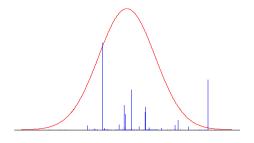


Probabilistic Graphical Models

Bayesian Nonparametrics: Dirichlet Processes

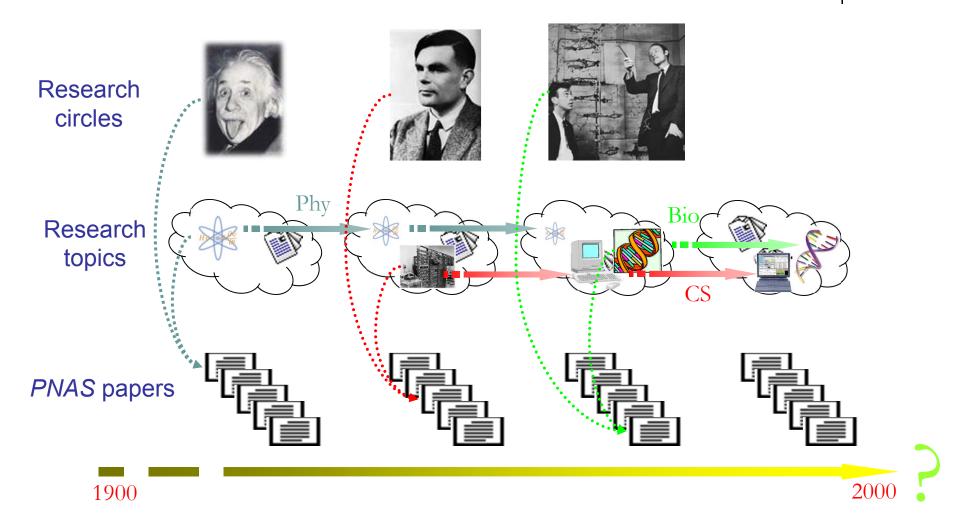
ng

Eric Xing Lecture 19, March 26, 2014



Acknowledgement: slides first drafted by Sinead Williamson

How Many Topics?



Parametric vs nonparametric

Parametric model:

- Assumes all data can be represented using a fixed, finite number of parameters.
 - Mixture of K Gaussians, polynomial regression.

Nonparametric model:

- Number of parameters can grow with sample size.
- Number of parameters may be random.
 - Kernel density estimation.

Bayesian nonparametrics:

- Allow an infinite number of parameters a priori.
- A finite data set will only use a finite number of parameters.
- Other parameters are integrated out.

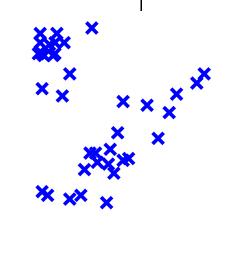
Clustered data

- How to model this data?
- Mixture of Gaussians:

$$p(x_1, \dots, x_N | \pi, \{\mu_k\}, \{\Sigma_k\})$$

$$= \prod_{n=1}^{\infty} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_k | \mu_k, \Sigma_k)$$

 Parametric model: Fixed finite number of parameters.



X

- How to choose the mixing weights and mixture parameters?
- Bayesian choice: Put a prior on them and integrate out:

$$p(x_1, \dots, x_N)$$

$$= \int \int \int \left(\prod_{n=1}^{\infty} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_k | \mu_k, \Sigma_k) \right)$$

$$p(\pi) p(\mu_{1:K}) p(\Sigma_{1:K}) d\pi d\mu_{1:K} d\Sigma_{1:K}$$

- Where possible, use conjugate priors
 - Gaussian/inverse Wishart for mixture parameters
 - What to choose for mixture weights?

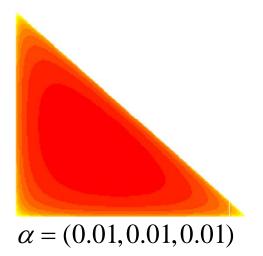
The Dirichlet distribution

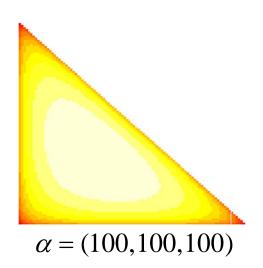
- The Dirichlet distribution is a distribution over the (K-1)dimensional simplex.
- It is parametrized by a *K*-dimensional vector $(\alpha_1, \dots, \alpha_K)$ such that $\alpha_k \geq 0, k = 1, \dots, K$ and $\sum_k \alpha_k > 0$
- Its distribution is given by

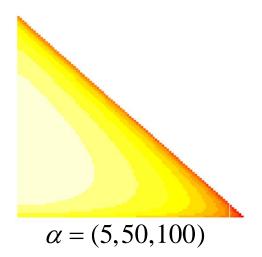
$$\frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)} \prod_{k=1}^{K} \pi_k^{\alpha_k - 1}$$

Samples from the Dirichlet distribution

- If $\pi \sim \mathrm{Dirichlet}(\alpha_1, \dots, \alpha_K)$ then $\pi_k \geq 0$ for all k, and $\sum_{k=1}^K \pi_k = 1$.
- Expectation: $\mathbb{E}\left[(\pi_1,\ldots,\pi_K)\right] = \frac{(\alpha_1,\ldots,\alpha_K)}{\sum_k \alpha_k}$







Conjugacy to the multinomial

• If $\pi \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_K)$ and $x_n \stackrel{iid}{\sim} \pi$

$$p(\pi|x_1, \dots, x_n) \propto p(x_1, \dots, x_n|\pi) p(\pi)$$

$$= \left(\frac{\prod_{k=1}^K \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^K \alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k - 1}\right) \left(\frac{n!}{m_1! \dots m_K!} \pi_1^{m_1} \dots \pi_K^{m_K}\right)$$

$$\propto \frac{\prod_{k=1}^K \Gamma(\alpha_k + m_k)}{\Gamma(\sum_{k=1}^K \alpha_k + m_k)} \prod_{k=1}^K \pi_k^{\alpha_k + m_k - 1}$$

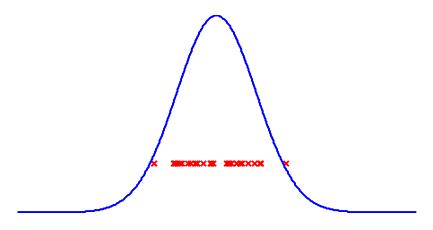
$$= \text{Dirichlet}(\pi|\alpha_1 + m_1, \dots, \alpha_K + m_K)$$

Distributions over distributions

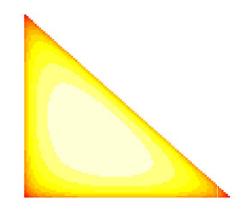
- The Dirichlet distribution is a distribution over positive vectors that sum to one.
- We can further associate each entry with a set of parameters
 - e.g. finite mixture model: each entry associated with a mean and covariance.
- In a Bayesian setting, we want these parameters to be random.
- We can combine the distribution over probability vectors with a distribution over parameters to get a distribution over distributions over parameters.

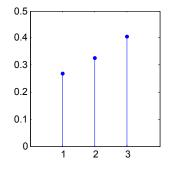
Example: finite mixture model

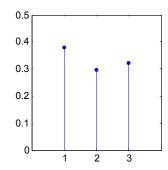
- Gaussian distribution: distribution over means.
 - Sample from a Gaussian is a real-valued number.

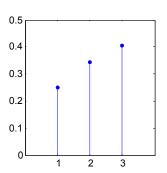


- Gaussian distribution: distribution over means.
 - Sample from a Gaussian is a real-valued number.
- Dirichlet distribution:
 - Sample from a Dirichlet distribution is a probability vector.



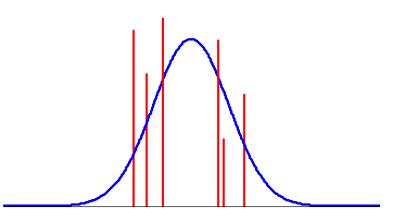






Example: finite mixture model

- Dirichlet Mixture Prior
 - Each element of a Dirichletdistributed vector is associated with a parameter value drawn from some distribution.
 - Sample from a Dirichlet mixture prior is a probability distribution over parameters of a finite mixture model.



Properties of the Dirichlet distribution

• The coalesce rule:

$$(\pi_1 + \pi_2, \pi_3, \dots, \pi_K) \sim \text{Dirichlet}(\alpha_1 + \alpha_2, \alpha_3, \dots, \alpha_K)$$

• Relationship to gamma distribution: If $\eta_k \sim \operatorname{Gamma}(\alpha_k, 1)$

$$\frac{(\eta_1, \dots, \eta_K)}{\sum_k \eta_k} \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_K)$$

- If $\eta_1 \sim \operatorname{Gamma}(\alpha_1, 1)$ and $\eta_2 \sim \operatorname{Gamma}(\alpha_2, 1)$ then $\eta_1 + \eta_2 \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, 1)$
- Therefore, if $(\pi_1 \dots, \pi_K) \sim \mathrm{Dirichlet}(\alpha_1, \dots, \alpha_K)$ then $(\pi_1 + \pi_2, \pi_3, \dots, \pi_K) \sim \mathrm{Dirichlet}(\alpha_1 + \alpha_2, \alpha_3, \dots, \alpha_K)$

Properties of the Dirichlet distribution

- The "combination" rule:
- The beta distribution is a Dirichlet distribution on the 1simplex.
- Let $(\pi_1 \dots, \pi_K) \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_K)$ and $\theta \sim \text{Beta}(\alpha_1 b, \alpha_1 (1 b)), 0 < b < 1.$
- Then

$$(\pi_1 \theta, \pi_1(1-\theta), \pi_2, \dots, \pi_K) \sim \text{Dirichlet}(\alpha_1 b_1, \alpha_1(1-b_1), \alpha_2, \dots, \alpha_K)$$

• More generally, if $\theta \sim \mathrm{Dirichlet}(\alpha_1 b_1, \alpha_1 b_2, \dots, \alpha_1 b_N), \sum_i b_i = 1$. then

$$(\pi_1\theta_1,\ldots,\pi_1\theta_N,\pi_2,\ldots,\pi_K) \sim \text{Dirichlet}(\alpha_1b_1,\ldots,\alpha_1b_N,\alpha_2,\ldots,\alpha_K)$$

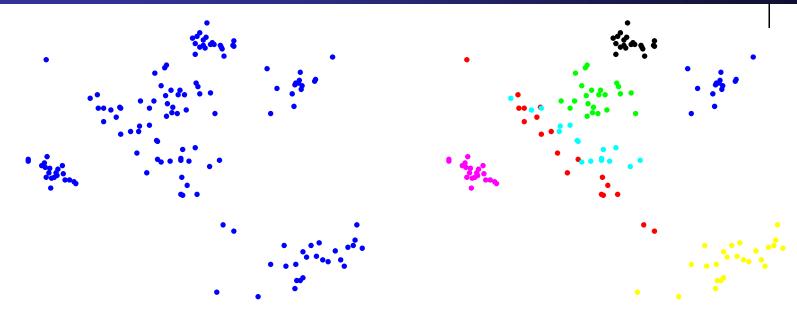
Properties of the Dirichlet distribution

The "Renormalization" rule:

If
$$(\pi_1 \dots, \pi_K) \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_K)$$

then $\frac{(\pi_2, \dots, \pi_K)}{\sum_{k=1}^K \pi_k} \sim$?

$$\frac{(\pi_2, \dots, \pi_K)}{\sum_{k=1}^K \pi_k} \sim \text{Dirichlet}(\alpha_2, \dots, \alpha_K)$$



- Mixture of Gaussians but how many components?
- What if we see more data may find new components?

Bayesian nonparametric mixture models

- Make sure we always have more clusters than we need.
- Solution infinite clusters a priori!

$$p(x_n|\pi, \{\mu_k\}, \{\Sigma_k\}) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$$

- A finite data set will always use a finite but random number of clusters.
- How to choose the prior?
- We want something like a Dirichlet prior but with an infinite number of components. How such a distribution can be defined?

Constructing an appropriate prior

- Start off with $\pi^{(2)}=(\pi_1^{(2)},\pi_2^{(2)})\sim \mathrm{Dirichlet}\left(\frac{\alpha}{2},\frac{\alpha}{2}\right)$
- Split each component according to the splitting rule:

$$\theta_1^{(2)}, \theta_2^{(2)} \stackrel{iid}{\sim} \text{Beta}\left(\frac{\alpha}{2} \cdot \frac{1}{2}, \frac{\alpha}{2} \cdot \frac{1}{2}\right)$$

$$\pi^{(4)} = (\theta_1^{(2)} \pi_1^{(2)}, (1 - \theta_1^{(2)}) \pi_1^{(2)}, \theta_2^{(2)} \pi_2^{(2)}, (1 - \theta_2^{(2)}) \pi_2^{(2)})$$

$$\sim \text{Dirichlet}\left(\frac{\alpha}{4}, \frac{\alpha}{4}, \frac{\alpha}{4}, \frac{\alpha}{4}\right)$$

- Repeat to get $\pi^{(K)} \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$
- ullet As $K o \infty$, we get a vector with infinitely many components

The Dirichlet process

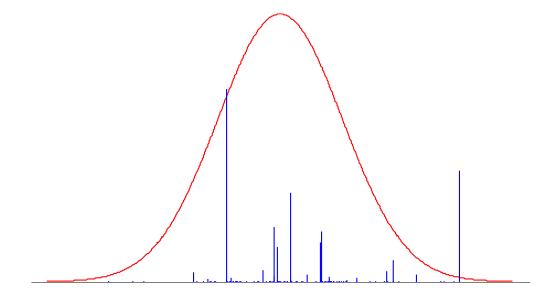
• Let H be a distribution on some space Ω – e.g. a Gaussian distribution on the real line.

• Let
$$\pi \sim \lim_{K \to \infty} \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$

- For $k = 1, \ldots, \infty$ let $\theta_k \sim H$.
- Then $G := \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}$ is an infinite distribution over Ω .
- We write $G \sim \mathrm{DP}(\alpha, H)$

Samples from the Dirichlet process

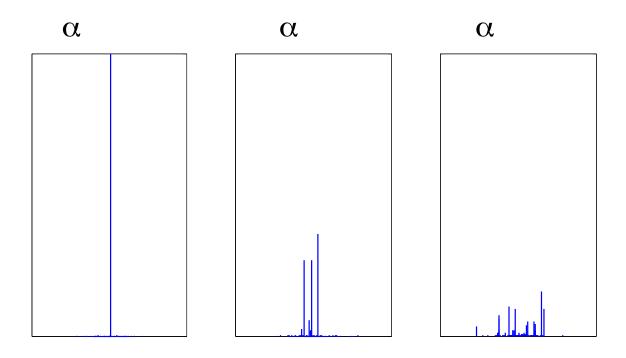
- Samples from the Dirichlet process are discrete.
- We call the point masses in the resulting distribution, atoms.



The base measure H determines the locations of the atoms.

Samples from the Dirichlet process

- The *concentration parameter* α determines the distribution over atom sizes.
- Small values of α give sparse distributions.



Properties of the Dirichlet process

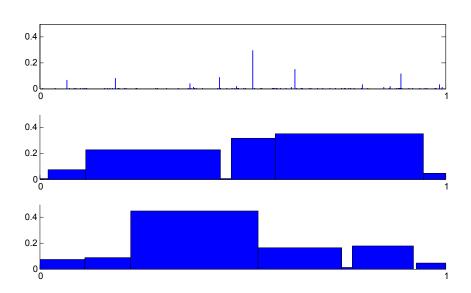
• For any partition $A_1, ..., A_K$ of Ω , the total mass assigned to each partition is distributed according to $Dir(\alpha H(A_1)), ..., \alpha H(A_K))$



Definition: Finite marginals

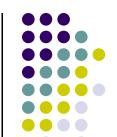
• A Dirichlet process is the unique distribution over probability distributions on some space Ω , such that for any finite partition $A_1, ..., A_K$ of Ω ,

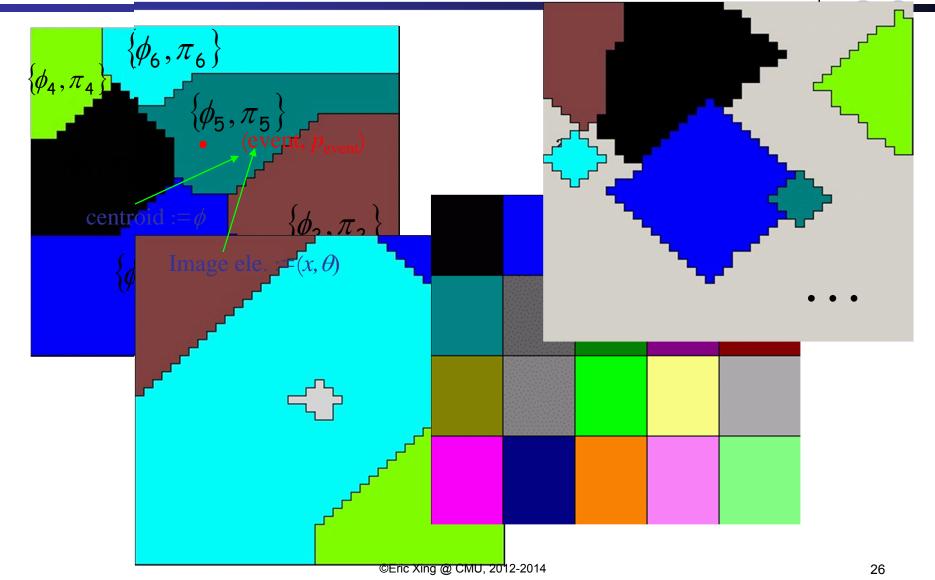
$$(P(A_1), \ldots, P(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_K)).$$



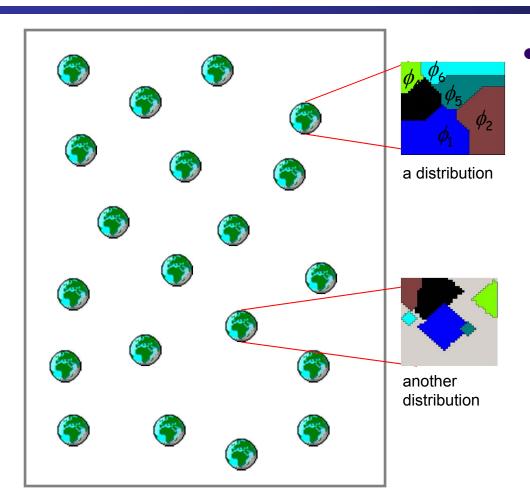
[Ferguson, 1973]

Random Partition of Probability Space





Dirichlet Process



• A *CDF*, *G*, on possible worlds of random partitions follows a Dirichlet Process if for any measurable finite partition $(\phi_1, \phi_2, ..., \phi_m)$:

$$(G(\phi_1), G(\phi_2), ..., G(\phi_m)) \sim$$

Dirichlet($\alpha G_0(\phi_1), ..., \alpha G0(\phi_m)$)

where G_0 is the base measure and α is the scale parameter

Thus a Dirichlet Process G defines a distribution of distribution

Conjugacy of the Dirichlet process

- Let $A_1, ..., A_K$ be a partition of Ω , and let H be a measure on Ω . Let $P(A_k)$ be the mass assigned by $G \sim \mathrm{DP}(\alpha, H)$ to partition A_k . Then $(P(A_1), ..., P(A_K)) \sim \mathrm{Dirichlet}(\alpha H(A_1), ..., \alpha H(A_K))$.
- If we see an observation in the J^{th} segment (or fraction), then $(P(A_1), \ldots, P(A_j), \ldots, P(A_K) | X_1 \in A_j)$ $\sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_j) + 1, \ldots, \alpha H(A_K)).$
- This must be true for all possible partitions of Ω .
- This is only possible if the posterior of G, given an observation x, is given by

$$G|X_1 = x \sim \mathrm{DP}\left(\alpha + 1, \frac{\alpha H + \delta_x}{\alpha + 1}\right)$$

- The Dirichlet process clusters observations.
- A new data point can either join an existing cluster, or start a new cluster.
- Question: What is the predictive distribution for a new data point?
- Assume H is a continuous distribution on Ω . This means for every point θ in Ω , $H(\theta) = 0$.
 - Therefore θ itself should not be treated as a data point, but parameter for modeling the observed data points
- First data point:
 - Start a new cluster.
 - Sample a parameter θ_1 for that cluster.

- We have now split our parameter space in two: the singleton θ_1 , and everything else.
- Let π_1 be the atom at θ_1 .
- The combined mass of all the other atoms is $\pi_* = 1 \pi_1$.
- A priori, $(\pi_1, \pi_*) \sim \text{Dirichlet}(0, \alpha)$
- A posteriori, $(\pi_1, \pi_*)|X_1 = \theta_1 \sim \text{Dirichlet}(1, \alpha)$

• If we integrate out π_1 we get

$$P(X_2 = \theta_k | X_1 = \theta_1) = \int P(X_2 = \theta_k | (\pi_1, \pi_*)) P((\pi_1, \pi_* | X_1 = \theta_1) d\pi_1$$

$$= \int \pi_k \text{Dirichlet}((\pi_1, 1 - \pi_1) | 1, \alpha) d\pi_1$$

$$= \mathbb{E}_{\text{Dirichlet}(1, \alpha)} [\pi_k]$$

$$= \begin{cases} \frac{1}{1+\alpha} & \text{if } k = 1 \\ \frac{\alpha}{1+\alpha} & \text{for new } k. \end{cases}$$

- Lets say we choose to start a new cluster, and sample a new parameter $\theta_2 \sim H$. Let π_2 be the size of the atom at θ_2 .
- A posteriori, $(\pi_1, \pi_2, \pi_*)|X_1 = \theta_1, X_2 = \theta_2 \sim \text{Dirichlet}(1, \alpha).$
- If we integrate out $\pi = (\pi_1, \pi_2, \pi_*)$ we get

$$P(X_3 = \theta_k | X_1 = \theta_1, X_2 = \theta_2)$$

$$= \int P(X_3 = \theta_k | \pi) P(\pi | X_1 = \theta_1, X_2 = \theta_2) d\pi$$

$$= \mathbb{E}_{\text{Dirichlet}(1,1,\alpha)} [\pi_k]$$

$$= \begin{cases} \frac{1}{2+\alpha} & \text{if } k = 1 \\ \frac{1}{2+\alpha} & \text{if } k = 2 \\ \frac{\alpha}{2+\alpha} & \text{for new } k. \end{cases}$$

• In general, if m_k is the number of times we have seen $X_i = k$, and K is the total number of observed values,

$$P(X_{n+1} = \theta_k | X_1, \dots, X_n) = \int P(X_{n+1} = \theta_k | \pi) P(\pi | X_1, \dots, X_n) d\pi$$

$$= \mathbb{E}_{\text{Dirichlet}(m_1, \dots, m_K, \alpha)} [\pi_k]$$

$$= \begin{cases} \frac{m_k}{n+\alpha} & \text{if } k \leq K \\ \frac{\alpha}{n+\alpha} & \text{for new cluster.} \end{cases}$$

- We tend to see observations that we have seen before
 rich-get-richer property.
- We can always add new features nonparametric.

A few useful metaphors for DP

$$p = \frac{2}{5 + \alpha} \quad \bullet$$

$$p = \frac{3}{5 + \alpha} \quad \bullet$$

$$p = \frac{\alpha}{5 + \alpha}$$

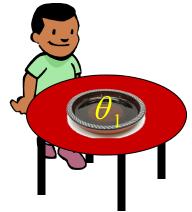
Joint:
$$G(\mathbf{Q}) \sim DP(\alpha G_0)$$

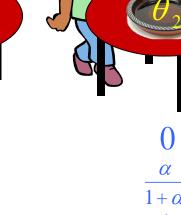
Marginal:
$$\phi_i \mid \phi_{-i}, \alpha, G_0 \sim \sum_{k=1}^K \frac{n_k}{i-1+\alpha} \delta_{\phi_k} + \frac{\alpha}{i-1+\alpha} G_0$$
.

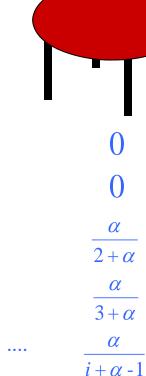
- Self-reinforcing property
- exchangeable partition of samples

- The resulting distribution over data points can be thought of using the following urn scheme.
- An urn initially contains a black ball of mass α.
- For *n*=1,2,... sample a ball from the urn with probability proportional to its mass.
- If the ball is black, choose a previously unseen color, record that color, and return the black ball plus a unitmass ball of the new color to the urn.
- If the ball is not black, record it's color and return it, plus another unit-mass ball of the same color, to the urn

[Blackwell and MacQueen, 1973]





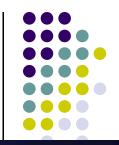


$P(c_i = k \mid \mathbf{c}_{-i}) =$	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
	$1+\alpha$
	1
	$\overline{2+\alpha}$
	1
	$\overline{3+\alpha}$
	m_1
	$\overline{i+\alpha-1}$

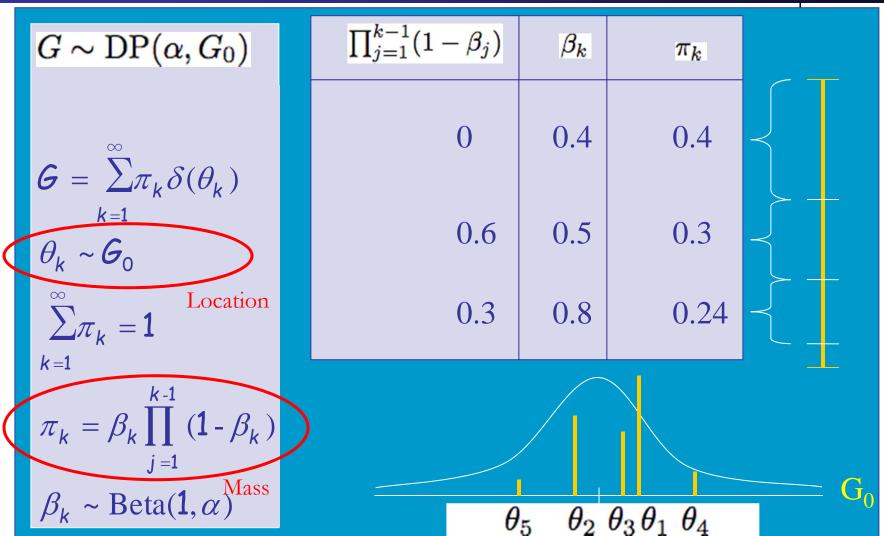
U
<u>α</u>
$1+\alpha$
1
$2+\alpha$
2
$\overline{3+\alpha}$
$\underline{m_2}$
$i + \alpha - 1$

Exchangeability

- An interesting fact: the distribution over the clustering of the first N customers does not depend on the order in which they arrived.
- Homework: Prove to yourself that this is true.
- However, the customers are not independent they tend to sit at popular tables.
- We say that distributions like this are exchangeable.
- De Finetti's theorem: If a sequence of observations is exchangeable, there must exist a distribution given which they are iid.
- The customers in the CRP are iid given the underlying Dirichlet process – by integrating out the DP, they become dependent.



The Stick-breaking Process



Stick breaking construction

- We can represent samples from the Dirichlet process exactly.
- Imagine a stick of length 1, representing total probability.
- For k=1,2,...
 - Sample a beta(1, α) random variable b_k .
 - Break off a fraction b_k of the stick. This is the k^{th} atom size
 - Sample a random location for this atom.
 - Recurse on the remaining stick.

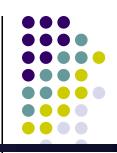
$$G := \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}$$

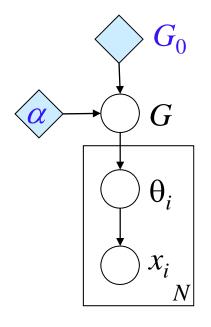
$$\pi_k := b_k \prod_{j=1}^{k-1} (1 - b_k)$$

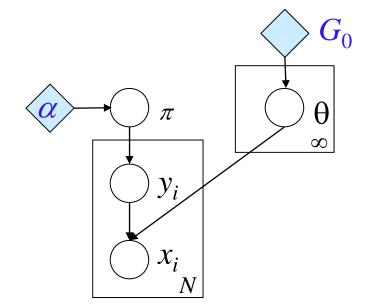
$$b_k \sim \text{Beta}(1, \alpha)$$

[Sethuraman, 1994]

Graphical Model Representationsof DP





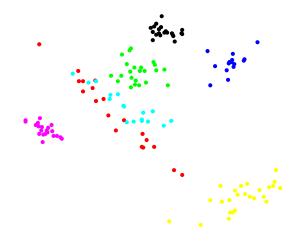


The Pólya urn construction

The Stick-breaking construction

Inference in the DP mixture model

$$G := \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k} \sim \mathrm{DP}(\alpha, H)$$
$$\phi_n \sim G$$
$$x_n \sim f(\phi_n)$$



Inference: Collapsed sampler

- We can integrate out G to get the CRP.
- Reminder: Observations in the CRP are exchangeable.
- Corollary: When sampling any data point, we can always rearrange the ordering so that it is the last data point.
- Let z_n be the cluster allocation of the nth data point.
- Let K be the total number of instantiated clusters.
- Then

$$p(z_n = k | x_n, z_{-n}, \phi_{1:K}) \propto \begin{cases} m_k f(x_n | \phi_k) & k \leq K \\ \alpha \int_{\Omega} f(x_n | \phi) H(d\phi) & k = K + 1 \end{cases}$$

 If we use a conjugate prior for the likelihood, we can often integrate out the cluster parameters

Problems with the collapsed sampler

- We are only updating one data point at a time.
- Imagine two "true" clusters are merged into a single cluster – a single data point is unlikely to "break away".
- Getting to the true distribution involves going through low probability states → mixing can be slow.
- If the likelihood is not conjugate, integrating out parameter values for new features can be difficult.
- Neal [2000] offers a variety of algorithms.
- Alternative: Instantiate the latent measure.

Inference: Blocked Gibbs sampler

- Rather than integrate out *G*, we can instantiate it.
- Problem: G is infinite-dimensional.
- Solution: Approximate it with a truncated stick-breaking process:

$$G^{K} := \sum_{k=1}^{K} \pi_{k} \delta_{\theta_{k}}$$

$$\pi_{k} = b_{k} \prod_{j=1}^{k-1} (1 - b_{j})$$

$$b_{k} \sim \text{Beta}(1, \alpha), k = 1, \dots, K - 1$$

$$b_{K} = 1$$

Inference: Blocked Gibbs sampler

Sampling the cluster indicators:

$$p(z_n = k | \text{rest}) \propto \pi_k f(x_n | \theta_k)$$

- Sampling the stick breaking variables:
 - We can think of the stick breaking process as a sequence of binary decisions.
 - Choose $z_n = 1$ with probability b_1 .
 - If $z_n \neq 1$, choose $z_n = 2$ with probability b_2 .
 - etc...

$$b_k | \text{rest} \sim \text{Beta}\left(1 + m_k, \alpha + \sum_{j=k+1}^K m_j\right)$$

Inference: Slice sampler

- Problem with batch sampler: Fixed truncation introduces error.
- Idea:
 - Introduce random truncation.
 - If we marginalize over the random truncation, we recover the full model.
- Introduce a uniform random variable u_n for each data point.
- Sample indicator z_n according to

$$p(z_n = k | \text{rest}) = I(\pi_k > u_n) f(x_n | \theta_k)$$

Only a finite number of possible values.

• The conditional distribution for u_n is just:

$$u_n|\text{rest} \sim \text{Uniform}[0, \pi_{z_n}]$$

• Conditioned on the u_n and the z_n , the π_k can be sampled according to the block Gibbs sampler.

Only need to represent a finite number K of components such that

$$1 - \sum_{k=1}^{K} \pi_k < \min(u_n)$$

Summary: Bayesian Nonparametrics

- Examples: Dirichlet processes, stick-breaking processes ...
- From finite, to infinite mixture, to more complex constructions (hierarchies, spatial/temporal sequences, ...)
- Focus on the laws and behaviors of both the generative formalisms and resulting distributions
- Often offer explicit expression of distributions, and expose the structure of the distributions --- motivate various approximate schemes