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15: Mean Field Approximation and Topic Models

Lecturer: Eric P. Xing Scribes: Jingwei Shen (Mean Field Approximation), Jiwei Li (Topic Models)

1 Mean Field Approximation

1.1 Notations and Exponential Family

Recall that many density functions can be written in the exponential family form :

pθ(x1, · · · , xm) = exp(θTφ(x)−A(θ))

Where θ is called the canonical parameters, φ(x) is the sufficient statistics of x1, · · · , xm, and A(θ) is the log
partition function. We often require that A(θ) < +∞ and the space of such θ is called effective canonical
parameters :

Ω := {θ ∈ Rd|A(θ) < +∞}

The mean parameter µα associated with a sufficient φα is defined by the expectation

µα = Ep[φα(X)], for α ∈ I

We then define the set

M := {µ ∈ Rd|∃p s.t.Ep[φα(X)] = µα,∀α ∈ I}

corresponding to all realizable mean parameters. Further, for an exponential family with sufficient statistics
φ defined on graph G, the set of realizable mean parameter set is :

M(G;φ) := {µ ∈ Rd|∃p s.t.Ep[φ(X)] = µ}

More generally, consider an exponential family with a collection φ = (φα, α ∈ I) of sufficient statistics
associated with the cliques of G = (V,E). Given a subgraph F , let I(F ) be the subset of sufficient statistics
associated with subgraph F . Then the set of all distributions associated with F is a sub-family of full
φ-exponential family. It is parameterized by the subspace of canonical parameters:

Ω(F ) := {θ ∈ Ω|θα = 0,∀α ∈ I − I(F )}

1.2 Mean Field Method

The exact variational formulation of log partition function is

A(θ) = sup
µ∈M
{θTµ−A∗(µ)}
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whereM is the marginal polytope which is difficult to characterize and A∗ is the conjugate dual function of
A(θ).

Mean field method uses non-convex inner product and exact form of entropy. Instead of inference underM,
mean field method uses a tractable subgraph.

For a given tractable subgraph F , a subset of canonical parameters is

M(F ;φ) := {τ ∈ Rd|τ = Eθ[φ(X)] for some θ ∈ Ω(F )}

Since F is a subgraph, M(F ;φ) ⊂ M(G,φ), which is called an inner approximation. Then mean field
method solves the relaxed optimization problem :

max
τ∈MF (G)

{τT θ −A∗F (τ)}

Here, A∗F = A∗|MF (G) is the exact dual function restricted to MF (G), φ is the set of potentials assigned
to the graph.

1.3 Naive Mean Field for Ising model

The joint probability of Ising model can be represented as

p(x) ∝ exp(
∑
s∈V

xsθs +
∑

(s,t)∈E

xsxtθst)

Then mean parameters we are interested in are :

µs = Ep(xs) = P (Xs = 1),∀s ∈ V
µst = Ep(xsxt) = P [(xs, xt) = (1, 1)],∀(s, t) ∈ E

It is difficult for inference in Ising model since there are many loops in the model. We consider a fully
disconnected graph where there are no edges connecting each pair of nodes. For fully disconnected graph F ,

MF (G) := {τ ∈ R|V |+|E||0 ≤ τS ≤ 1,∀s ∈ V, τst = τsτt,∀(s, t) ∈ E}

The dual decomposes into sum, one for each node

A∗F (τ) =
∑
s∈V

[τs log τs + (1− τs) log(1− τs)]

Then the relaxed optimization problem becomes

max
µ∈[0,1]m

{
∑
s∈V

µsθs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)}

Taking gradient w.r.t µs and let it be zero we have

θs +
∑

(s,t)∈E

θstµt + log µs − log(1− µs) = 0

The update rule is

µs ← σ(θs +
∑

(s,t)∈E

θstµt)

where σ(.) is the sigmoid function.
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1.4 Geometry of Mean Field

Mean field optimization is always non-convex for any exponential family in which the state space Xm is finite.
The marginal polytope M(G) is a convex hull. If MF (G) is a strictly subset then it must be non-convex
since it contains all the extreme points.

For example, in the two-node Ising model,

MF (G) = {0 ≤ τ1 ≤ 1, 0 ≤ τ2 ≤ 1τ12 = τ1τ2}

We can easily check that it is not a convex set.

1.5 Cluster-based Approximation for the Gibbs Free Energy

When the inference for the entire graph is intractable, we divide the graph into small clusters which can be
inferred by exact inference algorithms each.

Given a disjoint clustering , {C1, C2, · · · , Cl}, of all variables. Let

q(X) =
∏
i

qi(XCi
)

The mean field free energy is

GMF =
∑
i

∑
XCi

∏
qi(XCi

)E(XCi
) +

∑
i

∑
XCi

q(XCi
) log qi(XCi

)

will never equal to the exact Gibbs free energy no matter how what clustering is used, however it always
defines a lower bound of the likelihood.

1.6 Generalized Mean Field Algorithm

Theorem: The optimum GMF approximation to the marginal cluster marginal is isomorphic to the cluster
posterior of the original distribution given internal evidence and its generalized mean fields.

Theorem: The GMF algorithm is guaranteed to converge to a local optimum and provides a lower bound
for the likelihood of the evidence or the partition function in the model.

The GMF algorithm iterates over each clique qi for the optimization.

The accuracy increases as the size of clusters grows while the computation cost for each cluster also increases.
The extreme case is that there is only one cluster : the original graph, then it is exactly the true inference
but it is often intractable. So there is a trade off between the computation cost and the inference accuracy.

1.7 The Naive Mean Field Approximation

The idea is to approximate p(X) by fully factorized q(X) = Piqi(Xi). For example, for Boltzmann distribu-
tion, it is

p(X) = exp(
∑
i<j

qijXiXj + qiOXi)/Z
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The mean field equation is

qi(Xi) = exp(θiOXi +
∑
j∈Ni

θijXi < Xj >qj +Ai)

= p(Xi|{< Xj >qj : j ∈ Ni}

where < Xj >qj resembles a message sent from node j to i, Ni is the neighbor of Xi.

2 Probabilistic Topic Models

2.1 Latent Dirichlet Allocation (LDA)

In LDA [1], each document d is represented as a sequence of its containing word d = {w1, w2, ..., wNd
}, where

Nd denotes the number of words in d. The word w is defined to be an item from a vocabulary indexed
by {1, 2, ..., V }, where V is the vocabulary size. w can also be represented by an 1 × V vector with its
correspondent element 1 and others zero.

In topic models, each document d is represented as a mixture of topics, characterized by the document-
specific vector θd. It is a bit tricky to interpret the concept of topic, where here are to be viewed as
particular distributions over vocabularies, denoted as β. For example, the topic of sports1 tend to give
higher probability to sports related words than entertainment related ones, or in other words, sports words
are more likely generated from the topic of sports. Table 1 gives an illustration of what topics are like in
topic models.

basketball ball score rebound ... movie spiderman actor
topic-sports 0.08 0.09 0.05 0.06 ... 0.00001 0.00001 0.00002

topic-entertainments 0.0002 0.00006 0.0002 0.00004 ... 0.07 0.06 0.12

Table 1: Illustration of topics in topic models. The value corresponds to the probability that particular word
is generated by the topic.

LDA is a generative model and its generative story can be interpreted as follows: when a writer wants to
write something in document d, he has to first decide which topics he wishes to cover in this particular
document, as he will choose from document-topic distribution θd. Specifically, the topic z will be chosen
from the multinomial distribution z ∼ Multi(θ). Once the topic z is settled, he would choose a word w to
fill in the position from the topic distribution βz. As we just discussed in Table 1, if the writer decides to
write something about sports, words such as basketball and rebound are more likely to be chosen than actor
or spiderman. Word is similarly chosen from the multinomial distribution w ∼ Multi(βz). Such decision
process iterates for each position until the end of the document. The generative story is given in Figure 2.

A Dirichlet prior is commonly given to θd, as θd ∼ Dir(α) for the facilitation of calculation due to the
conjugate property of Dirichlet prior and multinomial distribution. Similarly, β follows the Dirichlet prior
parameterized by η.

2.2 Variational Inference for LDA

In this subsection, we get down to the Variational Inference for LDA, the key point of which is trying
the minimizing the KL divergence between the variational distribution q(θ, z|γ, φ) and the actual posterior

1Topic models do not offer a name for the mined topics. These names are usually manually identified according to word
distributions or top words.
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Figure 1: Graphical Model for LDA (taken from lecture15, page 41, Eric Xing).

1. For each document m
Draw a document proportion vector θm|α ∼ Dir(α)

2. For each word in w ∈ m
(a)draw topic assignment zw|θ ∼Multi(θzm)
(b)draw word w|zw, β ∼Multi(βzw)

Figure 2: Generative Story for LDA topic model.

distribution p(θ, z|w,α, β), where γ and φ are variational parameters involved in q. Specifically, q(θ|γ) follows
a Dirichlet distribution parameterized by γ and q(zn|φn) is the multinomial distribution parameterized by
φn. q(θ, z|γ, φ) is factorized as follows:

q(θ, z|γ, φ) = q(θ|γ)
∏
n

q(zn|φn) (1)

(γ∗, φ∗) = argmin
γ,φ

D(q(θ, z|γ, φ)||p(θ, z|w,α, β)) (2)

KL(q(θ, z|γ, φ)||p(θ, z|w,α, β)) = Eq(θ, z|γ, φ) log
q(θ, z|γ, φ)

p(θ, z|w,α, β))

= Eq log q(θ, z|γ, φ)− Eqp(θ, z|w,α, β)

= Eq log q(θ, z|γ, φ)− Eqp(θ, z, w|α, β) + Eqp(w|α, β)

(3)

Let L(γ, φ : α, β) = −Eq log q(θ, z|γ, φ) + Eqp(θ, z, w|α, β), we have

p(w|α, β) = L(γ, φ : α, β) +KL(q(θ, z|γ, φ)||p(θ, z|w,α, β)) (4)

So we have

(γ∗, φ∗) = argmin
γ,φ

KL(q(θ, z|γ, φ)||p(θ, z|w,α, β))

= argmax
γ,φ

L(γ, φ : α, β)
(5)

L(γ, φ : α, β) = Eq[log p(θ|α)] + Eq[log(z|θ)] + Eq[log p(w|z, β)]− Eq[log q(θ)]− Eq[log(q(z))] (6)

The optimization of Equation 6 is performed in framework called Variational EM, which is so-called as the
optimization algorithm maximizes a lower bound with respect to the variational parameters γ and φ in E
step, and maximizes the lower bound with respect to the model parameters for fixed values of the variational
parameters in M step. The algorithm is given in Figure 4 and the details can be found in [1].
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E step: For each document d, find the optimizing values of the variational parameters γd and φnd
S step: Maximize the lower bound with respect to α and β.

Figure 3: Variational Algorithm for LDA.

Figure 4: : (Left) Graphical model representation of LDA. (Right) Graphical model representation of the
variational distribution used to approximate the posterior in LDA. Figures borrowed from [1].).

2.3 Gibbs Sampling for LDA

Gibbs sampling is a special case of Markov-chain Monte Carlo (MCMC) simulation and yield relatively
simple algorithms for approximate inference in LDA [2]. In Gibbs sampling for LDA, latent variables in
the graphical model are sampled iteratively given the rest based on the conditional distribution. A more
commonly applied approach is the collapsed Gibbs sampling, where we do not have to sample all parameters
involved, as θ and β can be integrated out.

Let z denote the concatenation of z for all words and z−n denotes the topic assignments of all words except
wn. The conditional probability that wn is assigned to topic index k given all other variables is given by:

p(zi = k|z−n,w, α, η) ∝ p(w, z|α, η)

p(w, z−n|α, η)
=

p(w|z, η)

p(w|z−n, η)

p(z|α)

p(z−n|α)

=

∫
p(z|θ)p(θ|α)dθ ∝ nwk + ηk∑

k′ n
w
k′ + ηk

(nkd + αk)

(7)

where nwk denotes the number of times word w appearing in topic k. nkd denotes the number of words in
document d assigned to topic k. The calculation of p(z|α) is performed by integrating our parameter θ The
details of computation can be found in [2]. The Gibbs Sampling algorithm is given in Figure 5

For each document m
For each word w ∈ m

sample topic zw according to Equation 7.

Figure 5: Gibbs Sampling for LDA.

The estimation for parameters β and θ is given by:

θmd =
nkd + αk∑
k′ n

k′
d + αk′

βwk =
nwk + βw∑′
w n

w′
k + βw′

(8)
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