
School of Computer Science

Probabilistic Graphical Models 

Theory of Variational Inference:
Inner and Outer Approximation

Eric Xing
Lecture 14, March 3, 2014

Reading: W & J Book Chapters

© Eric Xing @ CMU, 2005-2014 1



Roadmap
 Two families of approximate inference algorithms

 Loopy belief propagation (sum-product)
 Mean-field approximation

 Are there some connections of these two approaches?

 We will re-exam them from a unified point of view based on 
the variational principle:
 Loop BP: outer approximation
 Mean-field: inner approximation 
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Variational Methods
 “Variational”: fancy name for optimization-based formulations

 i.e., represent the quantity of interest as the solution to an optimization problem
 approximate the desired solution by relaxing/approximating the intractable

optimization problem

 Examples:
 Courant-Fischer for eigenvalues:

 Linear system of equations:
 variational formulation:

 for large system, apply conjugate gradient method
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Inference Problems in Graphical Models

 Undirected graphical model (MRF):

 The quantities of interest:

 marginal distributions: 

 normalization constant (partition function): 

 Question: how to represent these quantities in a variational 
form? 

 Use tools from (1) exponential families; (2) convex analysis
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Exponential Families
 Canonical parameterization

 Log normalization constant:

 it is a convex function (Prop 3.1)

 Effective canonical parameters:

Canonical Parameters Sufficient Statistics Log partition Function
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Graphical Models as Exponential Families

 Undirected graphical model (MRF):

 MRF in an exponential form:

 can be written in a linear form after some parameterization 
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Example: Gaussian MRF
 Consider a zero-mean multivariate Gaussian distribution that 

respects the Markov property of a graph
 Hammersley-Clifford theorem states that the precision matrix 

also respects the graph structure

 Gaussian MRF in the exponential form

 Sufficient statistics are
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Example: Discrete MRF

 In exponential form
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Why Exponential Families?
 Computing the expectation of sufficient statistics (mean 

parameters) given the canonical parameters yields the 
marginals

 Computing the normalizer yields the log partition function (or 
log likelihood function)
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Computing Mean Parameter: Bernoulli 

 A single Bernoulli random variable

 Inference = Computing the mean parameter

 Want to do it in a variational manner: cast the procedure of 
computing mean (summation) in an optimization-based 
formulation
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 Given any function , its conjugate dual function is:

 Conjugate dual is always a convex function: point-wise 
supremum of a class of linear functions

Conjugate Dual Function
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Dual of the Dual is the Original
 Under some technical condition on     (convex and lower 

semi-continuous), the dual of dual is itself: 

 For log partition function

 The dual variable      has a natural interpretation as the mean parameters 
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Computing Mean Parameter: Bernoulli 

 The conjugate

 Stationary condition

 If 

 If 

 We have

 The variational form:

 The optimum is achieved at . This is the mean!
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Remark
 The last few identities are not coincidental but rely on a deep 

theory in general exponential family.
 The dual function is the negative entropy function
 The mean parameter is restricted
 Solving the optimization returns the mean parameter and log partition function

 Next step: develop this framework for general exponential 
families/graphical models.

 However,
 Computing the conjugate dual (entropy) is in general intractable
 The constrain set of mean parameter is hard to characterize
 Hence we need approximation
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Computation of Conjugate Dual
 Given an exponential family

 The dual function

 The stationary condition:

 Derivatives of A yields mean parameters

 The stationary condition becomes 

 Question: for which does it have a solution        ?
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Computation of Conjugate Dual
 Let’s assume there is a solution         such that 

 The dual has the form

 The entropy is defined as  

 So the dual is when there is a solution
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Complexity of Computing Conjugate Dual

 The dual function is implicitly defined:

 Solving the inverse mapping for canonical parameters  
is nontrivial 

 Evaluating the negative entropy requires high-dimensional integration 
(summation)

 Question: for which does it have a solution        ? i.e., 
the domain of . 
 the ones in marginal polytope!
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Marginal Polytope
 For any distribution        and a set of sufficient statistics , 

define a vector of mean parameters 

 is not necessarily an exponential family

 The set of all realizable mean parameters

 It is a convex set

 For discrete exponential families, this is called marginal 
polytope
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Convex Polytope
 Convex hull representation

 Half-plane representation
 Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized 

by a finite collection of linear inequality constraints
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Example: Two-node Ising Model

 Sufficient statistics:

 Mean parameters:

 Two-node Ising model
 Convex hull representation

 Half-plane representation
conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}
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Marginal Polytope for General Graphs

 Still doable for connected 
binary graphs with 3 nodes: 
16 constraints

 For tree graphical models, 
the number of half-planes 
(facet complexity) grows 
only linearly in the graph 
size

 General graphs?
 extremely hard to characterize the 

marginal polytope
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Variational Principle (Theorem 3.4)

 The dual function takes the form

 satisfies 

 The log partition function has the variational form

 For all          , the above optimization problem is attained 
uniquely at that satisfies
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Example: Two-node Ising Model
 The distribution

 Sufficient statistics

 The marginal polytope is characterized by

 The dual has an explicit form

 The variational problem

 The optimum is attained at   
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Variational Principle
 Exact variational formulation

 : the marginal polytope, difficult to characterize
 : the negative entropy function, no explicit form

 Mean field method: non-convex inner bound and exact form of 
entropy

 Bethe approximation and loopy belief propagation: polyhedral 
outer bound and non-convex Bethe approximation
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Mean Field Approximation
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 For an exponential family with sufficient statistics     defined 
on graph G, the set of realizable mean parameter set

 Idea: restrict p to a subset of distributions associated with a 
tractable subgraph

Tractable Subgraphs
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Mean Field Methods

 For a given tractable subgraph F, a subset of canonical 
parameters is 

 Inner approximation

 Mean field solves the relaxed problem

 is the exact dual function restricted to  

© Eric Xing @ CMU, 2005-2014 27



Example: Naïve Mean Field for Ising Model

 Ising model in {0,1} representation

 Mean parameters

 For fully disconnected graph F,

 The dual decomposes into sum, one for each node

µs = Ep[Xs] = P[Xs = 1] for all s�V, and

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s,t) �E.
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Example: Naïve Mean Field for Ising Model

 Mean field problem

 The same objective function as in free energy based 
approach

 The naïve mean field update equations

 Also yields lower bound on log partition function

© Eric Xing @ CMU, 2005-2014 29



Geometry of Mean Field
 Mean field optimization is always non-convex for any 

exponential family in which the state space        is finite

 Recall the marginal polytope is a convex hull

 contains all the extreme points
 If it is a strict subset, then it must be non-convex

 Example: two-node Ising model

 It has a parabolic cross section along  , hence non-convex
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Bethe Approximation 
and Sum-Product
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Sum-Product/Belief Propagation Algorithm

 Message passing rule:

 Marginals:

 Exact for trees, but approximate for loopy graphs (so called 
loopy belief propagation)

 Question:  
 How is the algorithm on trees related to variational principle?
 What is the algorithm doing for graphs with cycles?

© Eric Xing @ CMU, 2005-2014 32



Tree Graphical Models
 Discrete variables on a tree 

 Sufficient statistics:

 Exponential representation of distribution: 

where

 Mean parameters are marginal probabilities:

p(x;θ) � exp
X

s�V

θs(xs) +
X

(s,t )�E

θst (xs,xt )
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Marginal Polytope for Trees
 Recall marginal polytope for general graphs

 By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

 In particular, if , then 

has the corresponding marginals
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Decomposition of Entropy for Trees

 For trees, the entropy decomposes as 

 The dual function has an explicit form
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Exact Variational Principle for Trees

 Variational formulation

 Assign Lagrange multiplier        for the normalization constraint 
; and for each marginalization 

constraint

 The Lagrangian has the form
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Lagrangian Derivation
 Taking the derivatives of the Lagrangian w.r.t.      and 

 Setting them to zeros yields 
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Lagrangian Derivation (continued)

 Adjusting the Lagrange multipliers or messages to enforce          

yields

 Conclusion: the message passing updates are a Lagrange 
method to solve the stationary condition of the variational 
formulation
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BP on Arbitrary Graphs
 Two main difficulties of the variational formulation

 The marginal polytope is hard to characterize, so let’s use the tree-
based outer bound

These locally consistent vectors     are called pseudo-marginals.

 Exact entropy lacks explicit form, so let’s approximate it by the 
exact expression for trees
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Bethe Variational Problem (BVP)
 Combining these two ingredient leads to the Bethe variational 

problem (BVP):

 A simple structured problem (differentiable & constraint set is a simple convex 
polytope)

 Loopy BP can be derived as am iterative method for solving a Lagrangian 
formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

 A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only 
if they are local stationary points of BVP
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Geometry of BP
 Consider the following assignment of pseudo-marginals

 Can easily verify 

 However, (need a bit more work) 

 Tree-based outer bound
 For any graph,

 Equality holds if and only if the graph is a tree

 Question: does solution to the BVP ever fall
into the gap?
 Yes, for any element of outer bound         , it is

possible to construct a distribution with it as a BP 
fixed point (Wainwright et. al. 2003) 
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Inexactness of Bethe Entropy Approximation

 Consider a fully connected graph with

 It is globally valid: ; realized by the distribution that places mass 
1/2 on each of configuration (0,0,0,0) and (1,1,1,1)




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Remark
 This connection provides a principled basis for applying the 

sum-product algorithm for loopy graphs

 However,
 Although there is always a fixed point of loopy BP, there is no 

guarantees on the convergence of the algorithm on loopy graphs
 The Bethe variational problem is usually non-convex. Therefore, there 

are no guarantees on the global optimum
 Generally, no guarantees that                  is a lower bound of 

 Nevertheless,
 The connection and understanding suggest a number of avenues for 

improving upon the ordinary sum-product algorithm, via progressively 
better approximations to the entropy function and outer bounds on the 
marginal polytope (Kikuchi clustering)
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Summary
 Variational methods in general turn inference into an optimization 

problem via exponential families and convex duality

 The exact variational principle is intractable to solve; there are two 
distinct components for approximations:
 Either inner or outer bound to the marginal polytope
 Various approximation to the entropy function

 Mean field: non-convex inner bound and exact form of entropy
 BP: polyhedral outer bound and non-convex Bethe approximation
 Kikuchi and variants: tighter polyhedral outer bounds and better 

entropy approximations (Yedidia et. al. 2002)
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