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Roadmap -

e Two families of approximate inference algorithms
e Loopy belief propagation (sum-product)
e Mean-field approximation

e Are there some connections of these two approaches?

e We will re-exam them from a unified point of view based on
the variational principle:
e Loop BP: outer approximation
e Mean-field: inner approximation
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Variational Methods ot

e “Variational”: fancy name for optimization-based formulations
e i.e., represent the quantity of interest as the solution to an optimization problem

e approximate the desired solution by relaxing/approximating the intractable
optimization problem

e Examples:

e Courant-Fischer for eigenvalues: )\maX(A) — Imax xTAaj
lz][2=1

e Linear system of equations: Ax = b, A > O, r* = A_lb
variational formulation:

1
x* = arg min {ixTA:U — bT:U}

for large system, apply conjugate gradient method
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Inference Problems in Graphical Models o

e Undirected graphical model (MRF):
1
p(z) =~ 1 ve(ze)

cecC
e The quantities of interest:

e marginal distributions: p(x;) = Z p(x)

e normalization constant (partition function): 7

e Question: how to represent these quantities in a variational
form?

e Use tools from (1) exponential families; (2) convex analysis
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Exponential Families

e Canonical parameterization

po(T1, -+ o) =exp3 0 of A(@){
/

Canonical Parameters Sufficient Statistics Log partition Function

e Log normalization constant:

= log [ exp{0' ¢(z)}dx
| g/‘lﬂ ()}

A(0)

it is a convex function (Prop 3.1

e Effective canonical parameters:

:{eeRﬂAwy<+m}
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Graphical Models as Exponential Families | ¢

e Undirected graphical model (MRF):

(X (9 H @D Xc,(gc)

e MRF in an exponential form:

p(x;0) = exp { > logtp(xc;fc) — log 2(9)}

ceC

® log ¢(X0; gc)can be written in a linear form after some parameterization
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Example: Gaussian MRF .o

e Consider a zero-mean multivariate Gaussian distribution that
respects the Markov property of a graph

e Hammersley-Clifford theorem states that the precision matrix A — 2_1
also respects the graph structure

1 9 :
:
,
3 .
5 :
4 -
(a) (b)

e Gaussian MRF in the exponential form

p(x) = exp {1 (0, xxT) — A(@)} where © = —A

2

o Sufficient statistics are {582, S €& V; TsTt, (S, If) S E}
S
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Example: Discrete MRF

95t<aj3737t>
Oulwe) — | o Os(@) e
O—0O—0O—0 . if xs =
Indicators: [i(xs) =
O—O—0O 0 otherwise
O C
Parameters: 0s =1{0s.5,7 € Xs}

O

Ost = {Hst;jk7 (.]7 k) € Xs X Xt}

e |n exponential form

\

p(x;0) o< exp < ZZHS]I[ Ts) + Z Ost: il (s I[k(:ct)>

(s€EV J (s,t)eE
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Why Exponential Families? -

e Computing the expectation of sufficient statistics (mean
parameters) given the canonical parameters yields the
marginals

psj = Epl;(Xs)] =P Xy =j] Vje X,
Mst;ik = Ep[ﬂst;jk(X&Xt)] — P[Xs — j,Xt — k] \V/(],k) € X € X;tﬂ

e Computing the normalizer yields the log partition function (or
log likelihood function)

log Z(8) = A(6)
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Computing Mean Parameter: Bernoulli o

e A single Bernoulli random variable @ 0
p(a;0) = exp{fz — A(0)}, = € {0,1}, A(F) = log(1 + ¢*)

e Inference = Computing the mean parameter

69

14 e

p(0) =Eo[X]=1-p(X =10)+0-p(X =0;0) =

e \Want to do it in a variational manner: cast the procedure of
computing mean (summation) in an optimization-based
formulation
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Conjugate Dual Function .o

e Given any function f(f), its conjugate dual function is:

[ () = Slgp{<9>u> — f(0)}

v /’(0, — [ (1)
e Conjugate dual is always a convex function: point-wise
supremum of a class of linear functions
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Dual of the Dual is the Original os

e Under some technical condition on f (convex and lower
semi-continuous), the dual of dual is itself:

f=0")
f(0) =Stplbp{<97u> — [T (1)}

e For log partition function

A(0) = Sl;p{<9,u> — A% ()}, e

e The dual variable [l has a natural interpretation as the mean parameters
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000
0000
o000
. . ces
Computing Mean Parameter: Bernoulli g
e The conjugate A*(u) := sup {,u@—log[l—l—exp(@)]}
O cR
0
(&
o Stationary condition 4 = 5 e (u=VA@®))
o If 1€ (0.0),80) = log (2 ) A"(0) = plog) + (1~ ) log(1 ~ )

o If pg[0,1], A%(n) = +o0

log i+ (1 — ) log(1 — p) if € [0,1
oWehaveA*(u){MogN (1 —p)log(l —p) ifpel ].

+00 otherwise.

e The variational form: A(f) = max,, c1o.1) {1 -0 — A* (1) }.

69

e The optimum is achieved at u(0) = [ ef This is the mean!
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Remark ot

e The last few identities are not coincidental but rely on a deep
theory in general exponential family.
e The dual function is the negative entropy function
e The mean parameter is restricted
e Solving the optimization returns the mean parameter and log partition function

e Next step: develop this framework for general exponential
families/graphical models.

e However,

e Computing the conjugate dual (entropy) is in general intractable
e The constrain set of mean parameter is hard to characterize
e Hence we need approximation
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Computation of Conjugate Dual

e Given an exponential family

d
p(x1, ..., Tm;0) = exp {Z 0;0; () — A(H)}

e [The dual function

A" (p) = sup 1w, 0) — A(0)}

e The stationary condition: p—VA(#) = 0

e Derivatives of A yields mean parameters

0A
55 (0) = Eolon(X / bi(a

e The stationary condition becomes 1 = Ey[¢p(X)]

e Question: for which 1 € R does it have a solution §(u)?

© Eric Xing @ CMU, 2005-2014

15



Computation of Conjugate Dual

Let's assume there is a solution §(u) such that © = Eg(,,)|

The dual has the form

A%(p) = (0(p), 1) — A(0(p))
= Eg(p [(0(p), o(X)

) — A0(n)]

— Egy [log p(X: 0(40)

The entropy is defined as

H(p(x))

So the dual is A*(p) =

_ / p(z) log p(x) dz
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Complexity of Computing Conjugate Dual | ¢

e The dual function is implicitly defined:

0(w)
po o —= (VA - —H(po(y) = A*(w)

e Solving the inverse mapping ;, = [Eg [ng(X)] for canonical parameters
O(u) is nontrivial

e Evaluating the negative entropy requires high-dimensional integration
(summation)

e Question: for which ;;, ¢ R¢does it have a solution O(p)? i-e.,
the domain of A* ().

e the ones in marginal polytope!
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Marginal Polytope oo

e For any distribution p(z) and a set of sufficient statistics gb(:v)

define a vector of mean parameters

i = Eploi(X /qﬁz

e p(x)is not necessarily an exponential family

e The set of all realizable mean parameters

M= {peR? [ Ips.t. Eo(X)] = pu}

e Itis aconvex set

e For discrete exponential families, this is called marginal
polytope

© Eric Xing @ CMU, 2005-2014
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Convex Polytope 4+

e Convex hull representation

M = {u € RY| Z o(x)p(x) = p, for some p(x) > 0, Z p(x) = 1}

reX™ reX
= (“_.011\?{(})(:1:)1 reX m’}

e Half-plane representation

e Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized
by a finite collection of linear inequality constraints

M = {u c R‘ﬂa}u > bj, Vj € j}v
where | 7| is finite. \a‘j

<aj7 :u> = bj
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Example: Two-node Ising Model os

e Sufficient statistics: ¢(CI3) — (5131,332;5’31332)

H1 = P(Xl — 1),,&2 — P(XQ — 1)
H12 = P(Xl = 1,X2 — 1)

e Mean parameters:

e [wo-node Ising model

e Convex hull representation

oonv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

e Half-plane representation

p1 = p12
po = 412
piz = 0
L+pi2 = p1+ pe
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Marginal Polytope for General Graphs

e Still doable for connected
binary graphs with 3 nodes:
16 constraints

e For tree graphical models,
the number of half-planes
(facet complexity) grows
only linearly in the graph
size

e General graphs?

e extremely hard to characterize the
marginal polytope
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Variational Principle (Theorem 3.4)

e [he dual function takes the form

A*( ) _ —H(pg('u)) if [IRS M°
8 +00 if ¢ M.

o O(u) satisfies 1 = Eg(y) (X))
e The log partition function has the variational form

A(0) = sup {071 — A" ()}

e Forall g € O, the above optimization problem is attained
uniquely at () € M? that satisfies

p(0) = Eg[p(X)]

© Eric Xing @ CMU, 2005-2014
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Example: Two-node Ising Model e

e The distribution p(z;0) o< exp{6121 + 0225 + 612212} Q—Q

e Sufficient statistics (;‘)(.1‘) — {,1'1, T, .7"1.1‘9}

p1 = 12

e The marginal polytope is characterized by gy > o
12 = 0

e The dual has an explicit form L+ > 1+ pe

A*(p) = pazlog pio + (1 — pi2) log(py — pri2) + (2 — p12) log(pe — p12)
+(1 4+ p12 — p1 — p2) log(1 + p12 — p1 — o)
e The variational problem 49)=  max {011 + oo + 012010 — A* (1)}

_ _ _ {p1,p2,p12}EM
e The optimum is attained at

B exp{0:1} + exp{f1 + 02 + 012}
1 + exp{0:1} + exp{O2} + exp{01 + 02 + 012}

p1(0)
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Variational Principle os

e Exact variational formulation

A(0) = sup {07 — A™()}

e A:the marginal polytope, difficult to characterize
° A*: the negative entropy function, no explicit form

e Mean field method: non-convex inner bound and exact form of
entropy

e Bethe approximation and loopy belief propagation: polyhedral
outer bound and non-convex Bethe approximation
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Mean Field Approximation

© Eric Xing @ CMU, 2005-2014
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Tractable Subgraphs o

e For an exponential family with sufficient statistics ¢ defined
on graph G, the set of realizable mean parameter set

M(G;¢) :={p € R | Fp s.t. Ep[p(X)] =}

e |dea: restrict p to a subset of distributions associated with a

tractable subgraph
Q= {9 e RYA(6) < +oo}

&~ O >
@) @)
. O @)
ko : © T .
O @)
O @) @)

Q(Fy) = {9 €EQ |04 =0V (s,1) € E} UT) := {9 e Q| (9(3,75) =0 V(s,t) ¢ E(T)}
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Mean Field Methods ot

e For a given tractable subgraph F, a subset of canonical
parameters is

M(F;¢) := {1 € R* | 7 = Eg[¢p(X)] for some 6 € Q(F)}

e Inner approximation
M(F;9)° € M(G; ¢)°

e Mean field solves the relaxed problem

max_{{r.6) — A}(7))

o A% = A*‘/Y‘\F(G) is the exact dual function restricted to M p(G)
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Example: Naive Mean Field for Ising Model 2

1

()IQ
f)"’

e Ising model in {0,1} representation ¢
4(\ Sf\ 6{"\
p(x) o< exp Z x0s + Z TsTiOgt T T
seV (s,t)eFE O O O
M t 7 8 9
e Mean parameters
p IO 2@ 3O
s = EoXs]= PXs= 1] fordl sV, and
4 5 6
bst = Ep[XsXt]= Pl(Xs,Xt) = (1,1)] for dl (s;t) (IE. o0 Y
e For fully disconnected graph F, o 9 9

Mp(G) :={1 € RIVIHIE] 10< 7 <1,Vs €V, 7y = Ts7¢,V(s,t) € '}

e The dual decomposes into sum, one for each node

Ap(t) = [rslog7e + (1 — 75) log(1 — 7))
seV
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Example: Naive Mean Field for Ising Model

e Mean field problem

A(0) > 0475 Ost7s7r — AT
()_(n ..... 1;Irlna}e([m]m{z: a Z = Ar(T )}

stEE

e The same objective function as in free energy based
approach

e The naive mean field update equations

Te < O («98 - Z 937'75)

teN(s)

e Also yields lower bound on log partition function

© Eric Xing @ CMU, 2005-2014
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Geometry of Mean Field .

e Mean field optimization is always non-convex for any
exponential family in which the state space X’™ is finite

e Recall the marginal polytope is a convex hull ‘
M(G) = conv{gp(e);e € X}

e Mpgp(G) contains all the extreme points

e Ifitis a strict subset, then it must be non-convex "A'

e Example: two-node Ising model
Mp(G)={0<7 <1,0< 7 < 1,72 = T T2}

e It has a parabolic cross section along 71 = 79 , hence non-convex
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Bethe Approximation
and Sum-Product

© Eric Xing @ CMU, 2005-2014
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Sum-Product/Belief Propagation Algorithm | ¢

e Message passing rule:
Mus(zs) e & Z{wsxxs,x;)wt(ag;) T Mut@c;)}
) ueN(t)/s
e Marginals:

,Us(xs — was -773 H M;; 373
teN(s

e EXxact for trees, but approximate for loopy graphs (so called
loopy belief propagation)

e Question:
e How is the algorithm on trees related to variational principle?
e What is the algorithm doing for graphs with cycles?

© Eric Xing @ CMU, 2005-2014
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Tree Graphical Models -

e Discrete variables X, € {0,1,...,ms —1}onatree T =(V,E)

[(xs) fors=1,...n, je€Xs
Iik(zs,xe) for(s,t) e B, (j,k) € Xs x A,

o Sufficient statistics:

e EXxponential representation of distribution:
N\ N\

p(x;0) [ exp &(xs) + Bt (Xs, Xt )

sV (s,t)E

93(333) — Z X Hs;j]lj(:c@) (and similarly for Os¢ (s, x¢))
e Mean parametérs afe marginal probabilities:

Hs;j = Ep[]lj(XS)] = IP[XS = ]] Vj € &, ps(zs) = Z ps;ili(zs) = P(Xs = z)

JEXs
pstijk = Bp[Lstjn (X, Xo)] = P[Xs = j, Xy = k] V(j,k) € Xs € 4.
Mst(mg,xt) — Z /vbst;jkﬂjlc(m&mt) — P(Xs = Xg, Xt = xt)

(]7k)EXS XXt
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Marginal Polytope for Trees

e Recall marginal polytope for general graphs
M(G)={pne R | Ip with marginals ps.;, festjk

e By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

M(T) = {u >0y psls) =1, ples, o) = us(aﬁs)}

e In particular, if © € M(T), then

H,us xs H ,ust 33373375

.
eV t)eE s )1t (T¢)

has the corresponding marginals

© Eric Xing @ CMU, 2005-2014
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Decomposition of Entropy for Trees

e For trees, the entropy decomposes as

H(p(w;p)) = = pla;p)logp(; )

- Z <_ Z,Us(flfs)logﬂs(ggs)> _

seV Ts

A\ - 7

Hs(ps)

— Z Z:ust xijt 10g ,ust(x,s,xt) )

eE o fs () pre ()

7

Isi(pst), KL Divergence

— ZHS<MS Z ]st ,Ust

seV (s,t)eER

e The dual function has an explicit form A" (¢) = —H (p(z; 1))
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Exact Variational Principle for Trees :

e Variational formulation

peM(T)

A<9): max {<97N>+ZH8(N8> Z Ist(ﬂst>}

seV (s,t)eE

e Assign Lagrange multiplier Ag for the normalization constraint
Cos(p) :=1=3", pstrs) =0 and A (x,)for each marginalization
constraint Cis(zs; 1) = ps(ws) — >, pse(ws, ) = 0

e The Lagrangian has the form

ﬁ(,ua )‘> — <‘97M> + Z HS(;“’S Z Ist Mst + Z )\SSCSS

seV (s,t)EE seV

+ Z Z)\St a:t Clst CUt ‘|‘Z>\ts ws Cts 5173

(s,t)eEE  x¢
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Lagrangian Derivation

e Taking the derivatives of the Lagrangian w.r.t. is and ps:

oL
— 98(333) — 1Og ,Us(ms) + Z )\ts<333) + C
8/.L5 (373) teN (s)
8£ //l/St(x.Sj xt)

- )\ts(xs) - )\st(fct) ‘|‘ C/

= Ost(zs,xt) — log

Opist (s, Tt) prs (Ts) pe ()

e Setting them to zeros yields

ps(zs) oc exp{fs(xs)} H exp{)\ts $S)}
teN (s)

Mts<xs)
ps(xs,we) o< exp{0s(xs) + O(xe) + Ose (s, 2¢) } X

H exp {Aus(zs) } H exp {Avt (z¢) }

wEN (s)\t vEN (t)\s
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Lagrangian Derivation (continued) |s¢

e Adjusting the Lagrange multipliers or messages to enforce
Cts(335§ ,LL) ‘= ,LLS($S) — th ,Ust(xSa th) =0
yields

Mis(zs) <« Z exp {Qt(xt) + Ost(xs, 9075)} H Myt ()

Tt wEN (t)\s

e Conclusion: the message passing updates are a Lagrange
method to solve the stationary condition of the variational
formulation

© Eric Xing @ CMU, 2005-2014
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BP on Arbitrary Graphs o

e [wo main difficulties of the variational formulation

A(0) = sup {07 — A" ()}

e The marginal polytope A1 is hard to characterize, so let’s use the tree-
based outer bound

LG)=1>0|) 7lws) =1, 7a(ws, 21) = (xs)

These locally consistent vectors Tare called pseudo-marginals.

e Exact entropy —A*(,u) lacks explicit form, so let’'s approximate it by the
exact expression for trees

_A*< )NHBethe ZH 7_s Z [st Tst

seV (s,t)EE
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Bethe Variational Problem (BVP) | ¢

e Combining these two ingredient leads to the Bethe variational
problem (BVP):

Trerllha(x){ 0, 1 —I—ZH Ts) Z Lot (Tst }

seV (s,t)ER
e A simple structured problem (differentiable & constraint set is a simple convex
polytope)

e Loopy BP can be derived as am iterative method for solving a Lagrangian
formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

e A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only
if they are local stationary points of BVP
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Geometry of BP .o

e Consider the following assignment of pseudo-marginals

0.5]
e Caneasilyverify T € L(G) l0_5j
o However, T ¢ M(G) (need a bit more work)

l0.4 U.ljl

0.4 0.1]
0.1 0.4]

0.1 0.4]

e Iree-based outer bound

e For any graph, M(G) C L(G) lUj] [0.4 0.1} lm}
— 0.5 0.5
e Equality holds if and only if the graph is a tree
s
e Question: does solution to the BVP ever fall -
into the gap? T
e Yes, for any element of outer bound L(G) itis
possible to construct a distribution with it as a BP
fixed point (Wainwright et. al. 2003)
L(G)
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Inexactness of Bethe Entropy Approximation 2

e Consider a fully connected graph with

ps(xs) = (0.5 0.5] for s=1,2,3,4 @ ®
0.5 0
pst(Ts, 1) = K 0.5] V (s,t) € E. @ @

e ltisgloballyvalid: 1 & MS)G?) realized by the distribution that places mass
1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

* Hpethe(pt) = 4log2 — 6log2 = —2log2 < 0,
T —A*(p) =log2 > 0.
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Remark

e This connection provides a principled basis for applying the
sum-product algorithm for loopy graphs

e However,

e Although there is always a fixed point of loopy BP, there is no
guarantees on the convergence of the algorithm on loopy graphs

e The Bethe variational problem is usually non-convex. Therefore, there
are no guarantees on the global optimum

e Generally, no guarantees that Apene(6) is a lower bound of A(6)

e Nevertheless,

e The connection and understanding suggest a number of avenues for
improving upon the ordinary sum-product algorithm, via progressively
better approximations to the entropy function and outer bounds on the
marginal polytope (Kikuchi clustering)

© Eric Xing @ CMU, 2005-2014
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Summary .

e Variational methods in general turn inference into an optimization
problem via exponential families and convex duality

e The exact variational principle is intractable to solve; there are two
distinct components for approximations:

e Either inner or outer bound to the marginal polytope
e Various approximation to the entropy function

e Mean field: non-convex inner bound and exact form of entropy

e BP: polyhedral outer bound and non-convex Bethe approximation

e Kikuchi and variants: tighter polyhedral outer bounds and better
entropy approximations (Yedidia et. al. 2002)
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