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Parametric vs nonparametric .

Parametric model:

e Assumes all data can be represented using a fixed, finite
number of parameters.

e Mixture of K Gaussians, polynomial regression.

Nonparametric model:
e Number of parameters can grow with sample size.
e Number of parameters may be random.

e Kernel density estimation.

Bayesian nonparametrics:

e Allow an infinite number of parameters a priori.

e A finite data set will only use a finite number of parameters.
e Other parameters are integrated out.
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Bayesian finite mixture model -

e How to choose the mixing weights and mixture
parameters?

o Bayesian choice: Put a prior on them and integrate out:

TN)

/ / / ( (o, %)

n=1 k=1
,L61 K) (21 K)deH1 KdX1. K

e \Where possible, use conjugate priors
e Gaussian/inverse Wishart for mixture parameters
e \What to choose for mixture weights?
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The Dirichlet distribution ot

e The Dirichlet distribution is a distribution over the (K-7)-
dimensional simplex.

e Itis parametrized by a K-dimensional vector (a1,...,ax)
suchthat o, > 0,k=1,...,K and > , o >0
e |Its distribution is given by
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Samples from the Dirichlet 3
distribution oo
e If m ~ Dirichlet(a,...,ax) thenm, > 0 for all k, and
Zi(:l T — 1.
e Expectation: ]E[(m,...,wK)] = (O‘i’:'l;"of‘kfd
.x“\*
[ L . jh \L
a = (0.01,0.01,0.01) a = (100,100,100) a = (5,50,100)
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Conjugacy to the multinomial 4
e If 7T~ Dirichlet(ay,...,ax) and x, EF s
p(ﬂ-‘xla <o 7£Cn) OCp(.fCl, <o ’,fn’ﬂ')p(ﬂ')
_ (H?—l F(O‘k) - 7_(_0%—1)( n! — 7_{_mK>
NG i K mil...omg! b K
Hk 1 ak+mk ﬁ ap+mr—1
D(3pmy ke + M) i
= Dirichlet(7|ay +m1, ..., ax + mk)
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Distributions over distributions °°

e The Dirichlet distribution is a distribution over positive
vectors that sum to one.

e \We can further associate each entry with a set of

parameters
e e.g. finite mixture model: each entry associated with a mean and
covariance.
e In a Bayesian setting, we want these parameters to be
random.

e \We can combine the distribution over probability vectors
with a distribution over parameters to get a distribution
over distributions over parameters.
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Example: finite mixture model .

e (Gaussian distribution:
distribution over means.

e Sample from a Gaussian is a
real-valued number.

©Eric Xing @ CMU, 2012-2014 12



XYY
'YX X
'YXX
Example: finite mixture model -
e (Gaussian distribution:
distribution over means.
e Sample from a Gaussian is a
real-valued number.
e Dirichlet distribution:
e Sample from a Dirichlet - -
distribution is a probability
vector.
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Example: finite mixture model

e Dirichlet Mixture Prior

Each element of a Dirichlet-
distributed vector is associated
with a parameter value drawn
from some distribution.

Sample from a Dirichlet
mixture prior is a probability
distribution over parameters of
a finite mixture model.

4
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Properties of the Dirichlet distribution | s

e [he coalesce rule:
(7 + 7o, 73, ..., T ) ~ Dirichlet(a; + ag, a3, ..., ak)

e Relationship to gamma distribution: If nx ~ Gamma(ag, 1)

%—7;7? ~ Dirichlet(aq, ..., ak)

o If m ~ Gamma(ag,1)andn, ~ Gamma(as, 1) then

m + n2 ~ Gamma(a; + as, 1)

e Therefore, if (71 ..., 7k ) ~ Dirichlet(ay, ..., ax)then

(7‘(‘1 + Mo, T3, ... ,7TK) ~ DiI‘iChlet(Oél + (i, Q3, . .. ,OéK)
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Properties of the Dirichlet distribution

e [he “combination” rule:

e The beta distribution is a Dirichlet distribution on the 1-

simplex.

o Let(m...,mx) ~ Dirichlet(ay,...,ax) and
0 ~ Beta(a1b,a1(1 —0)),0 < b < 1.

e Then

(710,71 (1 —0), 72, ..., 7x) ~ Dirichlet(a1b1, a1 (1 — b1), o, ..., ax)
e More generally, if § ~ Dirichlet(a1b1, a1bs, ..., a1bn), >, b = 1.

then

(w1601, ...,m0N, T2, ..., TK) ~ Dirichlet(aqby, ..., a1bn, a0, ..., aK)
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Properties of the Dirichlet distribution | s

e [he “Renormalization” rule:

If (71 ...,7K) ~ Dirichlet(aq, ..., ax)
(72, ..., TK)

~7
Zlle Tk

then

(72, . .., TK)

K
D ket Tk

~ Dirichlet(aao, ..., ax)
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Choosing the number of clusters |

o’ ) hd ° ’ : o’ ) b °
...o°&‘oo ° ﬁ. ° ..'.o:.‘.. oﬁ.
o ° :3.. ° o o % o °
03'.
[ * \0: ]
‘”-s * ., h*.
° ..:.
% .

e Mixture of Gaussians — but how many components?
e \What if we see more data — may find new components?
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Bayesian nonparametric mixture 3
models oo

e Make sure we always have more clusters than we need.
e Solution — infinite clusters a priori!

plaalm, ik ASY) = 3 MmN (@i, )
k=1

e A finite data set will always use a finite — but random —
number of clusters.

e How to choose the prior?

e \We want something like a Dirichlet prior — but with an infinite
number of components. How such a distribution can be
defined?

©Eric Xing @ CMU, 2012-2014
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Constructing an appropriate prior | s:

o Start off with 7(*) = (wf),wé))NDlﬂchlet(g 3)

e Split each component according to the splitting rule:

17 1 1
9%2),9(2) ¢ Bet a(a - )

2 22 2
(4 — (8(2)7-‘-§2)7 ( 6)(2))71.(2)7 9(2)7.[.52)7 ( 952))71_52))
~ Dirichlet @ g, g, @
474744
e Repeat to get 7*) ~ Dirichlet (% L %

o As K v ~o, We get a vector with infinitely many components
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The Dirichlet process

e Let H be a distribution on some space Q — e.g. a Gaussian
distribution on the real line.

. .. o) Q
o Let m~ Kh_r)rloo lelChlet(E o E)
e Fork=1,...,00let 0, ~ H.

e ThenG = Zzozl Tk0g, IS an infinite distribution over Q.

e We write G ~ DP(a, H)

©Eric Xing @ CMU, 2012-2014
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Samples from the Dirichlet process o

e Samples from the Dirichlet process are discrete.
e \We call the point masses in the resulting distribution, atoms.

I\|L.l l||

e The base measure H determines the locations of the atoms.
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Samples from the Dirichlet
process oo

e The concentration parameter a determines the
distribution over atom sizes.

e Small values of a give sparse distributions.

(0 (0 o

” 1l
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Properties of the Dirichlet process

e For any partition A,,...,A, of Q, the total mass assigned to
each partition is distributed according to
Dir(aH(A,),...,aH(Ay))
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Definition: Finite marginals o°

e A Dirichlet process is the unique distribution over
probability distributions on some space Q, such that for
any finite partition A,,...,A, of Q,

(P(A1),...,P(Ak)) ~ Dirichlet(aH(A1),...,aH(Ak)).

1‘ ] o i
1
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Random Partition of Probability
Space




e A CDF, G, on possible worlds
of random partitions follows a

Dirichlet Process .
Dirichlet Process if for any

® ® gl
® o
measurable finite partition

® —
@ @ a distribution (¢1,¢2’ . ¢m):
® @

®
P xﬂ (G(), G(4), -+, G(h)) ~
Dirichlet( aGy(dy), ...., aGO(4,) )
. ® |
® @

another
distribution

@ @ where G, is the base measure
and a is the scale parameter

Thus a Dirichlet Process G defines a distribution of distribution

©Eric Xing @ CMU, 2012-2014 27



Conjugacy of the Dirichlet
process oo

o LetA,,...,Acbe a partition of Q), and let H be a measure on Q.

Let P(A,) be the mass assigned by G ~ DP(«, H) to partition
A,. Then (P(A1),...,P(Ak)) ~ Dirichlet(aH(Ay),...,aH(Ak)).

e |f we see an observation in the J" segment (or fraction), then
(P(Al), Cee P(A]), - ,P(AK)‘Xl = AJ)
~Dirichlet(aH (A1), ...,aH(A;)+1,...,a0H(AKk)).

e This must be true for all possible partitions of Q.
e This is only possible if the posterior of G, given an observation

X, IS given by Hs
G‘Xlzﬂjr\JDP(OZ—Fl,a _:_133>
«
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Predictive distribution ot

e The Dirichlet process clusters observations.

e A new data point can either join an existing cluster, or
start a new cluster.

e Question: What is the predictive distribution for a new
data point?

e Assume H is a continuous distribution on Q. This means
for every point 8in Q, H(B) = 0.

e Therefore 6 itself should not be treated as a data point, but parameter
for modeling the observed data points

e First data point:
e Start a new cluster.
e Sample a parameter 9, for that cluster.
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Predictive distribution ot

e \We have now split our parameter space in two: the singleton
6,, and everything else.

e Let m, be the atom at 6,.

e The combined mass of all the other atoms is . = 7-17,.
e A priori, (m1,m,) ~ Dirichlet(0, @)

o A posteriori, (71, 7)|X1 = 61 ~ Dirichlet(1, o)

©Eric Xing @ CMU, 2012-2014
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Predictive distribution ot

e If we integrate out m, we get

P(Xg — Hk’Xl — (91) — /P<X2 — Qk’(ﬂl,ﬂ*))P((ﬂ'l,ﬂ'*‘Xl — (91)d7'('1

= /WkDirichlet((m, 1 —m)|1, a)dmy

= IEj’Dirichlet(l,a) [77’?}
1 : _

(@7
Tia for new k.

©Eric Xing @ CMU, 2012-2014 31



Predictive distribution ot

e |Lets say we choose to start a new cluster, and sample a new
parameter 6, ~ H. Let T, be the size of the atom at 6.,

e A posteriori, (71,72, m)| X1 = 01, X5 = 05 ~ Dirichlet(1, o).
e If we integrate out ™ = (7,72, ™) We get
P(X3 = 0;| X1 =01, X5 = 05)

= EDiI‘iChlet(l,l,a) T

(o ifk=1
=5 ifk=2
| 715 for new k.
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Predictive distribution ot

e In general, if m, is the number of times we have seen X=k,
and K is the total number of observed values,

P(Xn_|_1 — Hk‘Xl,,Xn) — /P(Xn_|_1 :Hk‘W)P(ﬂ"Xl,...,Xn)dﬂ'

n+ao

—<_ for new cluster.
n—+o

{mk if k< K

e \We tend to see observations that we have seen before
— rich-get-richer property.

e \We can always add new features — nonparametric.
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A few useful metaphors for DP o°
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DP — a Polya urn Process 4+

0 2
5+« @
p= 3 ®
B+«
. a
D+a
Joint:  G( ~ DP(aG
( ') ( 0) e Self-reinforcing property
K
. . ~ nk ¢ ’
Marginal: ¢ |4, a,G, Z‘u—lm&” * i—1+aGO' of samples
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Polya urn scheme -

e The resulting distribution over data points can be thought
of using the following urn scheme.

e An urn initially contains a black ball of mass a.

e For n=1,2,... sample a ball from the urn with probability
proportional to its mass.

e If the ball is black, choose a previously unseen color,
record that color, and return the black ball plus a unit-
mass ball of the new color to the urn.

e If the ball is not black, record it's color and return it, plus
another unit-mass ball of the same color, to the urn

[Blackwell and MacQueen,1973]
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The Chinese Restaurant Process | <¢
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Exchangeability -

e An interesting fact: the distribution over the clustering of tEe

first N customers does not depend on the order in which they
arrived.

e Homework: Prove to yourself that this is true.

e However, the customers are not independent — they tend to
sit at popular tables.

e \We say that distributions like this are exchangeable.

e De Finetti’'s theorem: If a sequence of observations is
exchangeable, there must exist a distribution given which they
are lid.

e The customers in the CRP are iid given the underlying

Dirichlet process — by integrating out the DP, they become
dependent.
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The Stick-breaking Process

p. ~ Beta(l, 034
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Stick breaking construction -

e \We can represent samples from the Dirichlet process
exactly.

e Imagine a stick of length 1, representing total probability.
e Fork=1,2,...

e Sample a beta(1,a) random variable b,.

e Break off a fraction b, of the stick. This is the k" atom size

e Sample a random location for this atom.
e Recurse on the remaining stick.

G = 22021 T 00,
e =bp, [ 1oy (1= by)
b ~Beta(l, a) [Sethuraman, 1994]
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Graphical Model Representations
of DP

ol

0. e
I
X
N
The Polya urn construction The Stick-breaking construction
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Inference in the DP mixture sece
model oo

B

G =Y mydg, ~ DP(a, H) A
k=1 LR
an ~ G .‘.{3:-.

©Eric Xing @ CMU, 2012-2014 42



Inference: Collapsed sampler

e \We can integrate out G to get the CRP.
e Reminder: Observations in the CRP are exchangeable.

e Corollary: When sampling any data point, we can always
rearrange the ordering so that it is the last data point.

e Let z, be the cluster allocation of the nth data point.
e Let Kbe the total number of instantiated clusters.
e [hen

p(zn — k‘xnvz—na ¢1:K) {mkf(mn‘¢k) k<K

o [o f(an|@)H(dp) k=K+1

e If we use a conjugate prior for the likelihood, we can often
Integrate out the cluster parameters

©Eric Xing @ CMU, 2012-2014
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Problems with the collapsed T
sampler -

e \We are only updating one data point at a time.

e Imagine two “true” clusters are merged into a single
cluster — a single data point is unlikely to “break away”.

e Getting to the true distribution involves going through low
probability states =» mixing can be slow.

e If the likelihood is not conjugate, integrating out
parameter values for new features can be difficult.

e Neal [2000] offers a variety of algorithms.
e Alternative: Instantiate the latent measure.
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Inference: Blocked Gibbs
sampler

e Rather than integrate out G, we can instantiate it.
e Problem: G is infinite-dimensional.
e Solution: Approximate it with a truncated stick-breaking

Process. K
GK = Zﬂk(SQk
k=1
k—1
T — bk H(l — bj)
71=1
b ~ Beta(l,a),k=1,..., K — 1

b =1
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Inference: Blocked Gibbs T
sampler -

e Sampling the cluster indicators:
p(zn = k|rest) o< mi f(x,|0k)

e Sampling the stick breaking variables:
e We can think of the stick breaking process as a sequence of binary decisions.
e Choose z, = 1 with probability b,.
e Ifz, #1,choose z, =2 with probability b.,.
o cefc..

bi|rest ~ Beta(l T+ Mg, 0+ Z]K:]H-l mj)
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Inference: Slice sampler S
e Problem with batch sampler: Fixed truncation introduces
error.
e |dea:

e Introduce random truncation.
e If we marginalize over the random truncation, we recover the full model.

e Introduce a uniform random variable u, for each data point.

e Sample indicator z, according to
p(zn = klrest) = I(mr > up) f(x,|0k)

e Only a finite number of possible values.

©Eric Xing @ CMU, 2012-2014
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Inference: Slice sampler -

e The conditional distribution for u, is just:

Uy, [rest ~ Uniform[0, 7, ]

e Conditioned on the u, and the z,, the m, can be sampled
according to the block Gibbs sampler.

e Only need to represent a finite number K of components such

that K .
1— >0 T < min(uy)
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Summary:. Bayesian
Nonparametrics oo

e Examples: Dirichlet processes, stick-breaking processes ...

e From finite, to infinite mixture, to more complex constructions
(hierarchies, spatial/temporal sequences, ...)

e Focus on the laws and behaviors of both the generative
formalisms and resulting distributions

e Often offer explicit expression of distributions, and expose the
structure of the distributions --- motivate various approximate
schemes
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