parameters of the pho-
tometry and geometry of the endoscope. The photometry parameters include the
camera response function, light source intensity and spatial distribution. The geo-
metric parameters include intrinsic, extrinsic and rotation parameters. The rotation
between the camera head and the scope cylinder creates an additional degree of free-
dom which makes calibrating oblique endoscopes more difficult. All the calibrated
parameters are used in our reconstruction algorithm.

2. We modeled the appearance of the bone under perspective projection and near-point
lighting, without assuming that the light sources are located at the center of the pro-
jection, to reconstruct the shape from a single featureless bone image. Our method
extends the classical shape from shading algorithm to include near lighting and per-
spective projection and recovers the scene depth Z explicitly in addition to recover-
ing the surface normals.

3. We presented a multi-image shape-from-shading (MISFS) framework to reconstruct
a big part of the bone from multiple images by tracking the endoscope. We com-
puted the global boundary constraints by aligning local contours in the world coor-
dinates. One should notice that our global shape-from-shading framework does not
really merge shape-from-shading and shape-from-motion in the classical sense of
the terms. We performed shape-from-shading for all images simultaneously and use
global boundary constraints in each iteration.
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4. We developed an semi-automatic two-level registration procedure to construct the
statistical shape prior for bone structures from population. This method segments,
generates and aligns the 3D surface model from CT scanned images simultaneously.
This statistical shape prior, also known as statistical atlas, is used to improve the
MISFS algorithm in a global way.

5. We presented a two-step algorithm by combining bottom-up reconstruction and top-
down refining. In the bottom-up step, we search for an atlas shape that most closely
matches the initial erroneous shape resulting from the MISFS algorithm. The sur-
face normal and depth of the atlas shape are then used as initialization and geomet-
ric constraints instead of the smoothness constraint in the MISFS. The bottom-up
method exploits the atlas to improve the MISFS by solving the over-smoothness and
partial occlusion problems. The top-down step is inspired by the generative model
method. We compare the original endoscopic images with the synthesized images
from the atlas shape obtained in the bottom-up step. The difference is used to refine
the atlas shape. The top-down refinement increases shape details and accuracy.

1.4 Outline of Dissertation

In Ch. 2, we will review literature, concerning current solutions for 3D estimation in
computer vision for both natural scenes and internal organs. We then introduce a complete
calibration procedure for calibrating endoscopes’ geometry and photometry in Ch. 3. In
Ch. 4 we present a solution to the reconstruction of bone from multiple images. In Ch.
5 we will introduce the statistical atlas and in Ch. 6, we present a two-step algorithm to
further improve reconstruction. Summarization and discussion are in Ch. 7.

4



Chapter 2

State of the Art

The field of surgery has been revolutionized over the past twenty years as a result of the
introduction of endoscopic surgery, new imaging devices, computer assisted navigation
systems and robotic technologies in the operating room. Compared to traditional surgery,
these technologies provide numerous advantages such as higher accuracy, smaller inci-
sion, minimal invasiveness, less pain and blood loss, and faster recovery for patients. With
the invention of the endoscope, surgeons are able to view interior anatomical structures
through a tiny incision, instead of through their naked eyes. In addition, a real-time endo-
scopic image can be sent back to the computer for analysis. By using the position tracking
technique, surgical tools can be localized in real-time. In some specific surgeries, for ex-
ample, an orthopaedic surgery, e.g. bones and implants can also be tracked. These tracked
objects, along with endoscopic images, and previous augmented 3D models from CT or
MRI scans can be displayed on the computer simultaneously, in order to provide a virtual
guide for the surgeons.

2.1 Computer Assisted Diagnosis and Surgery

Since the invention of the first 2D radiography in 1895, more and more imaging modalities
have been developed and applied in the medical field. For instance, the 2D ultrasound was
introduced in several countries since the 1940s [23, 104] and the 3D CT was introduced by
British engineer Godfrey Hounsfield in the 1970s [87]. With these modalities, doctors are
able to examine interior anatomical structures without invasive operations. After the 3D
MRI was introduced into the market in the 1980s [2], doctors have been able to gather more
information from the images due to the MRI’s strength in observing soft tissues. Later in
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1987, the first 3D ultrasound scanner was developed at Duke University [24] to capture
images of the heart from outside the body. As technology enabled smaller ultrasound
arrays, researchers started to design probes that could fit within catheters threaded through
blood vessels for imaging the heart and its vasculature from the inside.

Conventional CT and MRI scans produce cross section ”slices” of the body that are
viewed sequentially by radiologists who must imagine or extrapolate from these views the
actual 3D anatomy. By using computer algorithms these cross sections can be rendered as
the direct 3D representations of human anatomy. Virtual endoscopy, a 3D representation
based navigation system for diagnosis was therefore proposed [77, 78, 99, 100, 62, 40,
82]). Virtual endoscopy creates a 3D virtual environment of the human anatomy based
on CT or MRI images. A virtual camera is placed in such a virtual environment and is
navigated around. Then a series of virtual images can be synthesized and analyzed by
computers. This technique provides a way to make surgery plannable. However, there is
still no texture information involved in the system. How to obtain a textured image during
surgery? The answer is to capture real images via endoscopes. An endoscope has lens
system and light sources at the tip that could be inserted into the body. With a near-field
lighting, images of the interior structures are captured and sent back to the computer. Such
an instrument supports a better visualization for surgeons. For example, these endoscopic
images can be fused into the previous 3D CT models [51, 22].

2.2 Endoscopy

To view clearly through a tiny hole of the body requires a certain amount of lighting. To
record what has been viewed requires a good lens system to transmit the light rays back to
the image recording device. Endoscopy meets the above requirements. A surgical proce-
dure using endoscopes is referred as minimally invasive surgery, also known as endoscopy.

The history of endoscopy is long. Early in 1805, a German doctor, Philip Bozzini tried
to use a candle to illuminate the interior structures through a hole on an animal. Other pi-
oneers cited in medical journals include French surgeon Antoine Jean Desormeaux (1815-
1894), American otolaryngologist Chevalier Jackson (1865-1958), Polish physician Jan
Mikulicz-Radecki (1850-1905), German urologist Maximilian Nitze (1848-1906), Ger-
man gastroenterologist Rudolph Schindler (1888-1968), and German gynecologist Kurst
Semm (1927-2003). The first ”endoscopy” in the world was conducted by a military sur-
geon, William Beaumont, in 1922. He used a flashlight as a light source to examine a
wounded soldier’s abdomen through a tiny hole. At that time, however, the light source
was outside the body. Since the 1920s, electric light source has been utilized since it can
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be transmitted through a rigid tube although not very deeply. After 1956, when the optical
fiber was invented, viewing of interior structures became practical.

Early endoscopes were designed to use as an eyepiece to view through the incision but
not for recording images. Because the tip of the instrument is very small (the diameter of
the tip is around 10-15mm), the field of view is restricted. In 1929, the oblique viewing
endoscope was designed in Germany by Kalk, who enlarged the field of view by rotating
the scope cylinder. No image recording devices were available for endoscopes until 1954,
when a viewfinder rod lens system was developed to capture images. And then, Soulas
(France) developed the first televised bronchoscope (1956) and closed circuit television
program (1959). CCD chip camera appeared in 1984 and high definition CCD has been
adopted by Olympus for endoscopes since 2003.

Since 1970s, nurses have been required to have laparoscopy training, and then rou-
tine laparoscopy surgery started to operate in 1984. The state-of-the-art systems run the
gamut from the possibility of disposable rigid endoscopes (Optiscope Technologies, Ltd.
(Katzrin, Israel)), spectrally-encoded endoscopy (Massachusetts General Hospital’s Well-
man Center for Photomedicine (Boston)), Minute On-Chip Sensor MT9V021 (Micron
Technology, Inc. (Meridian, Idaho and Glasgow, UK)), wireless ingestible imaging cap-
sules (Tarun Mullick et el. Olympus Corp., Given Imaging Ltd. (1989-2006)), real-time
structured light endoscopy (University of North Carolina at Chapel Hill, 2003), to stereo-
scopic endoscopy (da Vinci Surgical System manufactured by Intuitive Surgical Inc.) to
breakthrough three-dimensional imaging.

2.3 2D to 3D endoscopy

Early video cameras for endoscopic surgeries are monocular and allow only two-dimensional
visualization. The lack of depth perception significantly reduces a surgeon’s ability to de-
termine the precise size and location of anatomical structures and limits his/her capacity
to maneuver, diagnose and operate efficiently.

Visionsense Corporation (Orangeburg, N.Y. and Petah-Tikva, Israel) developed a stereo-
scopic sensor that provides the surgeon with real-time, high-resolution, natural stereo-
scopic vision. The proprietary single sensor is based on multidisciplinary technologies
combined with sophisticated image processing algorithms. Since 2000, many other com-
panies such as Olympus started to manufacture stereoscopic endoscopes, which have been
widely used in surgical systems such as the da Vinci’s system (Intuitive Surgical Inc.). two
optical elements are put within a 12-millimeter diameter endoscope. One of them is for
the left eye and the other one is for the right eye, and both of them supply endoscopic
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images to a separate video camera. They are combined together to provide a true three-
dimensional visualization. Those image are then projected onto left and right monitors
where the surgeon fuse a 3D perspective by watching both, simultaneously. However, pro-
jecting stereo images to the left and right monitors cannot provide exact depth information
for computer analysis. The researchers in the University of North Carolina at Chapel Hill
later developed a real-time structured light depth extraction for endoscopy [31, 50]. A
high speed projector projecting structured light into interior structures was designed to be
inserted to the body and a high speed camera was used to sample the structured light pat-
terns and outputs digital signals to computers. 3D ultrasound probe [24] was also designed
to acquire real-time images of interior structures during endoscopy. With the development
of the image processing techniques, software based solutions to 3D endoscopy becomes
promising.

2.4 3D Vision for Regular Scenes

There is a long and rich history of 3D reconstruction in computer vision [42, 114, 74,
73, 35]. For natural scenes captured by regular cameras, which contains lots of shape
features such as corners, edges, it is easy to locate the features and find correspondences
between adjacent views. If the camera is fixed, then we can mosaic images together to
obtain a panorama. Otherwise if the camera is moving, we can apply stereo or structure
from motion to reconstruct the 3D information of the scene. A brief comparison between
the different methods in listed below:

1. Multi-view Stereo: Rich texture features are required for establishing correspon-
dences. Given both correspondences and calibrated camera motions, depth can be
recovered. This method assumes that the lighting is distant and fixed. In other
words, the texture features do not depend on the lighting conditions.

2. Shape-from-motion: Rich texture features are required for establishing correspon-
dences. Given only correspondences, motion and shape structure can be computed
by factorization. Same as the above approach, this method assumes that the texture
features do not depend on the lighting conditions.

3. Shape-from-shading: Constant surface albedos are assumed in this method. Dif-
ferent methods have been developed to deal with distant or near-field lighting, and
orthogonal or perspective projection camera models. Initial values on occluding
boundaries are required as a starting point for this approach.
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4. Shape-from-silhouette: Given camera motions and image silhouettes, surfaces of
3D object can be reconstructed. This method requires multiple cameras working
simultaneously to achieve high resolution reconstruction.

5. Photometric stereo: This method reconstructs the surface normal by using several
images of the same surface taken from the same viewpoint but under illumination
from different directions. In each case there is a well-defined light source direc-
tion from which to measure the surface orientation. Therefore, the change of the
intensities in the images depends on both local surface orientations and illumination
directions. Varying lightings are the key to this solution.

6. Shape-from-structured light: By projecting structured patterns onto the surface, the
correspondences can be easily established between different views. This approach
requires special devices to create structured patterns such as laser projectors.

Most of the conventional methods assume distant lighting and require rich features
and correspondences, or expensive experimental setups (e.g. structured light). So it is
still challenging to obtain an affordable solution for 3D reconstruction from endoscopic
images with the existing methods.

2.5 3D Vision for Surgery

Endoscopic images of anatomical structures are very different from what we have seen
in the regular scenes. Small field of view, big distortion, varying illumination, feature-
less bones, non-lambertian and deformable soft tissues, sub-surface scattering, fog, tool
interactions, etc., make the reconstruction procedure very hard.

Researchers have tried many existing methods for 3D visualization from endoscopic
images [48]. For example, overlaying endoscopic images with 3D models obtained from
CT or MRI scans [51, 13, 21, 86], which requires pre computing the 3D model and com-
plicated registration procedure. Registration and referencing [102, 103] between surgical
tools and 3D CT models for endoscopy have been studied. Structured light [31, 45, 37] is
a promising approach due to its high accuracy, but it needs special devices such as high
speed projector and cameras. Photometric stereo [105, 54, 55] requires images captured
under different lighting conditions and is not applicable to experiments with a conventional
endoscope with fixed lighting directions.

In orthopaedic surgery, given bone surfaces have few identifiable features, surface
shading is the primary cue for shape. Shape-from-shading has a long and rich history
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in computer vision and biological perception [114, 25], however, most of the work fo-
cused on distant lighting, orthographic projection and Lambertian surfaces [42, 56, 114].
Few papers considered the more realistic scenarios. Real materials can be non-Lambertian
model [60]. With a pin-hole camera, the projection is perspective instead of orthographic
[71, 59, 36, 68, 81, 95]. For some special imaging devices, such as endoscopes, the
light sources are not located at infinity [68, 76], thus 1/r2 attenuation term of the illumi-
nation need to be taken into account [76]. There are three papers that have established
the equations for the perspective projection [75, 94, 17], and also there are a variety of
mathematical tools that have been utilized to solve the perspective shape from shading
(PSFS) problem [53, 17, 95, 76, 96]. The most relevant work about shape-from-shading
under a near point light source and perspective projection for an endoscope was addressed
in [68, 29, 66, 95], and they all assume that the light source and camera center are co-
located. However, this assumption is inaccurate in the setting of our work, because the
scene is 5-10 mm away from the endoscope and the distance between the source and the
camera center is 3.5mm, which is in the same order of magnitude as the distance to the
scene.

Due to the small field of view of the endoscope, only a partial shape can be obtained
from a single image. By capturing image sequences while the endoscope is moving, it
is possible to cover a larger part of the shape, which is easier to perceive [83]. There
is a long and rich history of shape-from-motion in computer vision (both calibrated and
uncalibrated) [73, 74, 35], and in the context of the anatomical reconstruction, the heart
coronary [66, 67], tissue phantom [88], and other internal organs [97, 7, 108] were recon-
structed using motion cues (image features and correspondences). However, it is difficult
to establish correspondences for textureless (or featureless) bones.

Neither shape-from-shading nor shape-from-motion can individually solve the prob-
lem of bone reconstruction from endoscopic images. Our key idea in this thesis is to
utilize the strengths of both to develop a multi-view shape-from-shading approach, and to
introduce a shape prior to deal with over-smoothness and partial occlusions.
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Chapter 3

Calibration of Endoscope’s Geometry
and Photometry

Camera geometric calibration, an important step in endoscope related applications, mostly
based on Tsai’s model [98], has been addressed in several work [21, 115, 84, 109]. How-
ever, except for [109], most of those methods dealt with the forward-viewing endoscope,
in which the viewing direction is aligned with the axis of the endoscope. Due to the size of
the small incision, the range of movement for such a tool is restricted and the field of view
is very small. In order to view sideways, an oblique scope was designed with a tilted view-
ing direction such that a wider viewing field can be reached by rotating the scope cylinder.
Fig. 3.1 shows an oblique-viewing endoscope. A new degree of freedom, a rotation, hap-
pens between the scope cylinder and the camera head. Yamaguchi et al. first modeled and
calibrated the oblique scopes [109]. They formulated the rotation of the scope cylinder as
an additional extrinsic parameter. They also used two extra transformations to compensate
the rotation θ of the lens system and the stillness of the camera head. Yamaguchi et al’s
camera model successfully compensates the rotation effect but their method requires five
additional parameters, and the model is complex. In this chapter we introduce an alterna-
tive approach to simplify the calibration. We attach an optical marker to the scope cylinder
instead of the camera head, with a newly designed coupler (as Fig. 3.1(b) illustrates). We
come up with a simpler model with only one additional intrinsic parameter.

Camera photometric calibration, another important process in illumination related ap-
plications, is performed to find the relationship between the image irradiance and the im-
age intensity for the camera. This relationship is called the camera response function.
Traditional photometric calibration recovers only the camera response function by chang-
ing the camera’s exposure time. However, compared to regular cameras, it is hard to
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Figure 3.1: An oblique endoscope consists of a scope cylinder with a lens and point light
sources at the tip (the tip has a tilt from the scope cylinder), a camera head that captures
video images, and a light source device that supports the illumination. Scope cylinder is
connected to the camera head via a coupler. This connection is flexible such that you can
rotate either the scope cylinder or the camera head separately, or rotate them together.

control the exposure time for endoscopes. Given the near field sources, the light spatial
distribution can be anisotropy. And the light intensity can be changed during surgery. We
present a method to calibrate all the unknown parameters simultaneously.

3.1 Geometric Calibration

An orthopedic oblique endoscope is equipped with a single camera and one or more point
light sources at the tip of the scope. In our work, we use two oblique endoscopes for
testing. One of them is shown in Fig. 3.1 and the other is in Fig. 3.5.
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Table 3.1: Table of Notation in Sec. 3.1
Ow - origin of world coordinates

Os - origin of scope coordinates

Oc - origin of camera coordinates
mTw,sTw - transformation from world to marker/scope
cTs,

c Tm(θ) - transformation from scope/marker to camera

λ - arbitrary scale factor
~Pw - 3D point in world coordinates

~µi - 2D image pixel with rotation θ

~µ′i - 2D image pixel without rotation θ

Ac - camera intrinsic matrix

θ - rotation angle
~ls - axis of scope cylinder
~lh - z-axis of lens system

TR(θ;~ls) - rotation around ~ls

TR(−θ;~lh(θ)) - inverse rotation around ~lh(θ)

cc - camera principal point

R(θ) - rotation function of θ

O1 - origin of Marker 1’s coordinates

O2 - origin of Marker 2’s coordinates
~Pr - 3D point in Marker 2’s coordinates
~PA
r , ~PB

r , ~Pi - ~Pr in Marker 1’s coordinates at position A,B, i

~PB
r - ~Pr in Marker 1’s coordinates at position B

~O - center of trajectory of Marker 2 in Marker 1’s coordinates
o1Tow

i, o2Tow

i - transformation from world to O1, O2 for Marker 2’s position i

M - number of corner points in calibration image
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Figure 3.2: The geometric model of endoscope in conjunction with a tracking system. A
new coupler (see Fig. 3.1 (b))is designed for mounting an optical marker to the scope
cylinder, which ensures that the transformation from the scope(marker) coordinates Os to
the lens system (camera) coordinates Oc is fixed. The world coordinates Ow is defined by
the optical tracker. Two optical markers are attached to the coupler and the camera head
separately for the use of calculating the rotation angle θ in between.

3.1.1 Modeling Oblique-viewing Endoscope

Yamaguchi et al’s camera model is based on Tsai’s model:

λ~µi = Ac
cTm(θ)mTw

~Pw

cTm(θ) = TR(−θ;~lh(θ))TR(θ;~ls)
cTm(0)

(3.1)
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In their model, λ is an arbitrary scale factor, ~Pw is a 3D point in the world coordinates, ~µi

is the corresponding 2D image pixel. Ac is the camera intrinsic matrix. mTw is the rigid
transformation from the world coordinates to the optical marker coordinates, cTm(θ) is the
rigid transformation from the marker (camera head) to the camera coordinates. cTm(θ) is
dependent on the rotation angle θ. Considering the marker coordinates (camera head) as
a reference, only the lens system rotates while the camera head, i.e., the image plane, re-
mains fixed irrespective to the rotation. The authors formulated such a transformation due
to the rotation by decomposing the one physical rotation into two mathematical rotations.
TR(θ;~ls) is the rotation of both scope cylinder and the camera head (image plane) around
the axis of cylinder ~ls. TR(−θ;~lh(θ)) is the inverse rotation of the image plane around
the z-axis of lens system ~lh. Both ~ls and ~lh have two unknown parameters. Although this
model works well, it is complex.

As Fig. 3.2 (b) shows, we attach an optical marker to the scope cylinder instead. Our
model is still an extension of Tsai’s model but simpler. The geometric model illustrated in
Fig. 3.2 (a) is given by:

λ~µ′i = Ac ·cTs ·sTw · ~Pw

~µi = R(θ) · (~µ′i − cc) + cc
(3.2)

where ~Pw is a 3D point in the world coordinates, ~µ′i is the corresponding 2D image pixel
without any rotation, ~µi is the image pixel with the rotation θ. sTw is the rigid transforma-
tion from the world coordinates to the optical marker coordinates (scope cylinder). cTs is
the rigid transformation from the marker (scope cylinder) to the camera coordinates and
independent on θ. cc is the principal point. R(θ) represents the rotation of the image plane
around cc by θ. The intrinsic matrix Ac and the external matrix cTm are calibrated by using
Zhang’s method [115]. mTw is directly obtained from the tracking system. We only need
to estimate one additional degree of freedom, the rotation angle. A comparison between
Yamaguchi et al’s model and ours can be found in Appendix II.

Rotation angle can be estimated by using a rotary encoder, as Yamaguchi et al [109]
did. When it is not available, rotation angles can be estimated by using two optical mark-
ers: one attached to the scope cylinder and the other to the rod (camera head).

3.1.2 Estimation of Rotation Angle Using Two Optical Markers

Let the marker attached to the scope cylinder be the Marker 1 and the marker to the camera
head be the Marker 2 (see Fig. B.1 (b)). As Fig. 3.3 shows, when we rotate the camera
head around the scope cylinder from the position “A” to “B” by θ, the point ~Pr in the
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Marker 2’s coordinates O2 will move along a circular trajectory with respect to the point
~O on the axis of the scope cylinder, which is in the Marker 1’s coordinates O1. We estimate
the center ~O of the circle first and compute θ by

θ = arccos
‖ ~OPA

r ‖2 + ‖ ~OPB
r ‖2 − ‖ ~PA

r PB
r ‖2

2‖ ~OPA
r ‖ · ‖ ~OPB

r ‖
(3.3)

The center of the circle can be represented in terms of the transformations from the
world coordinates Ow to the Marker 1’s coordinates O1, and the Marker 2’s coordinates
O2. At least 3 different positions in the Marker 2’s coordinates (O2) (with different θ) are
necessary.

3.1.3 Estimation of the center of circle in 3D

We rotate the camera head around the cylinder to acquire 3 different positions with respect
to the Marker 2. Let the transformation matrix from the world coordinates Ow to both
Marker 1’s coordinates O1 and Marker 2’s coordinates O2 for the position i be (o1Tow

i,
o2Tow

i) (i = 1, 2, 3). Given any point ~Pr in O2, we compute the position ~Pi in O1 corre-
sponding to different rotations as:

~Pi = o1Tow

i · (o2Tow

i)−1 · ~Pr, i = 1, 2, 3. (3.4)

~O is the center of the circumcircle of the triangle (∆ ~P1
~P2

~P3).

Let ~R1 = ~P1 − ~P3, ~R2 = ~P2 − ~P3, the normal of the triangle is ~n∆ = ~R1 × ~R2. The
perpendicular bisector ~L1 of ~R1 and ~L2 of ~R2 can be computed as:

~L1 = ~P3 + ~R1/2 + λ1 · ~n∆ × ~R1

~L2 = ~P3 + ~R2/2 + λ2 · ~n∆ × ~R2

(3.5)

where λ1 and λ2 are parameters of the line ~L1 and ~L2. The intersection of the two lines
represents the center of the circle. From Eq. 3.5 we can derive the center of the circle by

~O =
( ~R2 − ~R1) · ~R1/2

| ~R1 × ~R2 |2
· ( ~R1 × ~R2)× ~R2 + ~R2/2 + ~P3 (3.6)

It can be easily proved that ~O does not depend on the selection of ~Pr. Since at least 3
different positions are necessary, we rotate the camera head around the scope cylinder by
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Figure 3.3: Illustration of the relationship between the rotation angle θ and two markers’
coordinates. The Marker 1 is attached to the scope cylinder and the Marker 2 is attached
to the camera head. “A” indicates the position of the Marker 2 when θ = 0 and “B”
indicates the position of the Marker 2 with a rotation θ. For any point ~Pr in the Marker 2’s
coordinates, its trace with the rotation of the camera head follows a circular trajectory in
the Marker 1’s coordinates (It moves from the position ~PA

r to ~PB
r ). This circle is also in

the plane perpendicular to the axis of the scope cylinder. ~O is the center of the circle.

N different angles. We apply a RANSAC algorithm to estimate ~O using random positions,
and finally select ~O∗ corresponding to the smallest variance as the center of the circle. The
pseudo code of RANSAC is listed in Table 4.3. It can also be proved that θ does not depend
on the selection of Pr as well. A similar RANSAC algorithm, as Table 3.3 shows, is used
to compute θ. Fig. 3.4 shows estimated rotation angles using the RANSAC algorithm for
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Table 3.2: Pseudo RANSAC code for estimating the center of the circle

Loop k=1:K (K=2000)
Generate a random point Pr from 3D space
Generate random number x,y,z between [1,N]
Compute Px,Py,Pz using Eq. 3.4
Compute Ok using Eq. 3.6
Compute | OkPj |, j ∈ [1, N ], j 6= x, y, z
Compute vk

Save Ok, vk

End loop
Return Oq, q = argkmin(vk)

Table 3.3: Pseudo RANSAC code for estimating the rotation angle

Loop k=1:K (K=1000)
Generate a random point Pr from 3D space
Compute PA and PB using Eq. 6.2
Compute θk using Eq. 3.3

End loop
Return θ = 1

K

∑
k θk

two different endoscopes. The red curves are estimated angles from different RANSAC
iterations, and the black curve is the average. We can see that the variance of the estimation
is very small (less than 0.2 degree).

3.1.4 Experimental Results

We tested our algorithm using two different systems. We first tested it in our lab. We
used a Stryker 344-71 arthroscope Vista (70 degree, 4mm) oblique-viewing endoscope, a
DYONICS DyoCamTM 750 video camera, a DYONICS DYOBRITE 3000 light source,
and Polaris (Northern Digital Inc., Ontario, Canada) optical tracker. Next we tested it in
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Figure 3.4: Estimated rotation angles for two endoscopes. In each trial, we rotated the
camera head with respect to the scope cylinder and captured an image. We captured a few
images for the initial position. After that we took two images for each rotation angle. The
red curves are estimated rotation angles from different RANSAC iterations. The black
curve is the average.
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(a)

(b)

(c) (d)

Figure 3.5: Optical trackers and endoscopes used in the experiments. (a) OPTOTRAK op-
tical tracker (Northern Digital Inc., Ontario, Canada). (b) Polaris optical tracker (Northern
Digital Inc., Ontario, Canada). (c) Smith & Nephew video arthroscope - autoclavable SN-
OH 272589 (30 degree, 4mm). (d) Stryker 344-71 arthroscope Vista (70 degree, 4mm).

the operating room. We used a Smith & Nephew video arthroscope - autoclavable SN-
OH 272589 (30 degree, 4mm), a DYONICS video camera and light source, OPTOTRAK
(Northern Digital Inc., Ontario, Canada) optical tracker. Fig. 3.5 shows the different
endoscopes and optical trackers.

The endoscope was first fixed and the calibration pattern was rotated on the table for
capturing images. A set of images were captured without a rotation between the scope
cylinder and the camera head. They were used to estimate both the intrinsic matrix A
(including the focal length and radial distortion coefficients) and extrinsic matrix cTs using
Zhang’s method [115] (implemented using OpenCV functions). After that, while rotating
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Figure 3.6: (a) Illustration of the back projection with and without a rotation compensation.
Green points are ground truth - 2D corner pixels on the image of the calibration pattern.
Red points are back projection of the 3D world positions of the corners using the first
equation of Eq. 3.2, which has no rotation compensation. Blue points are back projection
using both equations of Eq. 3.2. Since the rotation is included in the camera model, the
back projected pixels are much closer to the ground truth than the red points. (b) An image
used in Yamaguchi et al. [109]’s paper. This image has a higher resolution, better lighting
and less distortion than ours.

the camera head with respect to the scope cylinder, another set of images were captured and
the center of the circle can be computed by using Eq. 3.6. Next, we fixed the calibration
pattern, with two optical markers attached to the scope cylinder and the camera head, we
captured the third set of images by applying normal operations to the endoscope (moving
the whole scope body or rotating the camera head with respect to the scope cylinder (or
more natural description: rotating the scope cylinder with respect to the camera head)).
This set of images were used to evaluating the calibration. The initial position of the
camera head was considered as the reference position A illustrated in Fig. 3.3. Fig. 3.6
illustrates the back projection of 3D corners of the calibration pattern with (blue) and
without (red) a rotation compensation. Green points are ground truth. For each rotation
angle of the endoscope, we calculated the average back projection error for this angle

ε(θ) =
1

M

M∑
i=1

| ~µi − ~µ( ~P i
w, θ) | (3.7)
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where ~Pi is a 3D point in the world coordinates, ~µi is the corresponding 2D image pixel,
~µ( ~P i

w, θ) is the back projected 2D image pixel of ~Pi computed by using Eq. 3.2. M is the
number of corners on the calibration pattern. We used different grid patterns (3x4, 4x5,
5x6, 6x7. The size of each checker is 2mm x 2mm). In order to obtain enough light on the
grid pattern, the endoscope needs to be placed very close to the target (usually 5-15mm).
Since smaller grids cannot capture the radial distortion and the bigger grids will exceed
the field of view, the 5x6 grid was selected to provide the best results.

We did many trials by moving and rotating the endoscope randomly and estimated θ
simultaneously. The averaged back projection error with respect to the different rotation
angles are shown in Fig. 3.7. Fig. 3.7 (a) shows the result using the Stryker 344-71 arthro-
scope Vista (70 degree, 4mm) and Polaris optical tracker. Fig. 3.7 (b) shows the result
using the Smith & Nephew video arthroscope - autoclavable SN-OH 272589 (30 degree,
4mm) and OPTOTRAK optical tracker. The red curve represents the back projection er-
ror without taking into account of the rotation angle, and the blue curve shows the error
considering the rotation angle. The results show that including the rotation angle into the
camera model significantly improves the accuracy of the calibration.

Fig. 3.7 shows that different endoscopes have different accuracy. The reason is that
endoscopes have different magnification and optical trackers have different accuracy (ac-
cording to the manufacturer, RMS error is 0.1mm for OPTOTRAK and 0.3mm for Polaris).
Yamaguchi et al. [109] used an OTV-S5C laparoscope (Olympus Optical Co. Ltd., Tokyo,
Japan) and Polaris optical tracker. They achieved a high accuracy of less than 5mm back
projection error when the rotation angle is within 140 degrees. Our results show that we
can achieve the same level accuracy when the rotation angle is within 75 degrees. Beyond
this range, due to the bigger magnification, larger radial distortion and poorer lighting (a
comparison between images used in Yamaguchi et al.’s experiments and ours is shown in
Fig. 3.6), the back projection error is increased to 13mm when the rotation angle is 100
degrees. Given endoscopes with the same level of quality, we should be able to achieve
the same level of accuracy, with a simpler setup and procedure.

3.2 Photometric Calibration

Until now, photometric calibration for the endoscope is seldomly addressed in literature.
We propose a method to compute the radiometric response function of the endoscope, and
also simultaneously calibrate the directional/spatial intensity distribution of the near light
sources (the camera and the sources are “on/off” at the same time) and light intensities.
Our method is inspired by Litvinov et al.’s work [61].
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Figure 3.7: Back projection errors with respect to the rotation angles for two systems.
(a) Stryker 344-71 arthroscope Vista and Polaris optical tracker in our lab. (b) Smith &
Nephew video arthroscope and OPTOTRAK optical tracker in the operating room. Images
in the top row of (a) and (b) correspond to different rotation angles (the number is shown on
the top of each image). The red curves in (a) and (b) represent the errors without a rotation
compensation. The blue curves in (a) and (b) are errors with a rotation compensation.
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Table 3.4: Table of Notation in Sec. 3.2
R - scene radiance

I0, I0j - light intensity

ρ, ρi - surface albedo

~n - surface normal

s1, s2 - light sources

l1, l2 - light rays

r1, r2 - distance from light source to the surface point

P - surface point

I(·) - image irradiance function

x̃, ỹ - image coordinates

x, y, z - world coordinates

H(·) - camera response function

v(·) - intensity value

M(·) - source spatial distribution function

M̃(·) - modified source spatial distribution function

h(·), etai, γj, m̃ - log representation of H−1, ρi, I0j, M̃

3.2.1 Image Irradiance Equation

Assuming the bone surface is Lambertian, the scene radiance can be computed according
to Lambertian cosine law:

R(x, y, z) = I0ρ(
~n · ~l1
r2
1

+
~n · ~l2
r2
2

) (3.8)

where I0 is the light intensity of ~s1 and ~s2, ρ is the surface albedo. We use the unit vector
~n to represent the surface normal at ~P , ~l1 and ~l2 are two light rays incident at ~P , and r1 and
r2 are the distance from each light source to the surface. (x, y, z) indicates the 3D location
of the scene point P (see details in Ch. 4).

On the other hand, The image irradiance I(x̃, ỹ) is related to the image intensity, also

24



known as gray level v, through the camera response function H(·):

I(x̃, ỹ) =
H−1[v(x̃, ỹ)]

M(x̃, ỹ)
(3.9)

where M(x̃, ỹ) represents the anisotropy of the source spatial distribution. The two sources
are identical and they are oriented in the same way so we assume that their spatial distri-
bution functions M(x̃, ỹ) are equal. From Eqs 3.8 and 3.9 we have:

H−1[v(x̃, ỹ)] = ρ · I0 · M̃(x̃, ỹ)

where M̃(x̃, ỹ) = M(x̃, ỹ) · (~n ·
~l1

r3
1

+
~n · ~l2
r3
2

)
(3.10)

During the calibration, we used a Macbeth color chart with known albedos for each
patch. We captured a set of images by varying the source intensity for each patch. We
applied log to both sides of Eq. 3.10 and obtained a linear system:

h[vj
i (x̃, ỹ)] = ηi + γj + m̃(x̃, ỹ) (3.11)

where i indicates the surface albedo and j indexes the light intensity. h[vj
i (x̃, ỹ)] =

log{H−1[vj
i (x̃, ỹ)]}, ηi = log(ρi), γj = log(I0j) and m̃(x̃, ỹ) = log[M̃(x̃, ỹ)]. The un-

knowns (h(·), γj , m̃(x̃, ỹ)) can be estimated by solving this linear system of equations.
The cosine term is then estimated by physically measuring the distance to the chart from
the scope tip and finally M(x̃, ỹ) is recovered.

3.2.2 Solution to h(·)
Given the fixed light intensity γj and pixel value v(x̃, ỹ) but two different albedos ηi1 and
ηi2 , we have {

h[vj
i1
(x̃, ỹ)]− γj − m̃(x̃, ỹ)− ηi1 = 0

h[vj
i2
(x̃, ỹ)]− γj − m̃(x̃, ỹ)− ηi2 = 0

(3.12)

Subtract the first line from the second line of Eq. 3.12 we obtain

h[vj
i2
(x̃, ỹ)]− h[vj

i1
x̃, ỹ)] = ηi2 − ηi1 (3.13)

We selected different pixels in the same image (albedo) or different images (albedos)
to make as many equations as Eq. 3.13, as long as we fixed the light intensity for each pair
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of albedos. Since vj
i1
(x̃, ỹ) changes from 0 to 255(image intensity), we only need 256 such

equations and stack them as:



· · · 1∗ −1∗ · · ·
· · · −1# 1# · · ·

· · · · · ·


 ·




h(0)
h(1)

...
h(255)


=



ηi2−ηi1

ηi4−ηi3
...


 (3.14)

where 1∗ and−1∗ correspond to the column vj
i2
(x̃, ỹ)+1 and vj

i1
(x̃, ỹ)+1, respectively. 1#

and −1# correspond to the column vj
i4
(x̃, ỹ) + 1 and vj

i3
(x̃, ỹ) + 1, respectively. Therefore

h(v) is solved from Eq. 3.14 and H(·) = {exp[h(v)]}−1.

3.2.3 Solution to γj

Given the fixed albedo ηi and pixel value v(x̃, ỹ) but two different light intensities γj1 and
γj2 we have {

h[vj1
i (x̃, ỹ)]− γj1 − m̃(x̃, ỹ)− ηi = 0

h[vj2
i (x̃, ỹ)]− γj2 − m̃(x̃, ỹ)− ηi = 0

(3.15)

Subtract the first line from the second line of Eq. 3.15:

h[vj2
i (x̃, ỹ)]− h[vj1

i (x̃, ỹ)] = γj2 − γj1 (3.16)

We use the minimum light intensity γ1 as a reference, for other light intensities γj, j =
2, · · · , Nlight, we have

γj = γ1 + {h[vj
i (x̃, ỹ)]− h[v1

i (x̃, ỹ)]} (3.17)

With the estimated h[v(x̃, ỹ)] and by changing the albedos and pixels, we compute the
average for each γj as below and Ī0j = exp(γ1) · exp(γ̄j).

γ̄j = γ1 +
1

Nalbedo

· 1

Npixels

Nalbedo∑
i

Npixels∑
x̃,ỹ

{h[vj
i (x̃, ỹ)]− h[v1

i (x̃, ỹ)]} (3.18)

3.2.4 Solution to m̃(x̃, ỹ)

Again, Given the fixed albedo ηi and light intensity γj but two different pixels (x̃p, ỹp) and
(x̃q, ỹq) we have {

h[vj
i (x̃p, ỹp)]− γj − m̃(x̃p, ỹp)− ηi = 0

h[vj
i (x̃q, ỹq)]− γj − m̃(x̃q, ỹq)− ηi = 0

(3.19)
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Subtract the first line from the second line of Eq. 3.19:

h[vj
i (x̃q, ỹq)]− h[vj

i (x̃p, ỹp)] = m̃(x̃q, ỹq)− m̃(x̃p, ỹp) (3.20)

For each γj and ηi, instead of using C2
Npixels

different pairs of pixels, we choose only
Npixels = 720× 480 pairs and stack the equations as below:




1 −1
1 −1

·
·

−1 1




︸ ︷︷ ︸
Φ

·




m̃(x̃1, ỹ1)
m̃(x̃2, ỹ2)

...
m̃(x̃Npixels

, ỹNpixels
)


=




h[vj
i (x̃1, ỹ1)]− h[vj

i (x̃2, ỹ2)]

h[vj
i (x̃2, ỹ2)]− h[vj

i (x̃3, ỹ3)]
...

h[vj
i (x̃Npixels

, ỹNpixels
)]− h[vj

i (x̃1, ỹ1)]




(3.21)

It’s not practical to solve Eq. 3.21 using SVD directly since matrix Φ requires a huge
amount of memory. Instead we have noticed that the matrix Φ in Eq. 3.21 is a special
Npixels by Npixels matrix therefore we calculate the inverse directly by using Gauss-Jordan
Elimination:

Φ−1 =




0 0 −1
−1 0 0 −1
−1 −1 0 0 −1

...
...

... · · · 0 −1
−1 −1 −1 · · · −1 −1




(3.22)

Finally we can efficiently compute each element of m̃(x̃, ỹ) independently and again,
M̃(x̃, ỹ) = exp[m̃(x̃, ỹ)].

3.2.5 Experimental Results

A series of images of color chart were used for photometric calibration. We tested 6
different levels of image intensities. In Fig. 3.8, (a),(b) and (c) show the camera response
function in Red,Green,Blue channels. (d) shows the recovered light intensity in different
levels and compared to the ground truth. The smaller number in x-axis corresponds to the
higher intensity. We noticed a bit variance when light intensity is high due to saturation.
(e) shows the original image and (f) shows m̃. (g) shows the cosine term (n)·l1

r2
1

+ (n)·l2
r2
2

and
(h) shows the spatial distribution function m(x, y).
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Figure 3.8: Results of photometric calibration. (a) camera response function in Red chan-
nel. Red dots represents the data points and magenta line represents the nonlinear fit. (b)
camera response function in Green channel. Green dots represents the data points and
magenta line represents the nonlinear fit. (c) camera response function in Blue channel.
Blue dots represents the data points and magenta line represents the nonlinear fit. (d) Cal-
ibrated light intensity in different levels (blue) and ground truth (green). We use the level
6 as a reference and plot level 1-5. A small level corresponding to a high light intensity.
A bit variation in the range of high intensities may be caused by saturation. (e) Original
image of color chart. (f) m̃. (g) cosine term (n)·l1

r2
1

+ (n)·l2
r2
2

. (h) spatial distribution function
m(x, y).
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3.3 Conclusions and Discussion

We have developed a comprehensive calibration procedure for estimating both geometric
and photometric parameters for oblique endoscopes. Our geometric calibration method
simplifies the previous work given a newly designed coupler attached to the scope cylinder.
It is easy to implement and practical to apply with the standard operating room equipments
such as the navigation system. The only drawback of this method is that it requires the
two markers to be visible to the optical tracker all the time, otherwise the method will fail.

According to our knowledge, photometric calibration for endoscopes has been less
studied. Most of related work did not rely on the physical model of light sources, or
they restricted the changing of light sources during the operation. A few of recent work
applied shape-from-shading to endoscopic images based on a simplified light source model
without calibrating endoscopes. However, in order to reconstruct an accurate shape from
endoscopic images, the knowledge of light sources is necessary and important.

Both geometrical and photometrical parameters are very useful for 3D visualization
and reconstruction of anatomical structures such as bones from endoscopic images. We
will use calibrated endoscopes for artificial spine reconstruction (see Chaps. 4 and 6).
The results demonstrate that using calibrated endoscopes can achieve good reconstruction
result, which is promising for the real surgical applications.
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Chapter 4

3D Reconstruction for Bones from
Endoscopic Images

To reconstruct the 3D shape of bones from endoscopic images, we formulate the problem
as a near-lighting shape-from-shading with a pinhole camera (perspective projection) and
present a solution to reconstruct the Lambertian surface of bones using a sequence of
overlapped endoscopic images, with partial boundaries in each image. First we formulate
the shape-from-shading problem to deal with perspective projection and near point light
sources that are not co-located with the camera center. Secondly, we propose a multi-
image framework which aligns partial shapes obtained from different images in the world
coordinates by tracking the endoscope. An iterative closest point (ICP) algorithm is used
to improve the matching and recover complete occluding boundaries of the bones. Finally,
a complete and consistent shape is obtained by simultaneously re-growing the surface
normals and depths in all views. We demonstrate the accuracy of our technique by running
simulations and conducting experiments with artificial bones.

4.1 Shape-from-Shading under Near Point Sources and
Perspective Projection

With the special design of endoscopes, we formulate the shape-from-shading under near
point lighting and a perspective projection, where the light sources are not located at the
projection center. As Fig. 4.1 shows, given two point light sources ~s1 and ~s2, we compute
the scene radiance emitted by the surface point ~P according to the Lambertian cosine law
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Table 4.1: Table of Notation in Sec. 4.1
R - scene radiance

I0 - light intensity

ρ - surface albedo

~n - surface normal

s1, s2 - light sources

l1, l2 - light rays

r1, r2 - distance from light source to surface point

P - surface point

I(·) - image irradiance function

x̃, ỹ - image coordinates

x, y, z - world coordinates

a, b - endoscope parameters

F - focal length

p, q - partial derivatives of z w.r.t. image coordinates x̃, ỹ

e(·) - total error function

ei(·) - irradiance error function

es(·) - smoothness constraint

λ - Lagrange multiplier

(k, l) - image indices

zk,l, pk,l, qk,l - value of z, p, q at pixel (k, l)

n - iteration number

¯zk,l
n, ¯pk,l

n, ¯qk,l
n - average of neighborhood in the nth iteration

ψ(·) - local robust regularizer constraint

ρσ(·) - robust error kernel function

ξ - symbol for p, q, z

ξx̃, zỹ - partial derivatives of ξ w.r.t. image coordinates x̃, ỹ

ˆξk,l

m
- local robust regularizer term in the nth iteration

32



O
r

],~,~[ Fyxp =r

],~,~[],,[ z
F

z
y

F

z
xzyxP ==

r
n
r

X

Y

Z

Image plane

F

(Surface 
Normal)

(Scene Point)

Optical axis

Lens & light 
sources plane

(Focal length)

1l
r

2l
r)0( <zz

]0,,[1 bas −=
r

]0,,[2 bas =
r

(Depth)

X

Y
~

~

Figure 4.1: A perspective projection model for an endoscope imaging system with two
near point light sources: ~O is the camera projection center. ~s1 and ~s2 are two light sources.
We assume that the plane consisting of ~O, ~s1 and ~s2 is parallel to the image plane. The
camera coordinate system (X−Y − Z) is centered at ~O and Z-axis is parallel to the
optical axis and is pointing toward the image plane. X-axis and Y-axis are parallel to
the image plane. F is the focal length. a and b are two parameters related to the position
of the light sources. Given a scene point ~P = (x, y, z), the projected image pixel is
~p = (x̃, ỹ, F ), where (x̃, ỹ) are image coordinates. Assuming a Lambertian surface, the
surface illumination therefore depends on the surface albedo, light source intensity and
fall-off, and the angle between the normal and light rays.

and inverse square distance fall-off law of isotropic point sources [43]:

R = I0ρ(
cos θ1

r2
1

+
cos θ2

r2
2

) (4.1)

where I0 is the light intensity of ~s1 and ~s2, ρ is the surface albedo. We use the unit vector
~n to represent the surface normal at ~P . ~l1 and ~l2 are two light rays incident at ~P , and r1

and r2 are the distances from each light source to the surface. We have

cos θ1 =
~n · ~l1
‖~l1‖

, ~l1 = ~s1 − ~P , r1 = ‖~l1‖

cos θ2 =
~n · ~l2
‖~l2‖

, ~l2 = ~s2 − ~P , r2 = ‖~l2‖
(4.2)
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According to [42], the surface normal ~n can be represented in terms of the partial deriva-
tives of depth z with respect to x and y ((x, y, z) are camera coordinates):

~n = [−∂z

∂x
,−∂z

∂y
, 1]/

√
(
∂z

∂x
)2 + (

∂z

∂y
)2 + 1 (4.3)

Note that for the orthographic projection ∂z/∂x̃ and ∂z/∂ỹ are used to represent surface
normals, where (x̃, ỹ) are image coordinates. Under the perspective projection we have

x = x̃
z

F
y = ỹ

z

F

(4.4)

where F is the focal length and z < 0. We take the derivatives of both sides of Eq. 4.4
w.r.t x and y and obtain

∂z

∂x
=

1

x̃
(F − z

∂x/∂x̃
)

∂z

∂y
=

1

ỹ
(F − z

∂y/∂ỹ
)

(4.5)

We also take the derivatives of both sides of Eq. 4.4 w.r.t x̃ and ỹ and obtain

∂x

∂x̃
=

1

F
(z + x̃

∂z

∂x̃
)

∂y

∂ỹ
=

1

F
(z + ỹ

∂z

∂ỹ
)

(4.6)

Let p = ∂z/∂x̃ and q = ∂z/∂ỹ, from Eqs 4.5 and 4.6 we have

∂z

∂x
=

Fp

z + x̃p

∂z

∂y
=

Fq

z + ỹq

(4.7)

Given two light sources s1 = [−a, b, 0] and s2 = [a, b, 0] (calibration of a, b and F were
discussed in Ch. 3), we can explicitly write light source vectors as follows:

~l1 = [−a− x̃
z

F
, b− ỹ

z

F
,−z]

~l2 = [a− x̃
z

F
, b− ỹ

z

F
,−z]

(4.8)
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Combining Eqs 4.1, 4.2, 4.3, 4.7 and 4.8, we obtain the reflectance map R as a function
of x̃, ỹ, z, p, q:

R(x̃, ỹ, z, p, q) = I0ρ

(
~n(x̃, ỹ, z, p, q) · ~l1(x̃, ỹ, z)

r1(x̃, ỹ, z)3
+

~n(x̃, ỹ, z, p, q) · ~l2(x̃, ỹ, z)

r2(x̃, ỹ, z)3

)

= I0ρ




p(z + ỹq)(a + x̃
z

F
)− q(z + x̃p)(b− ỹ

z

F
)− z

F
(z + x̃p)(z + ỹq)

√
p2(z + ỹq)2 + q2(z + x̃p)2 +

(z + x̃p)2(z + ỹq)2

F 2
·
(√

(−a− x̃
z

F
)2 + (b− ỹ

z

F
)2 + (z)2

)3

+
−p(z + ỹq)(a− x̃

z

F
)− q(z + x̃p)(b− ỹ

z

F
)− z

F
(z + x̃p)(z + ỹq)

√
p2(z + ỹq)2 + q2(z + x̃p)2 +

(z + x̃p)2(z + ỹq)2

F 2
·
(√

(a− x̃
z

F
)2 + (b− ỹ

z

F
)2 + (z)2

)3




(4.9)

Eq. 4.9 is similar to Eq. 2 in [95] and Eq.2 in [75], but we consider the 1/r2 as the
fall-off since the light sources are very close to the bone surface. Eq. 4.9 can be easily
extended to multiple point sources as below (M is the number of sources):

R(x̃, ỹ, z, p, q) = I0ρ

M∑
i

(
~n(x̃, ỹ, z, p, q) · ~li(x̃, ỹ, z)

ri(x̃, ỹ, z)3
) (4.10)

4.1.1 Solving Image Irradiance Equation

Given the image irradiance function I(x̃, ỹ), the image irradiance equation [42] is

R(x̃, ỹ, z, p, q) = I(x̃, ỹ) (4.11)

According to [25], different mathematical methods have been proposed to solve the equa-
tion for PSFS, including methods of resolution of PDEs [95, 96, 53, 76] and methods
using optimization [17]. The optimization methods based on the variational approaches
work well in most of general cases and does not need to set values to the singular and local
minimum points [25], so we adopt the optimization method and plug it in the multi-image
framework. Specifically, we solve Eq. 4.11 by minimizing the error between the image
irradiance I(x̃, ỹ) and the reflectance map R(x̃, ỹ, z, p, q) given in Eq. 4.9. Image irradi-
ance is obtained from the image intensity given the calibrated camera response function
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and spatial distribution (see details in Sec. 3.2). Different from the previous optimization
methods [44], the depth z is explicitly included in R. We compute the error as:

e(z, p, q) = λei(z, p, q) + (1− λ)es(z, p, q) (4.12)

and
ei(z, p, q) =

∫ ∫
image

[I(x̃, ỹ)−R(x̃, ỹ, z, p, q)]2dx̃dỹ

es(z, p, q) =
∫ ∫

image
[(z2

x̃ + z2
ỹ) + (p2

x̃ + p2
ỹ) + (q2

x̃ + q2
ỹ)]dx̃dỹ

(4.13)

where ei(z, p, q) is the irradiance error and es(z, p, q) is the smoothness constraint for z, p
and q. λ is a Lagrange multiplier. We find the solution to (z, p, q) by minimizing the error
e(z, p, q) [58]:

[z∗, p∗, q∗] = arg
z,p,q

min(λei + (1− λ)es) (4.14)

Similar to [41], we discretize Eq. 4.12 and obtain:

e(zk,l, pk,l, qk,l) =
∑

k

∑

l

(λeik,l + (1− λ)esk,l) (4.15)

The solution to Eq. 4.15 is to find [p∗k,l, q
∗
k,l, z

∗
k,l] that minimize e:

∂e

∂pk,l

|p∗k,l
= 0,

∂e

∂qk,l

|q∗k,l
= 0,

∂e

∂zk,l

|z∗k,l
= 0 (4.16)

Combining Eq. 4.15 to 4.16 yields update functions for pk,l, qk,l and zk,l in each iteration
[41]:

pn+1
k,l = p̄n

k,l +
λ

4(1− λ)
[Ik,l −R(k, l, z̄n

k,l, p̄
n
k,l, q̄

n
k,l)]

∂R

∂pk,l

|p̄n
k,l

qn+1
k,l = q̄n

k,l +
λ

4(1− λ)
[Ik,l −R(k, l, z̄n

k,l, p̄
n
k,l, q̄

n
k,l)]

∂R

∂qk,l

|q̄n
k,l

zn+1
k,l = z̄n

k,l +
λ

4(1− λ)
[Ik,l −R(k, l, z̄n

k,l, p̄
n
k,l, q̄

n
k,l)]

∂R

∂zk,l

|z̄n
k,l

(4.17)

p̄n
k,l, q̄n

k,l and z̄n
k,l are local 8-neighborhood average around the pixel (k, l). Detailed deriva-

tion can be found in Appendix I. The value for the (n + 1)th iteration can be estimated
from the nth iteration. During the iteration, the Lagrange multiplier λ is gradually in-
creased such that the smoothness constraint is reduced as well. In our experiment, setting
of Lagrance multiplier is empirical. We set it to 0.005 at the beginning and increase it by
0.02 whenever the error in Eq. 4.15 is reduced by 1%.

Given the initial values of p, q and z on the boundary, we compute a numerical solu-
tion to the bone shape. Variational methods usually rely on good initial guesses, so we
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Figure 4.2: Results of shape from shading from a single image. (a) input image. (b) shape
from shading. (1)-(5) are captured from different viewpoints.
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manually label the boundaries of each images. After that, z is set to −1 for each pixel in
the image. p and q are set to 0 for pixels that are not on the occluding boundaries. p and
q at each pixel on the occluding boundaries are computed as the cross product of viewing
vector (starting from the optical center) and the edge vector. Because it is difficult to esti-
mate the initial values of z, we reset z values by integrating the normals using the method
in [30], after several iterations when the error in Eq. 4.15 is reduced by 10%. We keep
performing such an adjustment until the algorithm converges.

One of the drawbacks of this method is its tendency that overly smoothes out local
discontinuities because only smoothness constraints are enforced. Therefore we introduce
a local robust regularizer based on surface geometry [107], which considers that the re-
constructed surface should be smooth, except where the probability of a discontinuity is
high. The robust regularizer constraint function is defined as

ψ(ξ|σ) = ρσ(‖∂ξ

∂x̃
‖) + ρσ(‖∂ξ

∂ỹ
‖), ρσ(ω) =

σ

π
log cosh

(πω

σ

)
(4.18)

where ξ ∈ {η|p, q, z}. The robust error kernel function ρσ(ω), the sigmoidal derivative
M-estimator (a continuous version of Huber’s estimator), is proved to possess the best
properties for handling surface discontinuities [107]. By discretizing Eq. 4.18 and ap-
plying the calculus of variations, we obtain the update term for ξ in terms of the robust
regularizer constraint.
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ỹ ‖

tanh
(π

σ
‖ξn
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ỹ ‖
)
− tanh

(π
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(4.19)

where ξx̃ and ξỹ are average of the forward and backward difference with respect to x̃
and ỹ. i.e. ξx̃ = [(ξk+1,l− ξk,l)+ (ξk,l− ξk−1,l)]/2, ξỹ = [(ξk,l+1− ξk,l)+ (ξk,l− ξk,l−1)]/2.
Note that Eq. 4.19 is in essential a scalar version of Eq. 26 in [107]. We will use ξ̂n

k,l

instead of the average ξ̄n
k,l in Eq. 4.17.

By these means, some local discontinuities can be partially recovered. However, the
recovered shape is still partial with limited information due to the small field of view.
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Table 4.2: Table of Notation in Sec. 4.2
Si - 3D point set reconstructed from image i in camera coordinates

Ni - number of points in shape Si

wTmi
- transformation from marker coordinates to world coordinates

M - transformation from marker coordinates to camera coordinates

Ŝi
w, Ŝi−1

w - transformed 3D point set in world coordinates
i−1Ŝi

w - aligned 3D point set with respect to adjacent point set Ŝi−1
w

i−1Ti - rigid transformation from the ith position to the i− 1th position

x, y, z - world coordinates

p, q - partial derivatives of z w.r.t. image coordinates x̃, ỹ

(a) (b)

(c) (d) (e)

Figure 4.3: Simulation results of shape from shading from multiple views. (a)-(d) Synthe-
sized images of different parts of a sphere. (e) Reconstructed sphere.

4.2 Global Shape-from-Shading using Multiple Partial Views

As shown in Fig. 4.2, most images include a small fraction of visible contours. How do we
estimate the complete shape reliably? An intuitive solution is to merge individual shapes
recovered from different views as shown in Fig. 4.3.

However, each image is defined in a view dependent local coordinates. We must first
transform them to the world coordinates before we merge individual shapes. We solve
this problem by using a navigation tracking system. We attach optical markers to the
endoscope (as showed in Fig. 3.2) and track them to obtain transformations between the
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local and the world coordinates for each image.

Consider a 3D-point set [Si]3×Ni
reconstructed from the image i, where Ni is the num-

ber of points on the shape Si. If all the shapes are reconstructed correctly, without any er-
rors from the tracking system and the calibration process, they should be perfectly aligned
in the world coordinates. Let wTmi

denote the transformation from the marker at the po-
sition capturing the ith image to the world coordinates, and M denote the transformation
from the marker coordinates to the camera coordinates (image distortion has been cor-
rected in advance). Thus, any 3D-point set Si in the local camera coordinates can be
transformed to the world coordinates Ŝi

w by:

Ŝi
w =w Tmi

· [M−1 · Si;11×Ni
] (4.20)

where Ŝi
w is represented using homogenous coordinates in the world reference frame. As

shown in Fig. 4.4, each shape from single image is transformed to the world coordinates.
However, due to the tracking error (less than 0.3mm) and the calibration error (less than
6 pixels), individual shapes Ŝi

w are not initially well matched with each other (e.g. Fig.
4.4 (c) and (d)). Since the bone is rigid, we use ICP [4] to improve the matching between
different views by ensuring overlapped fields of view in adjacent images. Then, for each
shape Ŝi

w, ICP results in an aligned shape i−1Ŝi
w with respect to the adjacent shape Ŝi−1

w :

i−1Ŝi
w =i−1 Ti ∗ Ŝi

w (4.21)

where i−1Ti is the rigid transformation computed from ICP.

Using ICP, we can align all the shapes from one view with respect to the shape in the
reference view, i.e. the shape Ŝ1

w in the first image. Combining Eq. 4.20 and 4.21, we have

1Ŝi
w =

i−1∏
j=1

jTj+1 ·wTmi
· [M−1 · Si;11×Ni

] (4.22)

where 1Ŝi
w is the aligned shape of Ŝi

w with respect to the reference shape Ŝ1
w, as shown in

Fig. 4.5 (a) and (b).

Once the contours are aligned, we ”re-grow” the shape in the local views from the
global boundaries. We compute the average on boundaries in Eg. 4.17 using the neighbors
in the world coordinates. The key idea is to keep the values on the global boundary updated
based on the shape developed in the local view, and therefore SFS in the local views are
guided towards convergence under global boundary constraints.

We restart the SFS in the local coordinates simultaneously for all images. After initial-
izing (z, p, q) in each image, we initialize values on the corresponding global boundary.
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Table 4.3: Global Shape-from-Shading: Key Steps

* Loop k=1:number of images
1) Compute SFS from single image using Eq. 4.17
2) Track endoscope motions
3) Transform local views to the world coordinates using Eq. 4.20
4) Align each shape to the previous shape using ICP using Eq. 4.21
End loop

* Compute global boundaries using Eq. 4.22
* Compute global constraints (z, p, q) in the world coordinates
* Loop until converge

1)Loop k=1:number of images
a) Update (z, p, q) in the local views according to the global constraints
b) Compute new (z, p, q) by using Eq. 4.17
End loop

2)Update (z, p, q) in the world coordinates
End loop

If there are two or more points from different views that are mapped to the same point in
the world coordinates, (z, p, q) at those points are computed using the average. In each
iteration, we grow each image and update the values on the global boundary. Compared
to the single image shape-from-shading (see Fig. 4.4 (a)), we obtain more information
from global boundaries (see Fig. 4.5 (c)). At the end of each iteration, we update the
local (z, p, q) given the global constraints. We proceed this until the algorithm converges.
With the global boundary constraints, our algorithm converges quickly although not in
real-time (around 5 minutes for 18 images in Matlab with P4 2.4G CPU). Table 4.3 lists
the key steps in the multi-view shape from shading.

We use a laser range scanner to build a ground truth shape of the spine. The maximum,
minimum, mean and RMS errors are 2.8mm, 0.0mm, 1.24mm and 1.45mm respectively.
This level of accuracy is practical for surgery. More views of the reconstructed surface
compared to the ground truth are shown in Fig. 4.6. We also compare our results with
the results under the orthographic projection assumption in Fig. 4.7. Compared to the
real shape captured by a regular camera, we find that the shape under the orthographic
projection is over grown near the boundaries.

41



(1)(5)(11)(18)

(a) Undistorted radiance images with manually labeled boundary

(b) Shape from single image

(c) Unaligned individual shapes in the world coordinates

(d) Unaligned 3D contours in the world coordinates

Figure 4.4: Problems of directly merging the individual shapes in the world coordinates.
18 images are captured by moving the endoscope horizontally (only translation). Four of
them are shown as an example. (a) After removing the distortion and illumination effects,
the boundaries in each image are labelled by hand, and the initial (p, q) are computed
automatically on the boundaries. (b) Shape from each single image are reconstructed using
the method described in Section 4.1. (c) Mis-aligned shapes in the world coordinates. (d)
Mis-aligned 3D contours in the world coordinates.
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(a) Aligned individual shapes in the world 
coordinates

(b) Aligned 3D contours in the world coordinates

(1)(5)(11)(18)

(c) Projection of global contours on individual 
images

(d) Reconstruction from global constraints

Figure 4.5: Illustration of the multi-image shape-from-shading. (a) Aligned shape in the
world coordinates. (b) Aligned 3D contours in the world coordinates. (c) Projection of
the global constraints onto each image. (d) Final shape reconstructed using the method
described in Section 4.2.
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(c)(a)

(b) (d)

Figure 4.6: Different views of the reconstructed surface (yellow) compared to the ground
truth (red). (a) top view (b) bottom view (c) left view (d) right view.

(a)

(b)

(c)

Figure 4.7: (a) Real shape captured by a regular camera. (b) Reconstructed shape under
orthographic projection. (c) Reconstructed shape under perspective projection.
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4.3 Conclusions and Discussion

Shape-from-shading and shape-from-motion have been successfully applied in many com-
puter vision applications, but both have difficulties for 3D reconstruction from orthopedic
endoscopy due to the featureless bone surface and partial occluding boundaries in a small
field of view. In this work, we propose a method to combine the strengths of both ap-
proaches to solve our problem: we reformulate the shape-from-shading for endoscopes un-
der near point light sources and perspective projection, and develop a multi-image shape-
from-shading framework. To deal with the tracking and calibration errors, we use ICP to
improve the alignment of partial shapes and contours in the world coordinates. As a result,
we reconstruct the shape of a larger bone area and provide useful visualization for surgical
navigation during minimally invasive procedures.

A couple of issues are worthy of further discussion. We build a near-field lighting and
perspective shape-from-shading (NLPSFS) model without assuming that the light sources
are located at the optical center. Our contribution is to present a new model for medical
endoscopes, instead of a new solution to any existing models. We adopt the variational
optimization method since it is effective for most general cases and no pre-defined values
are involved for the singular and local minimum points. Since our multi-image approach is
very general, other PSFS solutions such as Prados et al.’s [76] and Tankus et al.’s approach
[95] can be employed to solve the NLPSFS problem as well. We plan to compare different
SFS methods in the future work. In this thesis we focus on the formulation of the NLPSFS
model and multi-image framework.

As mentioned in the previous section, in the real operating environment, the bone
surfaces are usually 5-10 mm away from the endoscope. The light sources and camera
separation distance is 3.5mm in our case. These two numbers are in the same order of
magnitude as the distance to the scene. The approximation becomes inaccurate if we
ignore the parameters a and b in Eq. 4.9. However, it is a reasonable approximation when
the endoscope is far away from the scene. In our work we attempt to build a general
and accurate model to handle more realistic cases, thus we have calibrated all parameters
beforehand.

One advantage of our method is that the computation of single image SFS (see the
first step of Table 1) can be parallelized since the error function in Eq. 4.15 uses only one
single image. Note in the last step of Table 1, the computation of single image SFS cannot
be parallelized because the global constraints need updates for each iteration.

By using ICP in our multi-image framework, we are able to deal with tracking and
calibration errors. Moreover, our algorithm can tolerant some shape errors caused by the
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single image SFS in the first step of Table 1. Therefore we use an early stop strategy during
the single image SFS by terminating the iterations before the error in Eq. 4.15 reaches zero
(we set the threshold to 15% of the initial error). With this strategy, we significantly speed
up the algorithm. This is one of the reasons why the result from a single image tends to be
flat. Other reasons include partial occluding boundaries and the smoothness constraints.

The results from multi-image SFS (MISFS) still lack high frequency shape details due
to over-smoothing. Besides, it cannot deal with occlusions due to blood and tissues [57] in
surgery, and inaccurate shapes caused by endoscope rotations. To overcome above issues,
we will introduce a global shape prior in the following chapters. In Ch. 5, a statistical
shape prior, also known as a statistical atlas, is introduced. An efficient framework of
constructing the atlas is described as well. In Ch. 6, we modify the bottom-up MISFS by
enforcing the statistical atlas as a new global constraint. We also develop a top-down eval-
uation refinement to improve reconstruction. Please see details in the following chapters.
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Chapter 5

Construction of Statistical Shape Prior
for Bones from Population

The MISFS framework proposed in Ch. 4 results in shapes that are often over-smoothed,
which makes it hard to apply the method to intricate structures such as spine vertebrae.
This is because shape-from-shading is a fundamentally under-constrained problem and re-
quires additional constraints to help solve it. In the absence of any other knowledge, con-
straints enforcing smoothness are used, often leading to shapes that are overly smoothed
and lack detail. In addition, we assume that images are captured using pure translation of
the endoscope. The rotation of the endoscope can result in wrong correspondences of the
occluding boundaries across different views in turn leading to inaccurate reconstruction.
Moreover, many substances (such as blood, pieces of bone, tissue) in surgery may obscure
the bone surface and mislead any local constraints used in reconstruction.

Therefore, a global model is needed to recover the shape detail and correct the inac-
curate reconstruction due to the endoscope rotations and occlusions. For example Hong
et al. take the advantage of the tubular nature of the colon to design their reconstruction
algorithm [39]. In this chapter, we introduce a statistical shape prior, also known as statis-
tical atlas, for bone structures. In Ch. 6 we will present a new algorithm using this shape
prior to improve the MISFS method.

Statistical atlases are used as references to interpret CT/MRI images [64], and to rep-
resent the shape or appearance of human anatomical structures [91, 90]. Some atlases
are based on physical properties, such as elastic models [6, 3],“snakes” [47], geometric
splines [27], and finite elements based models [70]. Others are modeled from the statisti-
cal perspective. Szeliski [92] introduced the statistical atlas to analyze the shape variation
between patients. In order to analyze the shape and appearance variation, principal compo-

47



nent analysis (PCA) is widely used [14, 65, 80]. The two most common statistical atlases
are the shape atlas [16] and the appearance atlas [15]. The shape atlas uses only geometric
information, such as landmarks, surfaces (boundaries of 3D objects) or crest lines [90].
The appearance atlas uses both geometric features and intensity of pixels or voxels.

As a key to build atlases, 3D registration has been studied for years in computer vi-
sion, but it still remains a critical problem in the medical image field due to the geometrical
complexity of anatomical shapes, and computational complexity caused by the enormous
size of volume data. It has numerous clinical applications such as statistical atlas con-
struction for group study and statistical parameters analysis [12, 38], mapping anatomical
atlases to individual patient images for disease analysis [10, 28, 46] and image segmenta-
tion [79, 89].

Depending on the type of the transformation being involved, registration can be rigid
or non-rigid. If the shape has no change between the two images, registration should
be rigid. For example, the intra-subject inter-modality (same patient; different imaging
system) registration aligns images that are captured at the same time. However, when we
take into account the time, i.e., when two images are captured at different time, such as
in intra-subject registrations, most of them are non-rigid due to the shape variation of the
anatomical structures caused by swelling, bone fractures, tumor growth changes, intestinal
movements etc. In addition, inter-subject (different patients) registrations are usually non-
rigid due to the local anatomical difference between patients. So far non-rigid (also known
as deformable) registration is still a challenging problem [18].

Non-rigid registration is used to find a non-rigid transformation from one 3D surface
to the reference surface by minimizing the distance between two surfaces. In general, a
non-rigid transformation is represented by a global rigid or affine transformation plus a
local non-linear deformation, which can be represented by radial basis functions (RBF)
[113], octree-spline [93], thin-plate spline [11, 12], geometric splines [27], finite elements
[70], or free form B-spline [80], etc. To evaluate the results of registration, different sim-
ilarity measurements will be selected according to different image features and imaging
modalities. For example, sum of squared distance (SSD) is usually used for geometric
features [5], but correlation coefficients (CC) [52], Ratio Image Uniformity (RIU) [106],
and mutual information (MI) [101] are used for intensity features. Registration can be
simplified given known correspondences, for example, using markers [63]. Nevertheless,
markers are not allowed to be used or even available in many scenarios. Alternate estima-
tion of correspondences and transformations are widely used for both rigid cases [5] and
non-rigid cases [12, 11, 33]. Moreover, with the increase of the data size and geometri-
cal complexity, multi-resolution strategy has been adopted to the registration framework
[46, 26, 85]. Sparse matrices are also used to handle the computational complexity [69].
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Figure 5.1: Two-level non-rigid registration framework.

In this chapter, we developed a two-level approach inspired by Chui and Rangarajan’s
thin-plate spline based algorithm [11] and the previous multi-resolution work [85]. Since
Chui and Rangarajan’s algorithm [11] is not able to handle more than 2000 3D points [69],
we broke down the registration into a two-level process to deal with both computational
and geometrical complexity. We first applied Chui and Rangarajan’s algorithm [11] to the
simplified low-resolution surfaces. To improve efficiency, instead of successively match-
ing each resolution from coarse to fine, we directly propagated the correspondences from
low resolution to high resolution by interpolation. A local refine procedure was introduced
for both low-resolution and high-resolution surfaces to improve matching. Finally we ap-
plied PCA to the aligned surfaces to construct the femur atlas. Fig. 5.1 illustrates the
flowchart of our two-level framework.

5.1 Two-Level Framework

5.1.1 Mesh Simplification

Garland’s quadric error metrics (QEM) based mesh simplification [32] method was used
to compute low-resolution surfaces. QEM is based on iterative contraction of vertex pairs.
The cost of contraction is represented by a quadric error and the whole process is an iter-
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Table 5.1: Table of Notation in Sec. 5.1
XL, Y L - low resolution surface

XH , Y H - high resolution surface

xL
i , yL

i - vertex on low resolution surface

xH
j , yH

j - vertex on high resolution surface

c1 - coefficients for radial basis functions

c2, c3 - coefficients for affine transformation

ϕ(·) - symmetric radial basis function

X ,Y ,Z - coordinates axes

N, N low
ref - number of vertices on low resolution reference surface XL

M, Nhigh
ref - number of vertices on high resolution reference surface XH

S1, S2, S3 - neighboring triangles sharing the same vertex yi

y1
i , y

2
i , y

3
i - projection of xi onto S1, S2, S3

d1, d2, d3 - distance from xi to S1, S2, S3

vi - surface vector

K - number of training surfaces

κ - mean surface vector

Ψ - covariance matrix

ηi - PCA coefficient vector

Ui - eigenmatrix

US
i - first S columns of eigenmatrix

d(·) - point to surface distance

dm(·) - surface mean error

dRMS(·) - surface RMS error

T̄ - processing time

ative minimization of the quadric error. Since QEM provides a fast, simple way to guide
the entire process with relatively minor storage costs, the simplification step is extremely
fast.

An important parameter involved in the simplification process is the number of ver-
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tices in the low-resolution surfaces. To maintain the tradeoff between the accuracy and
efficiency, a reasonable number is selected based on a series of leave-one-out experiments
(See details in Sec. 5.1.6).

5.1.2 Low-Resolution Non-Rigid Registration

We applied Chui and Rangarajan’s non-rigid registration method [11] to the simplified sur-
faces. With this method, fuzzy correspondences and a smoother optimization process can
be achieved. A dual update strategy conjuncted with a deterministic annealing technique
is adopted to estimate the correspondences and transformation alternately. The non-rigid
transformation is parameterized using thin-plate splines to generate a smooth spatial map-
ping.

5.1.3 Low-Resolution to High-Resolution Interpolation

To improve the efficiency, instead of successively matching each resolution from coarse to
fine, we directly propagate the correspondences from low resolution (XL and Y L) to high
resolution (XH and Y H) by interpolation. The surface interpolation method is a derivative
of methods known jointly as “moving least squares” [112]. Radial basis functions (RBF),
finite element, multivariate spline such as thin-plate spline (2D bivariate spline) and tri-
harmonic thin-plate spline, are popular techniques used for surface interpolation. Carr et
al. [9] applied multivariate splines method into radial basis functions by using splines
as kernel functions. In this work we chose Gaussian kernel due to its simple mathemat-
ical representation and less restrictions on nodes [9]. More specifically, we used a linear
affine function plus a series of radial basis functions (RBFs) to construct the interpolation
function:

yL
i = g(xL

i ) = c1 · [ϕ(‖xL
i ,xL

1 ‖), · · · , ϕ(‖xL
i ,xL

N‖)]′ + c2 + c3 · xL
i︸ ︷︷ ︸

g(xL
i )

(5.1)

where xL
i is a vertex on the low-resolution surface XL, whose correspondence on the low-

resolution surface Y L is yL
i , i = 1, 2, · · · , N (N is the number of vertices on XL). xL

i

and yL
i are both 3×1 vectors with three coordinates. c1 is a 3×N coefficient matrix of

radial basis functions. ϕ(‖xL
i ,xL

j ‖) is a symmetric radial basis function. We selected a
Gaussian kernel ϕ(ui,uj) = exp(−‖ui − uj‖/0.5), as suggested by [72]. c2 and c3 are
coefficients for the affine transformation. c2 is a 3×1 vector and c3 is a 3×3 matrix. Given
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N correspondences, there are N equations for each axis (X , Y and Z):



ϕ(xL
1 ,xL

1 ) · · · ϕ(xL
1 ,xL

N) 1 xL
1

T

...
ϕ(xL

N ,xL
1 ) · · · ϕ(xL

N ,xL
N) 1 xL

N
T




︸ ︷︷ ︸
Pk

·




ck
1
T

ck
2
T

ck
3
T




︸ ︷︷ ︸
ck

=




yL
1

k

...
yL

N
k




︸ ︷︷ ︸
yvk

(5.2)

where c1
k, c2

k and c3
k denote the kth row of c1, c2 and c3, respectively. yL

i
k denotes the

kth row of yL
i , k can be 1,2 or 3, corresponding to the axis X , Y , and Z . There are 3N

equations in total:

P = [P1,P2,P3]′, c = [c1, c2, c3]′,y = [y1,y2,y3]′ (5.3)

P is a 3N×(N + 4) matrix. In order to ensure smooth interpolation, additional orthog-
onality constraints

∑
i x

L
i

T
c1,i = 0 [8] were added to Eq. 5.2, where c1,i denotes the ith

column of c1: [
P

xL
1 xL

2 · · · xL
N 04×4

]

︸ ︷︷ ︸
Q

· c =

[
y

04×1

]

︸ ︷︷ ︸
w

(5.4)

The least-squares solution for this linear system, Qc = w, is given by c = (QTQ)−1QTw.

Finally, the correspondence of a vertex xH
j in the high-resolution surface XH is com-

puted by Eq. 5.1: yH
j = g(xH

j ), for j = 1, · · · ,M (M is the number of vertices on
XH).

5.1.4 Refining Registration

For both low-resolution and high-resolution surfaces, we applied a refining procedure to
improve accuracy. The refining procedure includes both local and global steps.

Local Refining

The registration results can be further improved by minimizing the point-to-surface dis-
tances. This idea is illustrated by Fig. 5.2. xi is a vertex on the deformed surface X ,
whose corresponding vertex on the surface Y is yi. The neighboring triangles which share
the same vertex yi are S1,S2 and S3. We can compute the distance from xi to each neigh-
boring triangle (the distance computed from the vertex xi to the plane where the triangle
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Deformed Vertex on Surface X

Corresponding Vertex 
on Surface Y

Figure 5.2: Illustration of the local refine procedure between the vertex and surface. xi is a vertex
on the deformed surface X , whose correspondence on the surface Y is yi. The projection of xi to
each triangle St sharing yi is denoted by yi

t. dt is the distance between xi and yi
t. (t = 1, 2, 3, · · · )

lies), i.e. d1, d2 and d3. If any of them is smaller than d0 = ‖xi − yi‖, we will use the
corresponding projected surface point to replace yi to achieve a smaller surface distance.

For cases where different vertices on the surface X correspond to the same surface
point on Y , we will assign this corresponding surface point to the vertex on X with the
smallest distance and mark it unavailable to other vertices on X .

Global Refining

For training surfaces with sparse points, we cannot directly apply the local refining pro-
cedure since no high-resolution surface can be used as a target shape, for example, the
spine data. Compared to bones such as femur and knee, spine vertebrae have complex
shapes which make it hard to automatically segment from CT images (using for example,
marching cubes algorithm). On the other hand it is tedious to manually label over ten thou-
sand points to obtain high-resolution surfaces. Given some shape information, Kaus et al.
[49] use learned deformable models to generate aligned 3D meshes. In our case without
knowing any shape prior, we propose a semi-automatic strategy by taking advantage of
the two-level framework to generate high-resolution surfaces from sparse labeled points.
Given a reasonable amount of manual labeling, for instance 250 points per model, we are
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able to combine surface segmentation and registration in the same procedure, and reduce
manual work to a minimal.

The sparse points set is first used as the low resolution input for the two-level frame-
work. In the final refining step, instead of the local refining, we propose a global refining
which uses the sparse labeled points as a target shape. We apply a RBF based warping to
refine the high-resolution surface towards the original labeled points. We employ the same
RBF functions used for the low-resolution to high-resolution interpolation (see Sec. 5.1.3)
but different sigma for the RBF kernel. Here we choose σ as 250. The larger σ represents
stronger global deformation.

5.1.5 Atlas Construction

Given aligned high-resolution surfaces, rigid pose alignment is applied to eliminate the
effect of imaging poses [34] prior to atlas construction. Suppose we have K aligned sur-
faces and each surface is represented by a 3M×1 vector vi(i = 1, · · · , K), where M is
the number of vertices on each surface and each vertex has 3 components along X , Y , and
Z axes. We compute the mean vector κ and covariance matrix Ψ, and then apply PCA to
find the low dimensional representation of the data:

κ=
1

K

∑
v, Ψ=

1

M − 1
[v1−κ,· · ·,vK−κ]·[v1−κ,· · ·,vK−κ]′ (5.5)

Ψ = UΛU′ (5.6)

Therefore, a compact representation of any surface model is given by a mean vector plus
a linear combination of principal components (modes):

vi = κ + Uηi (5.7)

where ηi is a K×1 coefficient vector obtained by projecting vi onto each principal axis.
New surface models, not included in the data set, can be generated by manipulating the
coefficient ηi.

Without losing generality, femur and spine data have been used to demonstrate our
method. Given a big number of femur data, we are able to study the parameters used to
improve the algorithm. The spine atlas is later used to enhance the MISFS method (see
details in Ch. 6).
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Figure 5.3: Leave one out experiment.

5.1.6 Selection of Simplification Parameters

In the two-level framework, the resolution of the simplified surfaces affects the final re-
sult. The fewer the number of points, the faster low-resolution registration is achieved but
results in high-resolution registration are less accurate. To maintain both accuracy and ef-
ficiency, an appropriate number is selected based on a series of leave-one-out experiments.
For some extreme cases with symmetry shapes, the fewer points may result in a perfect
match in the low resolution yet a misalignment in the high-resolution. Thereby not only
the resolution parameter but also some landmarks are needed to handle such ambiguity.
In our work, since shapes of the femur and spine vertebra are complex enough, we do not
consider such extreme situations. Thus we do not require any landmarks in our method.

Let N low
ref denote the number of vertices in the low-resolution surfaces. As Fig. 5.3

shows,

for each surface vi(i = 1, · · · , K), K = 87, we used other K− 1 surfaces to construct
the atlas using Eq. 5.5 and 5.6. Let US

i denote the first S columns of the principal compo-
nent matrix Ui, which consists of 95% of the shape variation. Then vi(i = 1, · · · , K) can
be reconstructed by this atlas:

ṽi = κ + US
i U

S
i

T
(vi − κ) (5.8)

We compared surface distance between the original surface vi and the reconstructed sur-
face ṽi by computing the mean error and root mean square error. We repeated this proce-
dure for each surface and computed the averaged mean error and RMS error based on K
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leave-one-out experiments:

dt
m =

1

K

∑
i

dm(vi, ṽi), dt
RMS =

1

K

∑
i

dRMS(vi, ṽi) (5.9)

By tuning the number N low
ref , we compared the error dt

m and dt
m, and processing time T t

for the two-level registration as well. Fig. 5.4 shows when N low
ref ≥ 0.2%Nhigh

ref , dt
m will be

less than 1mm, which is a practical number for clinical applications. Fig. 5.5 shows when
N low

ref ≥ 0.3%Nhigh
ref , the averaged processing time of the two-level registration will exceed

5 mins (2.4GHz Pentium PC with 1GB RAM). So N low
ref = 0.2%Nhigh

ref was finally used in
our algorithm to build atlases and estimate the error distributions.

5.2 Experiments and Results

5.2.1 Evaluation of Two-level Registration

We use the bottom portion of the femur as an example given its important relationship with
the knee. Fig. 5.6 shows an example that how the surface distance is decreased in each
step of the two-level framework, and visual results are shown in Figs. 5.7-5.12. In this
example we have two high-resolution surfaces XH (21130 vertices, 42256 triangles, 65.8
mm in z-axis) and Y H (26652 vertices, 53300 triangles, 105.9 mm in z-axis) (Patient X is
a 79 years old female, her femur length is 472.6 mm; Patient Y is a 53 years old female,
his femur length is 477.6 mm). We first computed point-to-surface distance from XH to
Y H [1]:

d(p, Y H) = min
p′∈Y H

‖p− p′‖2, p ∈ XH (5.10)

where ‖ · ‖2 is Euclidean norm. The HSV color (HSV stands for hue, saturation, value)
of each vertex on XH denotes the distance d(p, Y H). We also computed the mean error
dm(XH , Y H) and root mean square (RMS) error dRMS(XH , Y H) between XH and Y H

based on Eq. 5.10:

dm(XH , Y H) = 1
|XH |

∑
p∈XH d(p, Y H)dXH

dRMS(XH , Y H) =
√

1
|XH |

∑
p∈XH d(p, Y H)2dXH

(5.11)

1. Fig. 5.7 shows the high-resolution surfaces XH and Y H . With respect to the bound-
ing box diagonal of Y H (158.5mm), the mean error is 6.49% and root mean square
error is 7.70%.
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Figure 5.6: Illustration of how the surface distance is decreased in each step of the two-level
framework.

2. Fig. 5.8 shows the low-resolution surfaces XL (169 vertices, 334 triangles) and Y L

(213 vertices, 422 triangles) after simplification. With respect to the bounding box
diagonal of Y L (158.3mm), the mean error is 6.53% and root mean square error is
7.74%.

3. Fig. 5.9 shows the deformed low-resolution surfaces XL(1) and Y L after apply-
ing Chui and Rangarajan’s non-rigid registration [11] to XL. With respect to the
bounding box diagonal of Y L, the mean error is 1.68% and root mean square er-
ror is 2.13%. The surface distance has been significantly decreased by Chui and
Rangarajan’s non-rigid registration method [11].

4. Fig. 5.10 shows the deformed low-resolution surfaces XL(2) and Y L after applying
a local refining process to XL(1). With respect to the bounding box diagonal of Y L,
the mean error is 0.68% and root mean square error is 1.42%, which demonstrates
that local point-to-surface refinement can decrease surface distance further.
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Figure 5.7: Illustration of the high-resolution
surfaces XH and Y H . Point-to-surface distances
from XH to Y H are illustrated by a HSV color
map: the color of each vertex on XH represents
the distance d(p, Y H), p ∈ XH . (Both surface
(left) and mesh (right) are showed in the bottom
row.)
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Figure 5.8: Illustration of the low-resolution
surfaces XL and Y L after applying the mesh
simplification (see Sec. 5.1.1) to both XH and
Y H . Point-to-surface distances from XL to Y L

are illustrated by a HSV color map: the color
of each vertex on XL represents the distance
d(p, Y L), p ∈ XL. (Both surface (left) and mesh
(right) display modes are showed in the bottom
row.)

5. Fig. 5.11 shows the interpolated high-resolution surfaces XH(1) and Y H after ap-
plying the interpolation to XH . With respect to the bounding box diagonal of Y H ,
the mean error is 1.65% and root mean square error is 2.10%. The reason why
the surface distance slightly increases by interpolation is: only 0.80% of vertices
on XH(1) have correspondences computed from low-resolution registration, other
correspondences were obtained by interpolation.

6. Fig. 5.12 shows the deformed high-resolution surfaces XH(2) and Y H after applying
a local refining process to XH(1). With respect to the bounding box diagonal of Y H ,
the mean error is 0.28% and root mean square error is 1.26%, which once again
demonstrates that local point-to-surface refining procedure is helpful for decreasing
surface distance.
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Figure 5.9: Illustration of the deformed low-
resolution surfaces XL(1) and Y L after apply-
ing Chui and Rangarajan’s non-rigid registration
method (see Sec. 5.1.2) to XL. Point-to-surface
distances from XL(1) to Y L are illustrated by
a HSV color map: the color of each vertex
on XL(1) represents the distance d(p, Y L), p ∈
XL(1). (Both surface (left) and mesh (right) dis-
play modes are showed in the bottom row.)
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Figure 5.10: Illustration of the deformed low-
resolution surfaces XL(2) and Y L after apply-
ing the refinement ( see Sec. 5.1.4) to XL(1).
Point-to-surface distances from XL(2) to Y L are
illustrated by a HSV color map: the color of
each vertex on XL(2) represents the distance
d(p, Y L), p ∈ XL(2). (Both surface (left) and
mesh (right) display modes are showed in the bot-
tom row.)

5.2.2 Comparison to Other Registration Methods based on Femur
Data

We compared our registration algorithm with the classical iterative closet point (ICP)
method since it is widely used in many medical image registration problems. Given 87
training surfaces, the distribution of RMS error and mean error of the two approaches are
showed in Fig. 5.13. For RMS error, they are centered between 0.6-1.0mm (the maxi-
mum is 1.4mm) in our method, but in ICP the range is between 3.1-6.5mm (the maximum
is 8.5mm). For the mean error, they are centered between 0.5-0.7mm (the maximum is
0.9mm) in our method, but in ICP the range is 2.5-6.5mm (the maximum is 7.5mm). It is
obvious that the two-level non-rigid registration has a better performance than ICP does.

Since Chui and Rangarajan’s thin-plate spine (TPS) based method [11] cannot deal
with the complexity of our data, we cannot directly compare two methods. Alternatively,
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Figure 5.11: Illustration of the deformed high-
resolution surfaces XH(1) and Y H after applying
interpolation (see Sec. 5.1.3) to XH . Point-to-
surface distances from XH(1) to Y H is illustrated
by a HSV color map: the color of each vertex
on XH(1) represents the distance d(p, Y H), p ∈
XH(1). (Both surface (left) and mesh (right) dis-
play modes are showed in the bottom row.)
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Figure 5.12: Illustration of the deformed high-
resolution surfaces XH(2) and Y H after apply-
ing the refinement (see Sec. 5.1.4) to XH(1).
Point-to-surface distances from XH(2) to Y H is
illustrated by a HSV color map: the color of
each vertex on XH(2) represents the distance
d(p, Y H), p ∈ XH(2). (Both surface (left) and
mesh (right) display modes are showed in the bot-
tom row.)

we have noticed from Fig. 5.5 that our method only needs 5 minutes or less to match any
size of surfaces with less than 200,000 vertices. However, Chui and Rangarajan’s method
costs 5 minutes for 350 vertices, 10 minutes for 460 vertices, 20 minutes for 610 vertices,
etc. It is obvious that our algorithm significantly improves the efficiency. To maintain
a good accuracy for practical applications, a best simplification parameter was selected
based on a series of leave-one-out experiments (see details in Sec. 5.1.6).

5.2.3 Femur Atlas

We have collected CT scans of 87 different patients all with one healthy femur. The scans
were acquired at the West Pennsylvania Hospital (Pittsburgh, PA) and UPMC Shadyside
Hospital (Pittsburgh, PA) over a period of 10 years, and annonymized before use. There
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Figure 5.13: RMS and Mean error distributions ICP and our method.
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Figure 5.14: Data distributions in terms of age (left) and femur length (right).

are 53 males and 34 females. 43 are left femurs and 44 are right ones. The patients’ age
ranges from 39 to 78 and their femur length ranges from 400mm to 540mm (Fig. 5.14
shows the data distribution in terms of the age and femur length). The CT volumes were
segmented to provide triangulated surface models using Marching Cube (MC) algorithm.
All surface models were smoothed by the method proposed in [20]. The scans were ac-
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Figure 5.15: Femoral head atlas: illustration of shape variation in the first, second and third mode.
The first mode encodes 41.50% of shape variation, the second and third modes encode 19.78% and
7.64% of shape variation. The color shapes highlight the local shape variation.

quired under a protocol for computer assisted total hip replacement, and contained only the
proximal portion of the femur including the femoral head and the distal portion including
the condyles. Thereby each femur model has two seperate surfaces containing the femoral
head and condyles, respectively. Given the particularity of the femur data, we need to do a
pre-alignment to get rid of the effect caused by the missing portions. Please see details in
Appendix C. Experiments show that the rate of convergence has been improved from 78%
to 95.2% by applying such an alignment.

Fig. 5.15 shows shape variation in the first three modes of the femoral head atlas. The
color shapes (pink and blue) are used to highlight the local variation. For example, the size
of the femoral head (denoted by the pink circle) gradually reduces along the first mode, but
remains almost the same along the second mode. The greater trochanter (denoted by the
blue area) becomes longer but narrower along the first mode. It remains the same length
but becomes wider along the third mode.

Fig. 5.16 shows shape variation in the first three modes of the condyles atlas. We
noticed that the top of the condyles (denoted by the blue area) changes a lot along each
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Figure 5.16: Condyles atlas: illustration of shape variation in the first, second and third mode.
The first mode encodes 25.70% of shape variation, the second and third modes encode 9.75% and
8.21% of shape variation. The color shapes highlight the local shape variation.

mode. This is because each scan was cut differently. The top area can only be estimated
from the reference surface without any refining from the original surfaces. The lateral
epicondyle (denoted by the blue point on the right) becomes larger along the first mode,
compared to the medial epicondyle (denoted by the blue point on the left). It is similar to
the third mode but the change is smaller. The condyles become longer but narrower along
the second mode.

Figs. 5.17-5.18 show shape variation in the first two modes of the entire femur atlas.
For the first mode, the femoral head and greater trochanter follow the similar change as
Fig. 5.15 shows, and the condyles become longer and narrower as Fig. 5.16 shows. The
atlas of the entire femur behaves in a similar way as the individual portion does for the
first mode. For the second mode, the greater trochanter becomes shorter but it remains the
same as in Fig. 5.15. The condyles become much longer but they keep the same length as
in Fig. 5.16. It means that the second dominant mode in the individual atlas may not be
the second dominant mode in the conjunction case.

Fig. 5.19 shows the shape variation encoded in each mode of three atlases. To keep
95% of shape variation we only need 26 modes for the femoral head atlas, 49 modes for
the condyles atlas and 20 modes for the entire femur atlas. The reason why the condyles
atlas needs more modes to keep most of shape variation is because the training surfaces of
the bottom portion of the femur change a lot in shape (i.e. Each surface contains different
length of femur shaft).
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Figure 5.17: Femur atlas: 27.67% of shape variation is encoded in the first mode. The color
shapes highlight the local shape variation.
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Figure 5.18: Femur atlas: 18.63% of shape variation is encoded in the second mode. The color
shapes highlight the local shape variation.

5.2.4 Spine Vertebra Atlas

In our endoscopic reconstruction experiments we use lumbar vertebrae. Lumbar vertebrae
are the largest segments of the movable part of the vertebral column. We select all five
lumbar vertebrae (L1-L5) and the last thoracic vertebra (T12) for our study.

We acquired CT scans of three cardavers at the University of Pittsburgh Medical Center
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Figure 5.19: Illustration of the shape variation encoded in modes of the femoral head atlas(blue),
condyles atlas(pink) and entire femur atlas(green).

(UPMC) and collected the data in the DICOM format (GE Medical Systems; DICOM
format; LightSpeed QX/I; SliceThickness=1.2500; Width = 182; Height = 177; BitDepth
= 16; PixelSpacing = [2x1 double]; Protocol Name = 8.1 Pelvis for Fracture). To enlarge
the dataset, we have also scanned three human-size artificial spines by the same protocol.
We used the solid white plastic sawbones model (Pacific Research Laboratories, Inc., #
1352-31) made of rigid plastic. The shape of the sawbones models are cast from different
natural real specimens (See Appendix D for our collection of spine images).

We have collected a high-resolution 3D surface of vertebra generated by triangulating
40682 points which were carefully selected by hand. This step takes several hours but only
need to be done once. We trimmed each spine CT images into small files with individual
vertebra. We manually selected about 250 surface points (of the same resolution as the
simplified reference surface) for each DICOM file. It took 10-15 minutes to label each
vertebra. Basically we selected around 8-9 points on each image slice (12 slices from
the coronal view, 12 slides from the sagittal view and 6 slices from the transverse view).
Examples about selecting points are shown in Appendix E. The selection is assumed to be
consistent since it was conducted by the same person based on the study of the structure of
the spine vertebrae and DICOM images. However, no specific anatomic landmarks need
to be labeled, it is sufficient as long as points are selected on the bone surface.
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Figure 5.20: Spine vertebra atlas: 39.0% of shape variations is encoded in the first mode. The
second and third modes encode 20.4% and 12.8% of shape variations.

Fig. 5.20 shows shape variations in the first three modes of the spine vertebra atlas.
We can see that the vertebra becomes narrower but remains the same length among the
first mode. The vertebral body (centrum) becomes larger along both the second and third
modes. The spinous process becomes longer along the second mode but shorter along the
third mode. It is twisted in the same way from the left to the right. We have noticed that the
sampled surfaces given the bigger standard deviation (e.g. 1σ ) have odd shapes. This may
be caused by the insufficient number of training data. Fig. 5.21 shows shape variations
encoded in each mode of the spine vertebra atlas. To keep 95% of shape variation we only
need 10 modes.

5.3 Conclusions and Discussion

The semi-automatic procedure requires some manual input, e.g. selection of 40682 points
for a reference model. But this procedure is a one-time task and can be conducted off line.
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Figure 5.21: Illustration of shape variations encoded in each mode of the spine vertebra atlas.

It also requires selecting 250 points for each study image without any prior information
about the shape. It normally takes 10-15 minutes, which is much less than several hours
which could be used for complete manual segmentation of high resolution model. In the
future e will consider using the atlas as a prior to enhance the performance and reduce
manual work.

The salient points may be removed during the surface simplification and then mis-
matching may occur. To handle this problem, we need to find a proper resolution for the
simplified surface. The lower the faster but the more mis-matching could be established.
That is why we apply the leave-one-out experiments to find a appropriate parameter for the
resolution. Besides, we proposed a refining process by using the original data (either the
high resolution surface or sparse labeled points) as a reference to reduce the mis-matching
caused by simplification.

Experiments demonstrate that our two-level framework significantly improves effi-
ciency of registration without decreasing accuracy of atlases. Shape variation learned
from the training samples can be used for clinical studies and diagnosis. The shape atlas
can also be used as a statistical shape prior for bone reconstruction from other imaging
modalities such as endoscopes. We will discuss more details in Ch. 6.
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Chapter 6

Improvement of Bone Reconstruction
from Two-step Algorithm

As we have discussed in Ch.5, to solve over smoothness, inaccurate reconstruction and
partial occlusions, a shape prior is needed to constrain the MISFS algorithm. We pro-
pose a two-step algorithm in this chapter to improve the reconstruction. A global shape
constraint is enforced in the MISFS algorithm (see Sec. 6.1). The shape constraint is
computed by aligning the inaccurate shape from the MISFS and the statistical shape at-
las. Such a procedure is iterated as well as the shape constraints and inaccurate shape are
updated in each iteration until the algorithm converges. To further improve reconstruction
especially on the discontinued boundaries, we evaluate the reconstructed shape by com-
paring to the original endoscopic images (see Sec. 6.2). By maximizing the likelihood
of gradient images synthesized from the reconstructed shape, a better reconstruction and
more accurate shape is obtained.

6.1 Bottom-up Image based MISFS constrained by Sta-
tistical Shape Atlas

In this section we will discuss how to constrain the MISFS with a statistical atlas. The
procedure is illustrated in Fig. 6.1. The pre-processing MISFS results in an initial shape
S1, given initial normals on global contours. S1 is then aligned with the statistical atlas and
the most closely matched atlas shape Sa

1 is computed from sparse-to-dense reconstruction.
Sa

1 is used to update the initial normals and depths for the MISFS. The two steps, alignment

69



Table 6.1: Table of Notation in Sec. 6.1
S1, S2, Sk, SK - MISFS result after the 1st, 2nd, kth, Kth iteration

Smean - mean shape

s, r, t, s∗, r∗, t∗ - transformation parameters

N - number of surface vertices

S ′1 - aligned partial shape after applying rigid transformation to S1

E - eigenmatrix

Esub
1 - sub matrix of E

Esub
1

+ - pseudo inverse of Esub
1

S ′mean - sub vector of Smean

S ′′1 - atlas shape corresponding to S ′1
Sa

1 - aligned atlas shape after applying inverse rigid transformation to S ′′1
nax, nay, naz - three components of surface normal at surface point on Sa

1

x, y, z - world coordinates

x̃, ỹ - image coordinates

F - focal length

za - depth on Sa
1

pa, qa - partial derivatives of za w.r.t. image coordinates x̃, ỹ

ea - atlas constraint

λ1, λ2 - Lagrange multipliers

k, l - image indices

m - iteration number

and MISFS are iterated until the best reconstruction is achieved. By these means, better
knowledge of bones of interest are taken into account in the MISFS therefore a more
accurate shape can be recovered.
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Figure 6.1: Illustration of the bottom-up MISFS: the pre-processing MISFS results in an initial
shape S1, given initial normals on global contours. S1 is then aligned with the statistical atlas and
the most closely matched atlas shape Sa

1 is computed from sparse-to-dense reconstruction. Sa
1 is

used to update the initial normals (pa, qa) and depths za for the MISFS. The two steps, alignment
and MISFS are iterated until the best reconstruction is achieved.

6.1.1 Aligning MISFS Shape with Atlas

Due to the limited range of motion for the endoscope and limited bone exposure during
surgery, it is impossible to capture images of bones from 360 degrees and reconstruct a
complete shape. In other words, S1 represents a part of the atlas shape.

We first apply a scaled-ICP algorithm [5] to align S1 with the atlas mean shape Smean.
We find the scaling factor s∗ by comparing the model size in the 3D Eigenspace, and then
compute the rotation and translation by minimizing the surface distance. i.e.

(r∗, t∗) = arg min
N∑
i

{[r|t](s∗ · S1(i))− Smean(near(i))}2 (6.1)

where near(i) is the index of the closest point of S1(i) on the mean shape. The initial
starting position is roughly estimated based on the field of view of the reconstructed shape.
We apply the transformation (r∗, t∗, s∗) to S1 and obtain the aligned shape S ′1 at the atlas
pose:

S ′1 = [r∗|t∗](s∗ · S1) (6.2)
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Given the aligned partial shape S ′1, a complete atlas shape is generated from sparse-
to-dense reconstruction. In other words, we first project S ′1 into a subspace of the atlas
space to retrieve coefficients for each mode. These coefficients are used to reconstruct a
complete shape from the original atlas space. Let E denote the eigenvector matrix of the
atlas, and Esub

1 denote a sub matrix of E. Extracted from E, each row of Esub
1 corresponds

to every vertex on the partial shape S ′1. Since Esub
1 is not an orthogonal matrix anymore, we

use the pseudo inverse (Esub
1 )+ instead of the matrix transpose to compute the coefficients

and then reconstruct the shape:

S ′′1 = E · (Esub
1 )+ · (S ′1 − S ′mean) + Smean (6.3)

where S ′mean is the partial mean shape corresponding to S ′1.

The complete shape S ′′1 is reconstructed from 10 modes of the atlas. Since we use the
mean shape Smean as the target shape for the initial alignment, wrong correspondences may
exist. Thus we use S ′′1 as a new target shape and iterative the alignment and reconstruction
several times until S ′1 and the atlas are well aligned. Finally we transform S ′′1 to the original
pose and scale, by applying the inverse transformation (Eq. 6.2):

Sa
1 =

([
r∗T | − t∗

]
S ′′1

)
/s∗ (6.4)

where the complete shape Sa
1 is considered as the most closest atlas shape for S1.

6.1.2 Constraining MISFS by Atlas

In this section we use the surface geometry information of Sa
1 to constrain the MISFS.

Given each surface point Pi on Sa
1 , the surface normal ~n = [nax, nay, naz] is computed

as the average of the surface normals from adjacent triangles. Recall Eq. 4.3 and 4.7, we
have

~n = [−∂z

∂x
,−∂z

∂y
, 1]/

√
(
∂z

∂x
)2 + (

∂z

∂y
)2 + 1

∂z

∂x
=

Fpa

za + x̃pa

,
∂z

∂y
=

Fqa

za + ỹqa

(6.5)

where pa = ∂z/∂x̃ and qa = ∂z/∂ỹ, (x̃, ỹ) are image coordinates, F is the focal length
and za is the depth at Pi. We compute the prior (pa, qa) from Sa

1 using Eq. 6.5

pa = − (nax/naz) · za

(nax/naz) · x̃ + F
, qa = − (nay/naz) · za

(nay/naz) · ỹ + F
(6.6)
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The atlas constraint ea is defined by minimizing the errors of surface normals and
depths compared to the aligned atlas shape Sa

1 :

ea =

∫ ∫

aligned vertices

[(p− pa)
2 + (q − qa)

2 + (z − za)
2]dx̃dỹ (6.7)

Recall Eq. 4.12 and Eq. 4.19, the entire error is represented by two terms, the image
irradiance error ei(z, p, q) and the local geometry constraint es(z, p, q) (smoothness con-
straint is used in Ch. 4). Now we add ea to the error function as another soft constraint:

e(z, p, q) = λ1ei(z, p, q) + λ2ea(z, p, q) + (1− λ1 − λ2)es(z, p, q) (6.8)

By discretizing Eq. 6.8 we obtain:

e(zk,l, pk,l, qk,l) =
∑

k

∑

l

[λ1eik,l + λ2eak,l + (1− λ1 − λ2)esk,l] (6.9)

where
eak,l = (pk,l − pak,l)

2 + (qk,l − qak,l)
2 + (zk,l − zak,l)

2 (6.10)

The derivative of ea with respect to ηk,l (η represents p, q or z) are:

∂ea

∂ηk,l

= 2(ηk,l − ηak,l) (6.11)

Similarly to Ch. 4 we have

∂es

∂ηk,l

= 8(ηk,l − η̄k,l),
∂ei

∂ηk,l

= −2(Ik,l −Rk,l)
∂R

∂ηk,l

(6.12)

In Eq. 6.12, the smoothness term η̄k,l is replaced by the local robust regularizer η̂k,l. We
minimize Eq. 6.9 and obtain update functions for ηk,l (η represents p, q or z):

ηm+1
k,l =

λ1

4(1− λ1 − λ2) + λ2

[Ik,l −R(k, l, z̄m
k,l, p̄

m
k,l, q̄

m
k,l)]

∂R

∂ηk,l

|η̄m
k,l

+
λ2

4(1− λ1 − λ2) + λ2

ηak,l +
1− λ1 − λ2

(1− λ1 − λ2) + λ2/4
η̂m

k,l

(6.13)

Constrained by the statistical atlas, the new MISFS reconstructs a new shape S2. We
repeat the alignment and reconstruction discussed in the previous section to S2, whose
most closest atlas shape Sa

2 is used to update the atlas constraint for MISFS. The above
two steps are iterated to generate the shape S3, S4, ..., until SK when the surface distance
‖SK−SK−1‖ < ε. The most closest atlas shape of SK is denoted by Sa

K and corresponding
coefficients as ca

K .
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Table 6.2: Table of Notation in Sec. 6.2
Sa

K - atlas shape corresponding to MISFS result after the Kth iteration

Sa
F - refined atlas shape

ca
K - coefficients corresponding to Sa

K

E - eigenmatrix

N - number of vertices on atlas shape

A - intrinsic matrix of endoscope

Mu - extrinsic matrix of endoscope at pose u

U - number of endoscope poses

vu
i - 2D image coordinates of vertex i at pose u

pu
i - 3D homogeneous coordinates of vertex i at pose u

φ(·) - normalization function

G(·) - image gradient operator

Go - gradient of original images

Ga - gradient of synthesized image from Sa
K

f(·) - minimization function

J - Jacobian

Gox̃, Goỹ - partial derivative of Go w.r.t. image coordinates x̃, ỹ

Gax̃, Gaỹ - partial derivative of Ga w.r.t. image coordinates x̃, ỹ

Sa
F - refined atlas shape

ca
K - coefficients corresponding to Sa

F

6.2 Top-down Refinement by Maximizing Likelihood of
Image Gradients

As Fig. 6.2 illustrates, to ensure the accuracy of reconstruction, especially on the surface
discontinuities, we examine the shape Sa

K by comparing the image gradients. We syn-
thesize a series of images from Sa

K at different poses and compare them with the original
endoscopic images. Since the imaging modalities are different between the synthesized
images from the atlas shape and the original endoscopic images, the image appearance
has a lot of difference. We thus compare the difference through contour gradients which
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Endoscope

(a) OpenGL Rendering

(b) Original image (d) Normalized image

(c) Synthesized image (e) Gradient Ga

(f) Gradient Go 

Update CK

ReconstructionAtlas Counterpart

CK

Bottom-up 
Method

Converge

No

Yes
Done

Figure 6.2: Illustration of top-down method: (a) OpenGL rendering Sa
K . (b) Corresponding

endoscopic image. (c) Synthesized endoscopic image from the same camera pose. (d) Normalized
endoscopic image. (e) Gradient of synthesized image Ga. (f) Gradient of normalized image Go.

are most robust to lighting variations and strongly respond to surface discontinuities. By
manipulating the coefficients ca

K , the refined atlas shape is obtained and noted as Sa
F .

Let E denote the 3N × 10 eigenvectors matrix of the atlas, Ei(3(i − 1) + 1 : 3i, :)ca
K

represents the vertex i(i = 1, 2, · · · , N) reconstructed from the atlas. Given the cali-
brated intrinsic and extrinsic matrices of the endoscope A3x3 and Mu

3x4 (at pose u, u =
1, · · · , U ), the corresponding image pixel vector is vu

i = φ(pu
i ), p

u
i = AMu[Eic

a
K ; 1].

φ(p) = [px/pz; py/pz] normalize the 3D homogeneous coordinates to 2D image coordi-
nates. Let G(·) denote image gradient operator, our goal is to maximize the likelihood of
the image gradients, i.e., minimize δG = Go − Ga, where Go computes the gradient of
normalized endoscopic image (the image is normalized by removing the geometric distor-
tion and illumination effect), Ga computes the gradient of OpenGL rendered image from
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Sa
K (see Fig. 6.2). Let

f(ca
K) =

1

2

U∑
u

N∑
i

[Go(v
u
i )−Ga(v

u
i )]2 (6.14)

Using Taylor expansion, we obtain δca
K = −J−1f(ca

K), where

J =
∂f

∂ca
K

=
U∑
u

N∑
i

[
∂Go

∂vu
i

− ∂Ga

∂vu
i

]T · ∂vu
i

∂ca
K

∂vu
i

∂ca
K

=
∂φ

∂pu
i

· ∂pu
i

∂ca
K

(6.15)

Since

∂Go

∂vu
i

− ∂Ga

∂vu
i

=

[
Gox̃(v

u
i )−Gax̃(v

u
i )

Goỹ(v
u
i )−Gaỹ(v

u
i )

]

∂φ

∂pu
i

=




1

pu
i (z)

0
−pu

i (x)

(pu
i (z))2

0
1

pu
i (z)

−pu
i (y)

(pu
i (z))2




∂pu
i

∂ca
K

= AMuEi

(6.16)

Jacobian J can be rewritten as:

J =
U∑
u

N∑
i

[
Gox̃(v

u
i )−Gax̃(v

u
i )

Goỹ(v
u
i )−Gaỹ(v

u
i )

]T

·




1

pu
i (z)

0
−pu

i (x)

(pu
i (z))2

0
1

pu
i (z)

−pu
i (y)

(pu
i (z))2


 ·AMuEi (6.17)

pu
i (x), pu

i (y), pu
i (z) are three components of the homogenous coordinates pu

i , which is the
function of ca

K . In each iteration, we use previous ca
K to compute pu

i and vu
i , and then the

Jacobian J of Eq. 6.14. Thus ca
K can be updated by Eq. 6.17. The final coefficients ca

F are
used to generate the refined shape Sa

F from the atlas.
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6.3 Experiments and Results

6.3.1 Simulations

We first conducted several simulation trials on synthesized data. Given the statistical atlas,
we manipulated the first ten coefficients and generated 10 different shapes with various
poses shown in Fig. 6.3. For each virtual shape model, we rendered it in 3D graphics
context and moved a virtual endoscope around to collect a set of synthesized images (see
Fig. 6.3). The virtual endoscope has the fixed camera parameters thus the calibration error
was not considered, neither did the tracking error. We directly called the OpenGL function
to obtain the view-port vector, model-view and projection matrices. We used a bright spot
light source which enables a good image quality, so we placed the virtual endoscope a bit
far away from the 3D model and still captured good images. By these means we were
able to image more area of the model in a single image and used much less images to
reconstruct one side of the view. We collected 6-10 images for each synthesized shape.

We conducted our two-step approach on each set of synthesized images and recon-
structed corresponding shapes. We compared the reconstructed shapes with the original
ones in Fig. 6.4. The simulation results show clear improvement by introducing the atlas
constraint, so does the refinement. Since the synthesized shapes are sampled from the
atlas space, the ideal reconstruction error for Sa

F should be close to zero if the correct cor-
respondences can be achieved. Without calibration and tracking errors, only the arbitrary
camera motions will cause the misalignment and increase the reconstruction error. Fig.
6.4 shows the averaged RMS error for SK , Sa

K and Sa
F is 0.76 mm, 0.54 mm and 0.42 mm,

respectively. These numbers provide a rough lower bound for accuracy of our algorithm.

6.3.2 Artificial Lumbar Models

Real cases are more complicated due to the errors introduced by camera calibration and
tracking system. And the real vertebra shape may not belong to the atlas population. The
image quality also affect the contour extraction and shape-from-shading algorithm. We
use the artificial lumbar vertebrae L4 and L5 to test our algorithm. For each model we
captured 4 image sets from different range of views: top, bottom, left side and right side
(Note that we could never have access to some views in real surgery, for example, the
top view). In each image set, we collected a set of images. For instance, we captured
145 endoscopic images at 29 positions from the top view of the vertebra L4 (for each
position we took 5 images and used the averaged image for reconstruction). Fig. 6.5
shows the artificial vertebra and averaged endoscopic images. The colored circles illustrate
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Figure 6.3: Illustration of 10 synthesized shapes from the atlas for simulation experiments. For
each shape, we moved the virtual endoscope to collet a set of images, for example, the bottom
images were collected from the 8th shape.

the endoscope poses with different rotations and translations. The displayed images are
geometric rectified and normalized for illumination. In the preprocessing MISFS with
local robust regularizer, we chose λ1 = 0.001 and increased it by 0.02 whenever the error
in Eq. 6.8 decreased by 1%. Fig. 6.1 shows the resulted shape S1. We can see some
discontinuities are kept. Fig. 6.1 also shows the aligned atlas shape Sa

1 , the updated
surface normals (pa, qa) and the depths za, which were used for the second round MISFS
with the atlas constraint. From the second round MISFS, we selected λ1 = 0.01 (increased
by 0.01) and λ2 = 0.1 (increase by 0.05).

We compare the MISFS reconstruction SK , bottom-up result Sa
K and top-down result

Sa
F with the laser scanned ground truth (L4: 72.6 x 77.1 x 38.2 mm, scanned from 13 view

points; L5: 92.9 x 73.4 x 37.8 mm, scanned from 16 view points). The RMS errors over 8
data sets are shown in Figs. 6.6, and visual results are shown in Figs. 6.7-6.8. We can see
a significant improvement from the two-step method, although we have more complicated
shapes, larger range of motions including rotations (In Ch. 4 we only handle the transla-
tion). Since we captured images from one side of the spine vertebra model, the MISFS
result SK can only recover the shape information for this side. Although Sa

K and Sa
F rep-

resent a complete atlas shape, most of vertices on Sa
K and Sa

F have no correspondences
on SK . Those points do not have any support from images thus correspond bigger errors.
That’s why the overall RMS errors are slightly worse for the atlas shape Sa

K and Sa
F : the
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Figure 6.4: Reconstruction errors for ten synthesized shapes. The RMS errors are calculated by
comparing three shapes (MISFS, bottom-up and top-down) of each synthesized images given the
synthesized shape. Since we captured images from one side of synthesized shape, the reconstructed
shape from MISFS can only recover the shape information for this side. Although the bottom-up
result and top-down result represent complete atlas shapes, most of vertices on these two atlas
shapes have no correspondences on the MISFS result. Those points do not have any support from
images thus correspond bigger errors. That’s why the overall RMS errors are slightly worse for
the bottom-up and top-down method, as shown in (b). However, when we look at the partial RMS
errors by only considering points having correspondences in the images, we can see a big improve-
ment from the two-step algorithm in (a). (c) and (d) show the average and standard deviation over
10 trials.

averaged RMS error over eight data sets is 2.07 mm and 1.95 mm respectively. However,
when we look at the RMS errors by only considering points having correspondences in
the images, we can find better accuracy: the averaged RMS error over eight data sets for
SK , Sa

K and Sa
F is 1.60 mm, 1.36 mm and 1.17 mm, respectively. The standard deviation

is 0.45 mm, 0.25 mm and 0.21 mm, respectively.
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Figure 6.5: Experimental setup for lumbar vertebrae reconstruction. The artificial lumbar vertebra
L4 is showed in the middle. Surrounding images are captured by an oblique endoscope from
different poses involving rotations and translations, which are illustrated by colored circles. All the
images are geometric rectified and normalized for illumination.

From the result of the top view of L4, we can see large errors in the vertebra body
(the top area of the shape), which is due to the ambiguity during the individual shape
registration, since the captured images from the pose 26 to 29 look very similar. It is the
limitation of the bottom-up appearance based method. A better representation of this area
can be found in top-down result. The bottom view of L5 shows an occlusion example,
where some portions of the vertebra body were not imaged. The MISFS result cannot
recover the occluded part but the corresponding atlas shape provides an estimation of the
missing portions.

We have noticed large local errors in the mamillary process and superior articular pro-
cess of L4 (the area corresponding to the pose 5 and 17 in Fig. 6.5) and L5, and in the
spinous process and transverse process of L5. We have also noticed RMS errors of L5
is slightly bigger than L4. It is due to the limited number of training samples to recover
the various shape variation, especially for L5. We use Th12 and L1-L5 to learn the sta-
tistical atlas. Among those vertebrae, L5 is much more different from others: its body is
much deeper in front than behind, its spinous process is smaller, the interval between the
inferior articular process is wider, and its transverse process are thicker. The result can be
improved by collecting more training shapes in the future.

For the right view of L4 and top view of L5, the refining step decreases the partial
surface distance but increases the overall difference (see Figs. 6.7-6.8). It is because the
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Figure 6.6: Reconstruction errors for all data sets of L4 and L5. The RMS errors are calculated
by comparing three shapes (MISFS, bottom-up and top-down) of each synthesized images given
the synthesized shape. Since we captured images from one side of synthesized shape, the recon-
structed shape from MISFS can only recover the shape information for this side. Although the
bottom-up result and top-down result represent complete atlas shapes, most of vertices on these
two atlas shapes have no correspondences on the MISFS result. Those points do not have any
support from images thus correspond bigger errors. That’s why the overall RMS errors are slightly
worse for the bottom-up and top-down method, as shown in (b). However, when we look at the
partial RMS errors by only considering points having correspondences in the images, we can see
a big improvement from the two-step algorithm in (a). (c) and (d) show the average and standard
deviation over 8 data sets.

top-down method is basically a gradient decent procedure which may converge to a local
minimum. Images from side views cannot give enough constraint for the entire shape,
that’s why the reconstruction errors for the left and right views are slightly bigger than
the other two views. Note that lack of images from other sides of the vertebra leads mis-
alignment and inaccurate reconstruction for invisible points.
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6.4 Conclusions and Discussion

By introducing the statistical shape atlas as a new global constraint for the MISFS, we are
able to deal with local discontinuities, inaccurate reconstruction and partial occlusions.
We modified the bottom-up image based MISFS by introducing a global shape atlas. We
also develop a top-down refining procedure to evaluate and improve the reconstruction by
minimizing the difference of image gradients.

Note that since we use artificial spine vertebrae in our experiments, some views in
Fig. 6.5 could never be accessed in real surgery. Although in practice we can only get a
limited exposure of the shape and the errors for parts from the other sides of view may
be significant, the occlusion occurs from the current imaging view can be successfully
recovered by the atlas.

We have noticed that some samples from the atlas look non-natural. It is due to the
lack of sufficient training data. Even with such a roughly estimated atlas, we are able to
see an improvement. We believe more data collected in the future will improve our result
further. So far our method has been tested in Matlab for ex vivo data only. It takes about
15 minutes for a data set with 30 images (PC:2.4GCPU/2GRAM). The computation can
be paralleled to achieve much faster performance. Due to the quality of the endoscope
we used in experiments, automatic contour extrapolation failed in many images. Manual
labeling of boundaries is still required for our current system. Aligning the MISFS shape
and the atlas also needs an initial manual alignment to achieve a good matching. The user
interaction thus hinders the real-time implementation and in-vivo testing.

Above issues will be studied and addressed in our future work. We hope our system
will soon be ready for in-vivo testing.
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Figure 6.7: Reconstruction results for different views of L4. For each data set, we show the
MISFS, bottom-up and top-down results, also show the Housdorff surface distance from each result
to the ground truth. The surface distance is displayed using a JET color map. Each distance map is
associated with a color bar displayed on the left (with the maximum and minimum distance (mm)
labeled on the side). 83



(a) Top (b) Bottom (c) Left (d) Right

2.39

0

3.90

0

3.82

0

3.82

0

6.78

0

5.50

0

6.09

0

7.10

0

6.43

0

6.13

0

5.06

0

6.08

0

(3) Bottom-up

(4) Compared 
with ground truth

(1) MISFS

(2) Compared 
with ground truth

(5) Top-down

(6) Compared 
with ground truth

Figure 6.8: Reconstruction results for different views of L5. For each data set, we show the
MISFS, bottom-up and top-down results, also show the Housdorff surface distance from each result
to the ground truth. The surface distance is displayed using a JET color map. Each distance map is
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Chapter 7

Conclusions and Future Work

Endoscope is a key tool used for minimally invasive surgery, and endoscopy-related image
analysis attracts increasing attention. In this thesis, we have taken the first steps to develop
a methodology for reconstruction of bone shape from multiple endoscopic images. The
research experiments were performed in a simplified ex-vivo setup. Our contributions are
listed below:

1. We developed a novel methodology to calibrate oblique-viewing endoscopes both
geometrically and photometrically.

2. We formulated a novel scene radiance model for the endoscope imaging system
under near point lighting and perspective projection, without assuming that the light
sources are located at the projection center, to reconstruct the shape from a single
image.

3. We developed a multi-image shape-from-shading algorithm by tracking the endo-
scope in the world coordinates and aligning partial shapes obtained from differ-
ent images. Then the global contours are used to constrain the shape-from-shading
across different images simultaneously. Finally, a consistent shape is reconstructed
by re-growing the surface normals and depths in all views.

4. In order to deal with over-smoothness and ambiguity caused by the smoothness
constraints, rotation of the endoscope and partial occlusions, we developed a two-
step approach using the statistical atlas as a global shape constraint.

5. In order to fulfill the two-step reconstruction algorithm, we develop a semi-automatic
two-level registration procedure to construct the statistical atlas for bone structures.
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All our experiments are based on a clear ex-vivo setup. Without calibrating and track-
ing errors, the simulations show an average of 0.3 mm accuracy, which can be considered
as an error generated by the algorithm. When the calibrating and tracking errors are taken
into account, the system error is increased to 0.8 mm. This error can be further enlarged
in in-vivo experiments with other environmental noise and when our assumptions outlined
in Ch. 1 are not met. How much accuracy is needed depends on the surgical application.
For example, bone cutting and drilling may require much higher accuracy then the 3D
visualization for diagnosis and inspection.

Our current system still requires some manual input such as contour labeling or manual
adjustment for initial atlas matching to improve alignment. In addition, the current algo-
rithm does not run in real-time. We hope to speed up the system to real-time performance
by rewriting the Matlab portion of the code in C++, using GPU acceleration and applying
parallel computing to shape-from-shading in different images. The endoscope used in this
study is relatively old and the images are low resolution video-capture images. In the fu-
ture, we plan to use high-resolution endoscope with better image quality, such that we can
extract contours automatically and more accurately.

As long as we can handle the above two issues, we are ready to move to the next step,
the in-vivo testing. In the in-vivo testing phase, we will evaluate the effects of environmen-
tal noise (tools, fog, specularity, subsurface scattering, etc.), random occlusions (blood,
pieces of bones, tissues, ligaments, etc.), changing of focus of the scope, non-Lambertian
surface, and so on.

In the two-step algorithm, the top-down step uses the original images to improve the
surface details and reconstruction accuracy by comparing the contour gradients images.
However, the experimental results did not show significant improvement, which can be
caused by the limited atlas modes we used. Improving the atlas quality by collecting a
larger database of images will be critical for improved performance of this step. As of now,
we just subtract two gradient images to compute the difference, which can be improved
in the future by computing the distance transformed between two sets of contours, for
example, using ICP.

In some cases, the target bone shape may contain an anomaly that can not be recon-
structed from the atlas, the reconstruction error from the two-step algorithm might then be
increased, since the atlas is derived from healthy population. Therefore, if the reconstruc-
tion error exceeds a threshold, we should go back to MISFS and use the original images
for final reconstruction in that region.

Another possible solution for improving the local shape detail is to learn multiple local
partial atlases. In other words, the whole shape will be segmented into several important
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parts and each part will be refined by the local shape variation. The problem with this
method is how to segment the parts and determining how many parts are enough.

Lambertian surface is assumed in our setup. Non-Lambertian surface will make the
scene radiation function more complicated. Although Lambertian is a good rough as-
sumption for the artificial bones, how to select a good albedo still requires lots of studies
and evaluations. In this thesis we manually chose a constant albedo for all different artifi-
cial bones. Additional study is needed to determine whether the assumptions used in this
work can be extended to a realistic arthroscopy environment.

As far as we know, human bones show significant symmetry although it is not perfect.
We should be able to use this cue to help the reconstruction, as an additional global shape
constraint. Usually asymmetry is related to some anatomical abnormalities.

Our training samples for atlas construction are not sufficient, which causes the unnat-
ural shape variation generated from the atlas space. A more theoretical way to judge if the
number of training sample is enough is to use leave-one-out experiments. Our femur atlas
construction is evaluated by the leave-one-out experiments which show sufficient training
samples and thus smoothing and natural shape variation.

If multiple bone parts exist in the same image, the automatic contour extraction al-
gorithm may extract contours from different bone parts and assign it to the same bone,
which will cause inaccurate reconstruction, the discontinuity between two bone parts will
be removed and modified. To handle such a case user interaction seems necessary at this
point.

Finally, we hope our research will eventually benefit future surgical processes by mak-
ing them more reliable and accurate.
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Appendix A

Derivation of Eq. 4.17

In this appendix we show the derivation for Eq. 4.17. To minimize the error e, we take the
derivative of e w.r.t. pk,l, where (k, l) is the position of an image pixel:

∂e

∂pk,l

=
∂

∂pk,l

[(1− λ)es + λei]

= (1− λ)
∂es

∂pk,l

+ λ
∂ei

∂pk,l

(A.1)

for each pixel (k, l) we have

esk,l = (pk+1,l − pk,l)
2 + (pk,l+1 − pk,l)

2 + (qk+1,l − qk,l)
2

+(qk,l+1 − qk,l)
2 + (zk+1,l − zk,l)

2 + (zk,l+1 − zk,l)
2

eik,l = [Ik,l −R(k, l, zk,l, pk,l, qk,l)]
2

(A.2)

Given smoothness constraints:

∂es

∂pk,l

=
∂esk,l

∂pk,l

+
∂esk−1,l

∂pk,l

+
∂esk,l−1

∂pk,l

= 2((pk,l − pk+1,l) + (pk,l − pk,l+1)) + 2(pk,l − pk−1,l) + 2(pk,l − pk,l−1)

= 8(pk,l − 1

4
(pk+1,l + pk,l+1 + pk−1,l + pk,l−1))

= 8(pk,l − p̄k,l)

(A.3)

where p̄k,l represents an 8-neighbor average:

p̄n
k,l=

1

5
(pn

k,l−1+pn
k,l+1+pn

k+1,l+pn
k−1,l)+

1

20
(pn

k−1,l−1+pn
k−1,l+1+pn

k+1,l−1+pn
k+1,l+1) (A.4)

89



Given brightness error:

∂ei

∂pk,l

=
∂eik,l

∂pk,l

= −2(Ik,l −R(k, l, zk,l, pk,l, qk,l))
∂R

∂pk,l

(A.5)

From Eq. A.3 and A.5 we have

∂e

∂pk,l

= 8(1− λ)(pk,l − p̄k,l)− 2λ(Ik,l −Rk,l)
∂R

∂pk,l

(A.6)

Setting Eq. A.6 to zero yields:

pk,l = p̄k,l +
λ

4(1− λ)
(Ik,l −R(k, l, zk,l, pk,l, qk,l))

∂R

∂pk,l

(A.7)

In order to make the algorithm robust, we use the average p̄, q̄ and z̄ when computing the
reflectance map R(x̃, ỹ, z, p, q) in Eq. A.7. We apply the same procedure to derive the
update functions for q and z as below:

pk,l = p̄k,l +
λ

4(1− λ)
(Ik,l −R(k, l, z̄k,l, p̄k,l, q̄k,l))

∂R

∂pk,l

|p̄k,l

qk,l = q̄k,l +
λ

4(1− λ)
(Ik,l −R(k, l, z̄k,l, p̄k,l, q̄k,l))

∂R

∂qk,l

|q̄k,l

zk,l = z̄k,l +
λ

4(1− λ)
(Ik,l −R(k, l, z̄k,l, p̄k,l, q̄k,l))

∂R

∂zk,l

|z̄k,l

(A.8)
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Appendix B

A comparison between Yamaguchi et
al’s model and ours

In Fig. B.1, Yamaguchi et al’s use the camera head as a reference coordinates in their
hand-eye calibration system. Since surgeons rotate the scope cylinder with respect to the
camera head in order to view sideways, it is a natural way to consider the camera head as
a reference. However it makes the cameral model very complex. To think it in an opposite
way, no matter how surgeons rotate the scope cylinder, if the reference coordinates is on the
cylinder, the lens system is fixed with respect to the cylinder but the camera head rotates
by θ. Thus the external parameters are not affected by the rotation anymore. Since the
image plane is in the camera head, the rotation only affects the image plane. Our method
is therefore developed based on above observation. Yamaguchi et al.’s model needs five
additional parameters but we only need one. They use two optical markers and one rotary
encoder, and we only need two optical markers.
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z z

Rotary Encoder

Optical marker for 
estimating the axis of 

the scope cylinder

New designed 
coupler for mounting 
the optical marker to 
the scope cylinder

Ymaguchi et al.’s system Our system

System

Reference part Rod (Camera head)

Scope cylinder

Rod (Camera head)

Scope cylinder

Rotated part Scope cylinder Rod (Camera head)

Fact
1. Lens system is rotated around the 

scope cylinder by
2. Image plane is fixed

1. Image plane is rotated around the 
principal point by

2. Lens system is fixed

Extra 
Transformation

1. Rotate the scope cylinder around its axis 
by

2. Inversely rotate the image plane around z-
axis of the lens system by

1. Rotate the image plane around the 
principal point by

Unknown 
parameters

1.
2. Axis of the scope cylinder
3. Axis of the lens system

1.
2. Principal point

Figure B.1: A comparison between Yamaguchi et al.’s system and ours. In Yamaguchi et
al.’s system, the camera head is tracked such that the transformation from the marker to the
lens system is not fixed but depends on the rotation angle θ. Let the marker coordinates be
the reference, the lens system is rotated around the scope cylinder by θ, but the image plane
(in the camera head) remains still. They use two additional transformations to describe the
effect of the rotation, which results in a complex model. Moreover, they need to calibrate
the axis of both the scope cylinder and the lens system by using another optical maker
attached to the scope cylinder. Based on our observation, it is possible to simplify this
model if we fix the transformation between the marker and the lens system. We design
a coupler that enables the mounting of an optical marker onto the scope cylinder. We let
the marker coordinates be the reference, thus the lens system is fixed. The rotation only
affects the image plane while the camera head is rotating around the cylinder (reference).
And the image plane only rotates around the principal point. As a result, we come up with
a simple model (see details in the text).
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Appendix C

Initial Alignment for Femur Data

As Fig. C.1 shows, the bottom portion of the femur is used as an example. The surface
Y has more femur shaft, but less shaft remains on the the surface X . If we directly align
both centers, which is the same as the previous work [11] did, experiments show that the
registration process will be very slow and may not converge in several cases. The reason
is that a portion of the surface Y ( highlighted in blue in Fig. C.1) has no counterpart on
the surface X . In order to improve upon the process, we estimate the pseudo center of Y
instead of the true center. After that the pose of two surfaces are estimated and aligned.

The height of X is used to estimate the pseudo height of Y . Assuming the axis Z is
along the scan direction from the knee to hip, we selected points bounded by the pseudo
height of Y (denoted by black in Fig. C.1) to estimate the pseudo center κY ′ and the
covariance matrices for the point set {pX} and {pY ′}:

κX = 1
NX

∑
pX

κY ′ = 1
NY ′

∑
pY ′

(C.1)

ΨX = 1
NX−1

[p1
X − κX , · · · ,pNX

X − κX ] · [p1
X − κX , · · · ,pNX

X − κX ]′

ΨY ′ = 1
NY ′−1

[p1
Y ′ − κY ′ , · · · ,p

NY ′
Y ′ − κY ′ ] · [p1

Y ′ − κY ′ , · · · ,p
NY ′
Y ′ − κY ′ ]

′ (C.2)

where NY ′ is the number of points {pY ′} in Y which satisfy (zY −min zY ) < (max zX −
min zX). We can solve for the principle axes by decomposing the covariance matrix using
the moment analysis:

ΨX = UXΛXUX
′, ΨY ′ = UY ′ΛY ′UY ′

′ (C.3)

Each column of UX represents a principle axis of the point set {pX}, and UY ′ for {pY ′}.
As Fig. C.1 shows, three axes represent the pose of the point set: red for {pX} and green
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Surface X Surface Y

Translate Surface X to the pseudo center of Surface Y 

Rotate Surface X to the same pose as Surface Y

Surface X & Y

h

z

Figure C.1: Initial alignment between the surface X and Y. The first row compares the translated
X to Y. Black points on Y are used to compute the pseudo center. The second row compares the
translated and rotated X to Y. Red axes represent the pose of X, green axes for Y.

for {pY ′}. The rotation from coordinates of X to Y ′ is given by UY ′ ·UX
′. We apply a

rigid transformation [UY ′ ·UX
′|(κY ′−κX)] to the point set {pX} and the two point are

aligned.
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Appendix D

Spine Vertebra Training Images

Figs. D.1-D.6. show CT scans of three artificial spines (labeled by “JanetSpine”, “Cadaver One”,
“Cadaver 2”) and three real spines (labeled by “Icaos Spine”, “Sam Spiney”, and
“A To G”).

Figure D.1: Spine CT image: A To G, which is an artificial spine with human size.
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Figure D.2: Spine CT image: Icaos, which is an artificial spine with human size.

Figure D.3: Spine CT image: Sam, which is an artificial spine with human size.
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(a) (b)

Figure D.4: Spine CT image: Cadaver 2, which is from a cadaver.

(a) (b)

Figure D.5: Spine CT image: Cadaver One, which is from a cadaver.
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Figure D.6: Spine CT image: Janet, which is from a patient.
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Appendix E

Instruction for Selecting Points from
Spine CT Images

For people who have no anatomical background of spine and vertebrae, it is difficult for
them to select appropriate surface points on individual vertebrae from CT images. In this
appendix we use several examples to illustrate how to select points from different views.
Fig. E.1 shows an example from the coronal view. Fig. E.2 shows an example from the
sagittal view. Fig. E.3 shows an example from the transverse view.

Since Th12 is a bit different from lumbar vertebrae, we need to be careful when label-
ing Th12. Fig. E.4 shows the difference between Th12 and L2 from the transverse view.
(a) shows L2, (b) and (c) show Th12. The area highlighted in red in (c) does not belong to
Th12 but is often mis-assigned to Th12.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure E.1: Examples for selecting from the coronal view. (a)-(f) show different positions from
the back to the front.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure E.2: Examples for selecting from the sagittal view. (a)-(l) show different positions from
the middle to the left.
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(a) (b) (c)

(d) (e) (f)

Figure E.3: Examples for selecting from the transverse view. (a)-(l) show different positions from
the top to the bottom.

(a) (b) (c)

Figure E.4: An illustration of the the difference between Th12 L2 vertebra from the transverse
view. (a) shows L2, (b) and (c) show Th12. The area highlighted in red in (c) does not belong to
Th12 but is often mis-assigned to Th12.
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