
Distributed Hash Tables:
An Overview

Ashwin Bharambe
Carnegie Mellon University

Definition of a DHT

� Hash table Î supports two operations
� insert(key, value)
� value = lookup(key)

� Distributed
� Map hash-buckets to nodes

� Requirements
� Uniform distribution of buckets
� Cost of insert and lookup should scale well
� Amount of local state (routing table size) should

scale well

Fundamental Design Idea - I

� Consistent Hashing
� Map keys and nodes to an identifier space; implicit

assignment of responsibility

Identifiers
A C DB

Key

� Mapping performed using hash functions (e.g.,
SHA-1)
� Spread nodes and keys uniformly throughout

11111111110000000000

Fundamental Design Idea - II

� Prefix / Hypercube routing

Source

Destination

Zoom In

But, there are so many of them!

� DHTs are hot!
� Scalability trade-offs

� Routing table size at each node vs.
� Cost of lookup and insert operations

� Simplicity
� Routing operations
� Join-leave mechanisms

� Robustness

Talk Outline

� DHT Designs
� Plaxton Trees, Pastry/Tapestry
� Chord
� Overview: CAN, Symphony, Koorde, Viceroy, etc.
� SkipNet

� DHT Applications
� File systems, Multicast, Databases, etc.

� Conclusions / New Directions

Plaxton Trees [Plaxton, Rajaraman, Richa]

� Motivation
� Access nearby copies of replicated objects
� Time-space trade-off

� Space = Routing table size
� Time = Access hops

Plaxton Trees
Algorithm

9 A E 4 2 4 7 B

1. Assign labels to objects and nodes

Each label is of log2
b n digits

Object Node

- using randomizing hash functions

Plaxton Trees
Algorithm

2 4 7 B

2. Each node knows about other nodes with varying
prefix matches

Node

2 4 7 B

2 4 7 B

2 4 7 B2 4 7 B

3

1

5

3

6

8

A

C

2

2

2 4

2 42 4 7

2 4 7

Prefix match of length 0

Prefix match of length 1

Prefix match of length 2

Prefix match of length 3

Plaxton Trees
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

Plaxton Trees
Object Insertion and Lookup

Given an object, route successively towards nodes
with greater prefix matches

2 4 7 B

Node

9 A E 2

9 A 7 6

9 F 1 0

9 A E 4

Object

Store the object at each of these locations

log(n) steps to insert or locate object

Plaxton Trees
Why is it a tree?

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2

Object

Object

Object

Object

Plaxton Trees
Network Proximity

� Overlay tree hops could be totally unrelated
to the underlying network hops

USA

Europe

East Asia

� Plaxton trees guarantee constant factor
approximation!
� Only when the topology is uniform in some sense

Pastry

� Based directly upon Plaxton Trees
� Exports a DHT interface
� Stores an object only at a node whose ID is

closest to the object ID
� In addition to main routing table

� Maintains leaf set of nodes
� Closest L nodes (in ID space)

� L = 2(b + 1) ,typically -- one digit to left and right

Pastry

2 4 7 B

9 F 1 0

9 A 7 6

9 A E 2
Object

Only at t he r oot !

Key Insertion and Lookup = Routing to Root
Î Takes O(log n) steps

Pastry
Self Organization

� Node join
� Start with a node “close” to the joining node
� Route a message to nodeID of new node
� Take union of routing tables of the nodes on the

path
� Joining cost: O(log n)
� Node leave

� Update routing table
� Query nearby members in the routing table

� Update leaf set

Chord [Karger, et al]

� Map nodes and keys to identifiers
� Using randomizing hash functions

� Arrange them on a circle

Identifier
Circle

x

succ(x)

010110110

010111110

pred(x)
010110000

Chord
Efficient routing

� Routing table
� ith entry = succ(n + 2i)
� log(n) finger pointers

Identifier
Circle

Exponentially spaced
pointers!

Chord
Key Insertion and Lookup

To insert or lookup a key ‘x’,
route to succ(x)

x

succ(x)

source

O(log n) hops for routing

Chord
Self-organization

� Node join
� Set up finger i: route to succ(n + 2i)
� log(n) fingers � O(log2 n) cost

� Node leave
� Maintain successor list for ring connectivity
� Update successor list and finger pointers

CAN [Ratnasamy, et al]

� Map nodes and keys to coordinates in a multi-
dimensional cartesian space

source

key

Routing through shortest Euclidean path

For d dimensions, routing takes O(dn1/d) hops

Zone

Symphony [Manku, et al]

� Similar to Chord – mapping of nodes, keys
� ‘k’ links are constructed probabilistically!

x

This link chosen with probability P(x) = 1/(x ln n)

Expected routing guarantee: O(1/k (log2 n)) hops

SkipNet [Harvey, et al]

� Previous designs distribute data uniformly
throughout the system
� Good for load balancing
� But, my data can be stored in Timbuktu!
� Many organizations want stricter control over data

placement
� What about the routing path?

� Should a Microsoft Æ Microsoft end-to-end path pass
through Sun?

SkipNet
Content and Path Locality

Basic Idea: Probabilistic skip lists

H
ei

gh
t

Nodes

� Each node choose a height at random
� Choose height ‘h’ with probability 1/2h

SkipNet
Content and Path Locality

H
ei

gh
t

Nodes

mach
ine1.cm

u.edu

mach
ine2.cm

u.edu

mach
ine1.berke

ley.e
du

�Nodes are lexicographically sorted
Still O(log n) routing guarantee!

Summary (Ah, at last!)

O(log n)7Viceroy

logd ndKoorde

O((1/k) log2 n)kSym phony

O(log n)O(log n)SkipNet

dn1/ddCAN

O(log n)log nChord

O(log2
b n)O(2b log2

b n)Past ry/ Tapest ry

Routing hops# Links per node

Optimal (= lower bound)

What can DHTs do for us?

� Distributed object lookup
� Based on object ID

� De-centralized file systems
� CFS, PAST, Ivy

� Application Layer Multicast
� Scribe, Bayeux, Splitstream

� Databases
� PIER

De-centralized file systems

� CFS [Chord]
� Block based read-only storage

� PAST [Pastry]
� File based read-only storage

� Ivy [Chord]
� Block based read-write storage

PAST

� Store file
� Insert (filename, file) into Pastry
� Replicate file at the leaf-set nodes

� Cache if there is empty space at a node

CFS

� Blocks are inserted into Chord DHT
� insert(blockID, block)
� Replicated at successor list nodes

� Read root block through public key of file
system

� Lookup other blocks from the DHT
� Interpret them to be the file system

� Cache on lookup path

CFS

signature

public key

Root Block

D

Directory
Block

H(D)

F

H(F)

File Block

B1 B2
Data Block Data Block

H(B1) H(B2)

CFS vs. PAST

� Block-based vs. File-based
� Insertion, lookup and replication

� CFS has better performance for small
popular files
� Performance comparable to FTP for larger files

� PAST is susceptible to storage imbalances
� Plaxton trees can provide it network locality

Ivy

� Each user maintains a log of updates
� To construct file system, scan logs of all users

Log head

Log head

Alice

Bob

create

write

link
ex-create

delete
write

delete

Ivy

� Starting from log head – stupid
� Make periodic snapshots

� Conflicts will arise
� For resolution, use any tactics (e.g., Coda’s)

Application Layer Multicast

� Embed multicast tree(s) over the DHT graph
� Multiple source; multiple groups

� Scribe
� CAN-based multicast
� Bayeux

� Single source; multiple trees
� Splitstream

Scribe

New member

Underlying Pastry DHT

Scribe
Tree construction

New member

Underlying Pastry DHT

Rendezvous point

Route towards
multicast groupID

groupID

Scribe
Tree construction

New member

Underlying Pastry DHT

Route towards
multicast groupID

groupID

Scribe
Discussion

� Very scalable
� Inherits scalability from the DHT

� Anycast is a simple extension
� How good is the multicast tree?

� As compared to native IP multicast
� Comparison to Narada

� Node heterogeneity not considered

SplitStream

� Single source, high bandwidth multicast
� Idea

� Use multiple trees instead of one
� Make them internal-node-disjoint

� Every node is an internal node in only one tree

� Satisfies bandwidth constraints
� Robust

� Use cute Pastry prefix-routing properties to
construct node-disjoint trees

Databases, Service Discovery

SOME OTHER TIME!

Where are we now?

� Many DHTs offering efficient and relatively
robust routing

� Unanswered questions
� Node heterogeneity
� Network-efficient overlays vs. Structured

overlays
� Conflict of interest!

� What happens with high user churn rate?
� Security

Are DHTs a panacea?

� Useful primitive
� Tension between network efficient

construction and uniform key-value
distribution

� Does every non-distributed application use
only hash tables?
� Many rich data structures which cannot be built on

top of hash tables alone
� Exact match lookups are not enough
� Does any P2P file-sharing system use a DHT?

