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How Many Clusters?
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How Many Segments?
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Parametric vs nonparametric
Parametric model: 
 Assumes all data can be represented using a fixed, finite 

number of parameters.
 Mixture of K Gaussians, polynomial regression.

Nonparametric model:
 Number of parameters can grow with sample size.
 Number of parameters may be random.

 Kernel density estimation.

Bayesian nonparametrics:
 Allow an infinite number of parameters a priori.
 A finite data set will only use a finite number of parameters.
 Other parameters are integrated out.

©Eric Xing @ CMU, 2012-2014 5



Clustered data
 How to model this data?

 Mixture of Gaussians:

 Parametric model: Fixed 
finite number of parameters.
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Bayesian finite mixture model
 How to choose the mixing weights and mixture 

parameters?
 Bayesian choice: Put a prior on them and integrate out:

 Where possible, use conjugate priors
 Gaussian/inverse Wishart for mixture parameters
 What to choose for mixture weights?
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The Dirichlet distribution
 The Dirichlet distribution is a distribution over the (K-1)-

dimensional simplex.
 It is parametrized by a K-dimensional vector 

such that                                   and
 Its distribution is given by
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Samples from the Dirichlet
distribution

 If                                           then             for all k, and

 Expectation: 

  (0.01,0.01,0.01)   (100,100,100)   (5,50,100)
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Conjugacy to the multinomial
 If                                             and  
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Distributions over distributions
 The Dirichlet distribution is a distribution over positive 

vectors that sum to one.
 We can further associate each entry with a set of 

parameters
 e.g. finite mixture model: each entry associated with a mean and 

covariance.
 In a Bayesian setting, we want these parameters to be 

random.
 We can combine the distribution over probability vectors 

with a distribution over parameters to get a distribution 
over distributions over parameters.
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Example: finite mixture model
 Gaussian distribution: 

distribution over means.
 Sample from a Gaussian is a 

real-valued number.
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Example: finite mixture model
 Gaussian distribution: 

distribution over means.
 Sample from a Gaussian is a 

real-valued number.

 Dirichlet distribution:
 Sample from a Dirichlet

distribution is a probability 
vector.
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Example: finite mixture model
 Dirichlet Mixture Prior

 Each element of a Dirichlet-
distributed vector is associated 
with a parameter value drawn 
from some distribution.

 Sample from a Dirichlet
mixture prior is a probability 
distribution over parameters of 
a finite mixture model.
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Properties of the Dirichlet distribution

 The coalesce rule:  

 Relationship to gamma distribution: If                                 ,

 If and then

 Therefore, if                                                           then 
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Properties of the Dirichlet distribution

 The “combination” rule:

 The beta distribution is a Dirichlet distribution on the 1-
simplex. 

 Let and                                     

 Then

 More generally, if
then 
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Properties of the Dirichlet distribution

 The “Renormalization” rule:
If
then
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Choosing the number of clusters

 Mixture of Gaussians – but how many components?
 What if we see more data – may find new components?
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Bayesian nonparametric mixture 
models

 Make sure we always have more clusters than we need.
 Solution – infinite clusters a priori!

 A finite data set will always use a finite – but random –
number of clusters.

 How to choose the prior?
 We want something like a Dirichlet prior – but with an infinite 

number of components. How such a distribution can be 
defined?
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Constructing an appropriate prior
 Start off with

 Split each component according to the splitting rule: 

 Repeat to get 
 As               , we get a vector with infinitely many components
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The Dirichlet process
 Let H be a distribution on some space Ω – e.g. a Gaussian 

distribution on the real line.

 Let

 For

 Then                             is an infinite distribution over Ω.

 We write  
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Samples from the Dirichlet process

 Samples from the Dirichlet process are discrete.
 We call the point masses in the resulting distribution, atoms.

 The base measure H determines the locations of the atoms.
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Samples from the Dirichlet
process
 The concentration parameter α determines the 

distribution over atom sizes.
 Small values of α give sparse distributions.
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Properties of the Dirichlet process

 For any partition A1,…,AK of Ω, the total mass assigned to 
each partition is distributed according to                
Dir(αH(A1)),…,αH(AK))
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Definition: Finite marginals
 A Dirichlet process is the unique distribution over 

probability distributions on some space Ω, such that for 
any finite partition A1,…,AK of Ω,

[Ferguson, 1973]
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 11  ,
 22  ,

 55  ,

 66  ,

 33  ,

 44  ,

…
centroid :=

Image ele. :=(x,

. (event, pevent) 

Random Partition of Probability 
Space
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Dirichlet Process
 A CDF, G, on possible worlds 

of random partitions follows a 
Dirichlet Process if for any 
measurable finite partition 
(1,2, .., m):

(G(1), G(2), …, G(m) ) ~ 
Dirichlet( G0(1), …., G0(m) )

where G0 is the base measure
and is the scale parameter
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Thus a Dirichlet Process G defines a distribution of distribution 

a distribution

another 
distribution
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Conjugacy of the Dirichlet
process
 Let A1,…,AK be a partition of Ω, and let H be a measure on Ω. 

Let P(Ak) be the mass assigned by                        to partition 
Ak. Then

 If we see an observation in the Jth segment (or fraction), then

 This must be true for all possible partitions of Ω.
 This is only possible if the posterior of G, given an observation 

x, is given by 
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Predictive distribution
 The Dirichlet process clusters observations.
 A new data point can either join an existing cluster, or 

start a new cluster.
 Question: What is the predictive distribution for a new 

data point?
 Assume H is a continuous distribution on Ω. This means 

for every point θ in Ω, H(θ) = 0.
 Therefore θ itself should not be treated as a data point, but parameter 

for modeling the observed data points

 First data point: 
 Start a new cluster. 
 Sample a parameter θ1 for that cluster.
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Predictive distribution
 We have now split our parameter space in two: the singleton 

θ1, and everything else.
 Let π1 be the atom at θ1.
 The combined mass of all the other atoms is π* = 1-π1.
 A priori, 
 A posteriori, 
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Predictive distribution
 If we integrate out π1 we get
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Predictive distribution
 Lets say we choose to start a new cluster, and sample a new 

parameter θ2 ~ H. Let π2 be the size of the atom at θ2.
 A posteriori, 
 If we integrate out ,            we get
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Predictive distribution
 In general, if mk is the number of times we have seen Xi=k, 

and K is the total number of observed values,

 We tend to see observations that we have seen before            
– rich-get-richer property.

 We can always add new features – nonparametric. 
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A few useful metaphors for DP
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DP – a Pólya urn Process

 Self-reinforcing property
 exchangeable partition

of samples
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Polya urn scheme
 The resulting distribution over data points can be thought 

of using the following urn scheme.
 An urn initially contains a black ball of mass α.
 For n=1,2,… sample a ball from the urn with probability 

proportional to its mass.
 If the ball is black, choose a previously unseen color, 

record that color, and return the black ball plus a unit-
mass ball of the new color to the urn.

 If the ball is not black, record it’s color and return it, plus 
another unit-mass ball of the same color, to the urn

[Blackwell and MacQueen,1973]
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The Chinese Restaurant Process
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Exchangeability
 An interesting fact: the distribution over the clustering of the 

first N customers does not depend on the order in which they 
arrived.

 Homework: Prove to yourself that this is true.
 However, the customers are not independent – they tend to 

sit at popular tables.
 We say that distributions like this are exchangeable.
 De Finetti’s theorem: If a sequence of observations is 

exchangeable, there must exist a distribution given which they 
are iid.

 The customers in the CRP are iid given the underlying 
Dirichlet process – by integrating out the DP, they become 
dependent.
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The Stick-breaking Process
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Stick breaking construction
 We can represent samples from the Dirichlet process 

exactly.
 Imagine a stick of length 1, representing total probability.
 For k=1,2,…

 Sample a beta(1,α) random variable bk.
 Break off a fraction bk of the stick. This is the kth atom size
 Sample a random location for this atom.
 Recurse on the remaining stick.

[Sethuraman, 1994]
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Inference in the DP mixture 
model
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Inference: Collapsed sampler
 We can integrate out G to get the CRP.
 Reminder: Observations in the CRP are exchangeable.
 Corollary: When sampling any data point, we can always 

rearrange the ordering so that it is the last data point.
 Let zn be the cluster allocation of the nth data point. 
 Let K be the total number of instantiated clusters. 
 Then

 If we use a conjugate prior for the likelihood, we can often 
integrate out the cluster parameters
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Problems with the collapsed 
sampler
 We are only updating one data point at a time.
 Imagine two “true” clusters are merged into a single 

cluster – a single data point is unlikely to “break away”.
 Getting to the true distribution involves going through low 

probability states  mixing can be slow.
 If the likelihood is not conjugate, integrating out 

parameter values for new features can be difficult.
 Neal [2000] offers a variety of algorithms.
 Alternative: Instantiate the latent measure.
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Inference: Blocked Gibbs 
sampler
 Rather than integrate out G, we can instantiate it.
 Problem: G is infinite-dimensional.
 Solution: Approximate it with a truncated stick-breaking 

process:
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Inference: Blocked Gibbs 
sampler
 Sampling the cluster indicators:

 Sampling the stick breaking variables:
 We can think of the stick breaking process as a sequence of binary decisions.
 Choose zn = 1 with probability b1.
 If zn ≠ 1, choose zn = 2 with probability b2.
 etc..
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Inference: Slice sampler
 Problem with batch sampler: Fixed truncation introduces 

error.
 Idea: 

 Introduce random truncation.
 If we marginalize over the random truncation, we recover the full model.

 Introduce a uniform random variable un for each data point.
 Sample indicator zn according to

 Only a finite number of possible values.

©Eric Xing @ CMU, 2012-2014 47



Inference: Slice sampler
 The conditional distribution for un is just:

 Conditioned on the un and the zn, the πk can be sampled 
according to the block Gibbs sampler.

 Only need to represent a finite number K of components such 
that
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Summary: Bayesian 
Nonparametrics
 Examples: Dirichlet processes, stick-breaking processes …
 From finite, to infinite mixture, to more complex constructions 

(hierarchies, spatial/temporal sequences, …)
 Focus on the laws and behaviors of both the generative 

formalisms and resulting distributions
 Often offer explicit expression of distributions, and expose the 

structure of the distributions --- motivate various approximate 
schemes
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