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Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine learning with nonlinear dynamical systems to discover
governing equations from noisy measurement data. The only as-
sumption about the structure of themodel is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regression to determine the fewest terms in the dynamic
governing equations required to accurately represent the data. This
results in parsimonious models that balance accuracy with model
complexity to avoid overfitting. We demonstrate the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear oscillators and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

Advances in machine learning (1) and data science (2) have
promised a renaissance in the analysis and understanding of

complex data, extracting patterns in vast multimodal data that are
beyond the ability of humans to grasp. However, despite the rapid
development of tools to understand static data based on statistical
relationships, there has been slow progress in distilling physical
models of dynamic processes from big data. This has limited the
ability of data science models to extrapolate the dynamics beyond
the attractor where they were sampled and constructed.
An analogy may be drawn with the discoveries of Kepler and

Newton. Kepler, equipped with the most extensive and accurate
planetary data of the era, developed a data-driven model for plan-
etary motion, resulting in his famous elliptic orbits. However, this
was an attractor-based view of the world, and it did not explain the
fundamental dynamic relationships that give rise to planetary orbits,
or provide a model for how these bodies react when perturbed.
Newton, in contrast, discovered a dynamic relationship between
momentum and energy that described the underlying processes re-
sponsible for these elliptic orbits. This dynamic model may be
generalized to predict behavior in regimes where no data were
collected. Newton’s model has proven remarkably robust for engi-
neering design, making it possible to land a spacecraft on the moon,
which would not have been possible using Kepler’s model alone.
A seminal breakthrough by Bongard and Lipson (3) and Schmidt

and Lipson (4) has resulted in a new approach to determine the
underlying structure of a nonlinear dynamical system from data.
This method uses symbolic regression [i.e., genetic programming
(5)] to find nonlinear differential equations, and it balances com-
plexity of the model, measured in the number of terms, with model
accuracy. The resulting model identification realizes a long-sought
goal of the physics and engineering communities to discover

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11–13); ref. 12 provides an excellent review.

Sparse Identification of Nonlinear Dynamics (SINDy)
In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14–16) and
compressed sensing (17–22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23–30).
Here, we consider dynamical systems (31) of the form

d
dt
xðtÞ= fðxðtÞÞ. [1]

The vector xðtÞ∈Rn denotes the state of a system at time t, and
the function fðxðtÞÞ represents the dynamic constraints that de-
fine the equations of motion of the system, such as Newton’s
second law. Later, the dynamics will be generalized to include
parameterization, time dependence, and forcing.
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The key observation is that for many systems of interest, the
function f consists of only a few terms, making it sparse in the space
of possible functions. Recent advances in compressed sensing and
sparse regression make this viewpoint of sparsity favorable, because
it is now possible to determine which right-hand-side terms are
nonzero without performing a combinatorially intractable brute-
force search. This guarantees that the sparse solution is found with
high probability using convex methods that scale to large problems
favorably with Moore’s law. The resulting sparse model identifica-
tion inherently balances model complexity (i.e., sparsity of the right-
hand-side dynamics) with accuracy, avoiding overfitting the model
to the data. Wang et al. (23) have used compressed sensing to
identify nonlinear dynamics and predict catastrophes; here, we
advocate using sparse regression to mitigate noise.
To determine the function f from data, we collect a time

history of the state xðtÞ and either measure the derivative _xðtÞ or
approximate it numerically from xðtÞ. The data are sampled at
several times t1, t2,⋯, tm and arranged into two matrices:

X=

2
6664
xTðt1Þ
xTðt2Þ

..

.

xTðtmÞ

3
7775=

2
6664
x1ðt1Þ x2ðt1Þ ⋯ xnðt1Þ
x1ðt2Þ x2ðt2Þ ⋯ xnðt2Þ
..
. ..

.
⋱ ..

.

x1ðtmÞ x2ðtmÞ ⋯ xnðtmÞ

3
7775

����������������������!state

↓time

_X=

2
6664

_xTðt1Þ
_xTðt2Þ
..
.

_xTðtmÞ

3
7775=

2
6664

_x1ðt1Þ _x2ðt1Þ ⋯ _xnðt1Þ
_x1ðt2Þ _x2ðt2Þ ⋯ _xnðt2Þ
..
. ..

.
⋱ ..

.

_x1ðtmÞ _x2ðtmÞ ⋯ _xnðtmÞ

3
7775.

Next, we construct a library ΘðXÞ consisting of candidate non-
linear functions of the columns of X. For example, ΘðXÞ may
consist of constant, polynomial, and trigonometric terms:

ΘðXÞ=
"
1
j

j
X
j

j
XP2

j

j
XP3

j

j
⋯ sinðXÞ

j

j
cosðXÞ

j

j
⋯

#
. [2]

Here, higher polynomials are denoted as XP2 ,XP3 , etc., where
XP2 denotes the quadratic nonlinearities in the state x:

XP2 =

2
6664
x21ðt1Þ x1ðt1Þx2ðt1Þ ⋯ x22ðt1Þ ⋯ x2nðt1Þ
x21ðt2Þ x1ðt2Þx2ðt2Þ ⋯ x22ðt2Þ ⋯ x2nðt2Þ
..
. ..

.
⋱ ..

.
⋱ ..

.

x21ðtmÞ x1ðtmÞx2ðtmÞ ⋯ x22ðtmÞ ⋯ x2nðtmÞ

3
7775.

Each column of ΘðXÞ represents a candidate function for the
right-hand side of Eq. 1. There is tremendous freedom in choos-
ing the entries in this matrix of nonlinearities. Because we be-
lieve that only a few of these nonlinearities are active in each row
of f, we may set up a sparse regression problem to determine the
sparse vectors of coefficients Ξ= ½ ξ1 ξ2 ⋯ ξn � that determine
which nonlinearities are active:

_X=ΘðXÞΞ. [3]

This is illustrated in Fig. 1. Each column ξk of Ξ is a sparse vector
of coefficients determining which terms are active in the right-
hand side for one of the row equations _xk = fkðxÞ in Eq. 1. Once Ξ
has been determined, a model of each row of the governing
equations may be constructed as follows:

_xk = fkðxÞ=Θ
�
xT

�
ξk. [4]

Note that ΘðxTÞ is a vector of symbolic functions of elements of
x, as opposed to ΘðXÞ, which is a data matrix. Thus,

_x= fðxÞ=ΞT�Θ�xT��T . [5]

Each column of Eq. 3 requires a distinct optimization to find
the sparse vector of coefficients ξk for the kth row equation. We
may also normalize the columns of ΘðXÞ, especially when entries
of X are small, as discussed in the SI Appendix.
For examples in this paper, the matrix ΘðXÞ has size m× p,

where p is the number of candidate functions, and m � p be-
cause there are more data samples than functions; this is possible
in a restricted basis, such as the polynomial basis in Eq. 2. In
practice, it may be helpful to test many different function bases
and use the sparsity and accuracy of the resulting model as a
diagnostic tool to determine the correct basis to represent the
dynamics in. In SI Appendix, Appendix B, two examples are ex-
plored where the sparse identification algorithm fails because the
dynamics are not sparse in the chosen basis.
Realistically, often only X is available, and _X must be ap-

proximated numerically, as in all of the continuous-time exam-
ples below. Thus, X and _X are contaminated with noise so Eq. 3
does not hold exactly. Instead,

_X=ΘðXÞΞ+ ηZ, [6]

where Z is modeled as a matrix of independent identically dis-
tributed Gaussian entries with zero mean, and noise magnitude
η. Thus, we seek a sparse solution to an overdetermined system
with noise. The least absolute shrinkage and selection operator
(LASSO) (14, 15) is an ℓ1-regularized regression that promotes
sparsity and works well with this type of data. However, it may be
computationally expensive for very large data sets. An alternative
based on sequential thresholded least-squares is presented in
Code 1 in the SI Appendix.
Depending on the noise, it may be necessary to filter X and _X

before solving for Ξ. In many of the examples below, only the data
X are available, and _X are obtained by differentiation. To coun-
teract differentiation error, we use the total variation regularization
(32) to denoise the derivative (33). This works quite well when only
state data X are available, as illustrated on the Lorenz system (SI
Appendix, Fig. S7). Alternatively, the data X and _Xmay be filtered,
for example using the optimal hard threshold for singular values
described in ref. 34. Insensitivity to noise is a critical feature of an
algorithm that identifies dynamics from data (11–13).
Often, the physical system of interest may be naturally repre-

sented by a partial differential equation (PDE) in a few spatial
variables. If data are collected from a numerical discretization or
from experimental measurements on a spatial grid, then the state
dimension n may be prohibitively large. For example, in fluid dy-
namics, even simple 2D and 3D flows may require tens of thou-
sands up to billions of variables to represent the discretized system.
The proposed method is ill-suited for a large state dimension
n, because of the factorial growth of Θ in n and because each of the
n row equations in Eq. 4 requires a separate optimization. Fortu-
nately, many high-dimensional systems of interest evolve on a low-
dimensional manifold or attractor that is well-approximated using a
low-rank basis Ψ (35, 36). For example, if data X are collected for a
high-dimensional system as in Eq. 2, it is possible to obtain a low-
rank approximation using dimensionality reduction techniques,
such as the proper orthogonal decomposition (POD) (35, 37).
The proposed sparse identification of nonlinear dynamics

(SINDy) method depends on the choice of measurement vari-
ables, data quality, and the sparsifying function basis. There is no
single method that will solve all problems in nonlinear system
identification, but this method highlights the importance of these
underlying choices and can help guide the analysis. The chal-
lenges of choosing measurement variables and a sparsifying
function basis are explored in SI Appendix, section 4.5 and Ap-
pendixes A and B.
Simply put, we need the right coordinates and function basis to

yield sparse dynamics; the feasibility and flexibility of these re-
quirements is discussed in Discussion and SI Appendix section 4.5
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and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
00

.6
.3

1.
72

 o
n 

N
ov

em
be

r 
10

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
10

0.
6.

31
.7

2.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517384113/-/DCSupplemental/pnas.1517384113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517384113/-/DCSupplemental/pnas.1517384113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517384113/-/DCSupplemental/pnas.1517384113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517384113/-/DCSupplemental/pnas.1517384113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517384113/-/DCSupplemental/pnas.1517384113.sapp.pdf
http://faculty.washington.edu/sbrunton/sparsedynamics.zip
www.pnas.org/cgi/doi/10.1073/pnas.1517384113


of the time derivative of the state _x in time. Here, the right-hand-
side dynamics are identified in the space of polynomials ΘðXÞ in
ðx, y, zÞ up to fifth order, although other functions such as
sin, cos, exp, or higher-order polynomials may be included:

ΘðXÞ=
"
xðtÞ
j

j
yðtÞ
j

j
zðtÞ
j

j
xðtÞ2

j

j
xðtÞyðtÞ

j

j
⋯ z ðtÞ5

j

j

#
.

Each column of ΘðXÞ represents a candidate function for the right-
hand sideofEq.1. Becauseonly a fewof these terms are active in each
row of f, we solve the sparse regression problem inEq. 3 to determine
the sparse vectors of coefficients Ξ= ½ ξ1 ξ2 ⋯ ξn � that determine
which terms are active in the dynamics. This is illustrated schemati-
cally in Fig. 1, where sparse vectors ξk are found to represent the
derivative _xk as a linear combination of the fewest terms in ΘðXÞ.
In the Lorenz example, the ability to capture dynamics on the

attractor is more important than the ability to predict an individual
trajectory, because chaos will quickly cause any small variations in
initial conditions or model coefficients to diverge exponentially.
As shown in Fig. 1, the sparse model accurately reproduces the
attractor dynamics from chaotic trajectory measurements. The
algorithm not only identifies the correct terms in the dynamics, but
it accurately determines the coefficients to within .03% of the true
values. We also explore the identification of the dynamics when
only noisy state measurements are available (SI Appendix, Fig. S7).
The correct dynamics are identified, and the attractor is preserved
for surprisingly large noise values. In SI Appendix, section 4.5, we
reconstruct the attractor dynamics in the Lorenz system using
time-delay coordinates from a single measurement xðtÞ.
PDE for Vortex Shedding Behind an Obstacle.The Lorenz system is a
low-dimensional model of more realistic high-dimensional PDE
models for fluid convection in the atmosphere. Many systems of
interest are governed by PDEs (24), such as weather and climate,
epidemiology, and the power grid, to name a few. Each of these
examples is characterized by big data, consisting of large spatially
resolved measurements consisting of millions or billions of states
and spanning orders of magnitude of scale in both space and
time. However, many high-dimensional, real-world systems evolve
on a low-dimensional attractor, making the effective dimension
much smaller (35).
Here we generalize the SINDy method to an example in fluid dy-

namics that typifies many of the challenges outlined above. In the
context of data from a PDE, our algorithm shares some connections to
the dynamic mode decomposition, which is a linear dynamic regression

(41–43). Data are collected for the fluid flow past a cylinder at
Reynolds number 100 using direct numerical simulations of the 2D
Navier–Stokes equations (44, 45). The nonlinear dynamic relationship
between the dominant coherent structures is identified from these flow-
field measurements with no knowledge of the governing equations.
The flow past a cylinder is a particularly interesting example be-

cause of its rich history in fluid mechanics and dynamical systems. It
has long been theorized that turbulence is the result of a series of
Hopf bifurcations that occur as the flow velocity increases (46), giving
rise to more rich and intricate structures in the fluid. After 15 years,
the first Hopf bifurcation was discovered in a fluid system, in the
transition from a steady laminar wake to laminar periodic vortex
shedding at Reynolds number 47 (47, 48). This discovery led to a
long-standing debate about how a Hopf bifurcation, with cubic
nonlinearity, can be exhibited in aNavier–Stokes fluid with quadratic
nonlinearities. After 15 more years, this was resolved using a sepa-
ration of timescales and a mean-field model (49), shown in Eq. 8. It
was shown that coupling between oscillatorymodes and the base flow
gives rise to a slow manifold (Fig. 2, Left), which results in algebraic
terms that approximate cubic nonlinearities on slow timescales.
This example provides a compelling test case for the proposed

algorithm, because the underlying form of the dynamics took
nearly three decades for experts in the community to uncover.
Because the state dimension is large, consisting of the fluid state
at hundreds of thousands of grid points, it is first necessary to
reduce the dimension of the system. The POD (35, 37), provides
a low-rank basis resulting in a hierarchy of orthonormal modes
that, when truncated, capture the most energy of the original
system for the given rank truncation. The first two most energetic
POD modes capture a significant portion of the energy, and
steady-state vortex shedding is a limit cycle in these coordinates.
An additional mode, called the shift mode, is included to capture
the transient dynamics connecting the unstable steady state (“C”
in Fig. 2) with the mean of the limit cycle (49) (“B” in Fig. 2).
These modes define the x, y, z coordinates in Fig. 2.
In the coordinate system described above, the mean-field

model for the cylinder dynamics is given by (49)

_x= μx−ωy+Axz, [8a]

_y=ωx+ μy+Ayz, [8b]

_z=−λ
�
z− x2 − y2

�
. [8c]

If λ is large, so that the z dynamics are fast, then the mean flow
rapidly corrects to be on the (slow) manifold z= x2 + y2 given by

Fig. 2. Example of high-dimensional dynamical system from fluid dynamics. The vortex shedding past a cylinder is a prototypical example that is used for flow
control, with relevance to many applications, including drag reduction behind vehicles. The vortex shedding is the result of a Hopf bifurcation. However, because
the Navier–Stokes equations have quadratic nonlinearity, it is necessary to use a mean-field model with a separation of timescales, where a fast mean-field
deformation is slave to the slow vortex shedding dynamics. The parabolic slow manifold is shown (Left), with the unstable fixed point (C), mean flow (B), and
vortex shedding (A). A POD basis and shift mode are used to reduce the dimension of the problem (Middle Right). The identified dynamics closely match the true
trajectory in POD coordinates, and most importantly, they capture the quadratic nonlinearity and timescales associated with the mean-field model.
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the amplitude of vortex shedding. When substituting this alge-
braic relationship into Eqs. 8a and 8b, we recover the Hopf
normal form on the slow manifold.
With a time history of these three coordinates, the proposed al-

gorithm correctly identifies quadratic nonlinearities and reproduces
a parabolic slow manifold. Note that derivative measurements are
not available, but are computed from the state variables. In-
terestingly, when the training data do not include trajectories that
originate off of the slow manifold, the algorithm incorrectly iden-
tifies cubic nonlinearities, and fails to identify the slow manifold.

Normal Forms, Bifurcations, and Parameterized Systems. In practice,
many real-world systems depend on parameters, and dramatic
changes, or bifurcations, may occur when the parameter is var-
ied. The SINDy algorithm is readily extended to encompass
these important parameterized systems, allowing for the dis-
covery of normal forms (31, 50) associated with a bifurcation
parameter μ. First, we append μ to the dynamics:

_x= fðx; μÞ, [9a]

_μ= 0. [9b]

It is then possible to identify fðx; μÞ as a sparse combination of
functions of x as well as the bifurcation parameter μ.
Identifying parameterized dynamics is shown in two examples:

the 1D logistic map with stochastic forcing,

xk+1 = μxkð1− xkÞ+ ηk,

and the 2D Hopf normal form (51),

_x= μx+ωy−Ax
�
x2 + y2

�
_y=−ωx+ μy−Ay

�
x2 + y2

�
.

The logistic map is a classical model for population dynamics,
and the Hopf normal form models spontaneous oscillations in
chemical reactions, electrical circuits, and fluid instability.
The noisy measurements and the sparse dynamic reconstruc-

tions for both examples are shown in Fig. 3. In the logistic map
example, the stochastically forced trajectory is sampled at 10
discrete parameter values, shown in red. From these measure-
ments, the correct parameterized dynamics are identified. The
parameterization is accurate enough to capture the cascade of
bifurcations as μ is increased, resulting in the detailed bifurcation
diagram in Fig. 3. Parameters are identified to within .1% of true
values (SI Appendix, Appendix C).

In the Hopf normal-form example, noisy state measurements
from eight parameter values are sampled, with data collected on the
blue and red trajectories in Fig. 3 (Top Right). Noise is added to the
position measurements to simulate sensor noise, and the total var-
iation regularized derivative (33) is used. In this example, the nor-
mal form is correctly identified, resulting in accurate limit cycle
amplitudes and growth rates (Bottom Right). The correct identifi-
cation of a normal form depends critically on the choice of variables
and the nonlinear basis functions used for ΘðxÞ. In practice, these
choices may be informed by machine learning and data mining, by
partial knowledge of the physics, and by expert human intuition.
Similarly, time dependence and external forcing or feedback

control uðtÞ may be added to the vector field:

_x= fðx, uðtÞ, tÞ,

_t= 1.

Generalizing the SINDy algorithm makes it possible to analyze
systems that are externally forced or controlled. For example, the
climate is both parameterized (50) and has external forcing, includ-
ing carbon dioxide and solar radiation. The financial market is an-
other important example with forcing and active feedback
control.

Discussion
In summary, we have demonstrated a powerful technique to identify
nonlinear dynamical systems from data without assumptions on the
form of the governing equations. This builds on prior work in sym-
bolic regression but with innovations related to sparse regression,
which allow our algorithms to scale to high-dimensional systems.We
demonstrate this method on a number of example systems exhibiting
chaos, high-dimensional data with low-rank coherence, and param-
eterized dynamics. As shown in the Lorenz example, the ability to
predict a specific trajectory may be less important than the ability to
capture the attractor dynamics. The example from fluid dynamics
highlights the remarkable ability of this method to extract dynamics
in a fluid system that took three decades for experts in the com-
munity to explain. There are numerous fields where this methodmay
be applied, where there are ample data and the absence of governing
equations, including neuroscience, climate science, epidemiology,
and financial markets. Finally, normal forms may be discovered by
including parameters in the optimization, as shown in two examples.
The identification of sparse governing equations and parameteriza-
tions marks a significant step toward the long-held goal of intelligent,
unassisted identification of dynamical systems.
We have demonstrated the robustness of the sparse dynamics

algorithm to measurement noise and unavailability of derivative

Fig. 3. SINDy algorithm is able to
identify normal forms and capture
bifurcations, as demonstrated on the
logistic map (Left) and the Hopf nor-
mal form (Right). Noisy data from
both systems are used to train models.
For the logistic map, a handful of
parameter values μ (red lines), are
used for the training data, and the
correct normal form and bifurcation
sequence is captured (below). Noisy
data for the Hopf normal form are
collected at a few values of μ, and the
total variation derivative (33) is used
to compute time derivatives. The ac-
curate Hopf normal form is repro-
duced (below). The nonlinear terms
identified by the algorithm are in SI
Appendix, section 4.4 and Appendix C.
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measurements in the Lorenz system (SI Appendix, Figs. S6 and
S7), logistic map (SI Appendix, section 4.4.1), and Hopf normal
form (SI Appendix, section 4.4.2) examples. In each case, the
sparse regression framework appears well-suited to measurement
and process noise, especially when derivatives are smoothed using
the total-variation regularized derivative.
A significant outstanding issue in the above approach is the correct

choice of measurement coordinates and the choice of sparsifying
function basis for the dynamics. As shown in SI Appendix, Appendix
B, the algorithm fails to identify an accurate sparse model when the
measurement coordinates and function basis are not amenable to
sparse representation. In the successful examples, the coordinates
and function spaces were somehow fortunate in that they enabled
sparse representation. There is no simple solution to this challenge,
and there must be a coordinated effort to incorporate expert
knowledge, feature extraction, and other advanced methods. How-
ever, in practice, there may be some hope of obtaining the correct
coordinate system and function basis without knowing the solution
ahead of time, because we often know something about the physics
that guide the choice of function space. The failure to identify an
accurate sparse model also provides valuable diagnostic information
about the coordinates and basis. If we have fewmeasurements, these
may be augmented using time-delay coordinates, as demonstrated
on the Lorenz system (SI Appendix, section 4.5). When there are too
many measurements, we may extract coherent structures using

dimensionality reduction. We also demonstrate the use of poly-
nomial bases to approximate Taylor series of nonlinear dynamics (SI
Appendix, Appendix A). The connection between sparse optimiza-
tion and dynamical systems will hopefully spur developments to
automate and improve these choices.
Data science is not a panacea for all problems in science and en-

gineering, but used in the right way, it provides a principled approach
to maximally leverage the data that we have and inform what new
data to collect. Big data are happening all across the sciences, where
the data are inherently dynamic, and where traditional approaches
are prone to overfitting. Data discovery algorithms that produce
parsimonious models are both rare and desirable. Data science will
only becomemore critical to efforts in science in engineering, such as
understanding the neural basis of cognition, extracting and predicting
coherent changes in the climate, stabilizing financial markets, man-
aging the spread of disease, and controlling turbulence, where data
are abundant, but physical laws remain elusive.
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