2

Lexical Analysis

lex-i-cal: of or relating to words or the vocabulary of
a language as distinguished from its grammar and con-
struction

Webster’s Dictionary

To translate a program from one language into another, a compiler must first
pull it apart and understand its structure and meaning, then put it together in a
different way. The front end of the compiler performs analysis; the back end
does synthesis.

The analysis is usually broken up into

Lexical analysis: breaking the input into individual words or “tokens”;
Syntax analysis: parsing the phrase structure of the program; and
Semantic analysis: calculating the program’s meaning.

The lexical analyzer takes a stream of characters and produces a stream of
names, keywords, and punctuation marks; it discards white space and com-
ments between the tokens. It would unduly complicate the parser to have to
account for possible white space and comments at every possible point; this
is the main reason for separating lexical analysis from parsing.

Lexical analysis is not very complicated, but we will attack it with high-
powered formalisms and tools, because similar formalisms will be useful in
the study of parsing and similar tools have many applications in areas other
than compilation.

14

2.1. LEXICAL TOKENS

2.1

LEXICAL TOKENS

A lexical token is a sequence of characters that can be treated as a unit in the
grammar of a programming language. A programming language classifies
lexical tokens into a finite set of token types. For example, some of the token
types of a typical programming language are:

Type Examples

ID foo nl4 1last

NUM 73 0 00 515 082

REAL 66.1 .5 10. 1le67 5.5e-10
IF if

COMMA ,

NOTEQ =

LPAREN (

RPAREN)

Punctuation tokens such as IF, VOID, RETURN constructed from alphabetic
characters are called reserved words and, in most languages, cannot be used
as identifiers.

Examples of nontokens are

comment /* try again */
preprocessor directive #include<stdio.h>
preprocessor directive #define NUMS 5 , 6
macro NUMS

blanks, tabs, and newlines

In languages weak enough to require a macro preprocessor, the prepro-
cessor operates on the source character stream, producing another character
stream that is then fed to the lexical analyzer. It is also possible to integrate
macro processing with lexical analysis.

Given a program such as

float matchO(char *s) /* find a zero */
{if (!strncmp(s, "0.0", 3))
return 0.;

}

the lexical analyzer will return the stream

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN
LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)

15

CHAPTER TWO. LEXICAL ANALYSIS

2.2

COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN
RETURN REAL(0.0) SEMI RBRACE EOF

where the token-type of each token is reported; some of the tokens, such as
identifiers and literals, have semantic values attached to them, giving auxil-
iary information in addition to the token type.

How should the lexical rules of a programming language be described? In
what language should a lexical analyzer be written?

We can describe the lexical tokens of a language in English; here is a de-
scription of identifiers in C or Java:

An identifier is a sequence of letters and digits; the first character must be a
letter. The underscore _ counts as a letter. Upper- and lowercase letters are
different. If the input stream has been parsed into tokens up to a given char-
acter, the next token is taken to include the longest string of characters that
could possibly constitute a token. Blanks, tabs, newlines, and comments are
ignored except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent identifiers, keywords, and constants.

And any reasonable programming language serves to implement an ad hoc
lexer. But we will specify lexical tokens using the formal language of regular
expressions, implement lexers using deterministic finite automata, and use
mathematics to connect the two. This will lead to simpler and more readable
lexical analyzers.

REGULAR EXPRESSIONS

Let us say that a language is a set of strings; a string is a finite sequence of
symbols. The symbols themselves are taken from a finite alphabet.

The Pascal language is the set of all strings that constitute legal Pascal
programs; the language of primes is the set of all decimal-digit strings that
represent prime numbers; and the language of C reserved words is the set of
all alphabetic strings that cannot be used as identifiers in the C programming
language. The first two of these languages are infinite sets; the last is a finite
set. In all of these cases, the alphabet is the ASCII character set.

When we speak of languages in this way, we will not assign any meaning
to the strings; we will just be attempting to classify each string as in the
language or not.

To specify some of these (possibly infinite) languages with finite descrip-

16

2.2, REGULAR EXPRESSIONS

tions, we will use the notation of regular expressions. Each regular expression
stands for a set of strings.

Symbel: For each symbol a in the alphabet of the language, the regular expres-
sion a denotes the language containing just the string a.

Alternation: Given two regular expressions M and N, the alternation operator
written as a vertical bar | makes a new regular expression M | N. A string is
in the language of M | N if it is in the language of M or in the language of
N. Thus, the language of a | b contains the two strings a and b.

Concatenation: Given two regular expressions M and N, the concatenation
operator - makes a new regular expression M - N. A string is in the language
of M - N if it is the concatenation of any two strings « and 8 such that « is in
the language of M and B is in the language of N. Thus, the regular expression
(a | b) - a defines the language containing the two strings aa and ba.

Epsilon: The regular expression € represents a language whose only string is
the empty string. Thus, (a - b) | € represents the language {" *,"ab"}.

Repetition: Given a regular expression M, its Kleene closure is M*. A string
is in M™* if it is the concatenation of zero or more strings, all of which are in
M. Thus, ((a | b) - a)* represents the infinite set { * * , "aa", *ba", "aaaa",
"baaa", "aaba", "baba", "aaaaaa",... }.

Using symbols, alternation, concatenation, epsilon, and Kleene closure we
can specify the set of ASCII characters corresponding to the lexical tokens of
a programming language. First, consider some examples:

oin*-o Binary numbers that are multiples of two.
b*(abb*)*(ale) Strings of a’s and b’s with no consecutive a’s.
(alb)*aa(a]b)* Strings of a’s and b’s containing consecutive a’s.

In writing regular expressions, we will sometimes omit the concatenation
symbol or the epsilon, and we will assume that Kleene closure “binds tighter”
than concatenation, and concatenation binds tighter than alternation; so that
ab | cmeans (a-b) | c, and (a |) means (a | €).

Let us introduce some more abbreviations: [abed] means (a [b | ¢ |
d), [b-g] means [bedefg], [b-gM-Qkr] means [bedefgMNOPQkr], M?
means (M | €),and Mt means (M-M*). These extensions are convenient, but
none extend the descriptive power of regular expressions: Any set of strings
that can be described with these abbreviations could also be described by just
the basic set of operators. All the operators are summarized in Figure 2.1.

Using this language, we can specify the lexical tokens of a programming
language (Figure 2.2). For each token, we supply a fragment of ML code that
reports which token type has been recognized.

17

CHAPTER TWO. LEXICAL ANALYSIS

MI|N
M-N

MN

M*

M+

M?
[a—zA — Z]

gLk

An ordinary character stands for itself.

The empty string.

Another way to write the empty string.

Alternation, choosing from M or N.

Concatenation, an M followed by an N.

Another way to write concatenation.

Repetition (zero or more times).

Repetition, one or more times.

Optional, zero or one occurrence of M.

Character set alternation.

A period stands for any single character except newline.
Quotation, a string in quotes stands for itself literally.

FIGURE 2.1.

Regular expression notation.

if (IF);
[a-z][a~2z0-9]* (ID);
[0-9]1+ (NUM) ;
([0-9)+"."[0-91*)I1([0~-9]*" ."[0-9]+) (REAL);
("==-"fa-zI*"\n") I (" "i"\n"I"\t")+ (continue()):
(error(); continue());
FIGURE 2.2, Regular expressions for some tokens.

The fifth line of the description recognizes comments or white space, but
does not report back to the parser. Instead, the white space is discarded and
the lexer resumed; this is what continue does. The comments for this lexer
begin with two dashes, contain only alphabetic characters, and end with new-
line.

Finally, a lexical specification should be complete, always matching some
initial substring of the input; we can always achieve this by having a rule that
matches any single character (and in this case, prints an “illegal character”

error message and continues).

These rules are a bit ambiguous. For example, does i £8 match as a single
identifier or as the two tokens i f and 8?7 Does the string i £ 89 begin with an
identifier or a reserved word? There are two important disambiguation rules
used by Lex, ML-Lex, and other similar lexical-analyzer generators:

Longest match: The longest initial substring of the input that can match any
regular expression is taken as the next token.

18

2.3. FINITE AUTOMATA

N N, O D
IF

0-9

0-9

ID NUM

~

O 9= - @>T> \n

—\@\/‘_\@/ﬂg blank, etc.
@15 @0-s ~

C any but \n

REAL white space error

FIGURE 2.3.

Finite automata for lexical tokens. The states are indicated by
circles; final states are indicated by double circles. The start
state has an arrow coming in from nowhere. An edge labeled
with several characters is shorthand for many parallel edges.

2.3

Rule priority: For a particular longest initial substring, the first regular expres-
sion that can match determines its token type. This means that the order of
writing down the regular-expression rules has significance.

Thus, i £8 matches as an identifier by the longest-match rule, and i f matches
as a reserved word by rule-priority.

FINITE AUTOMATA

Regular expressions are convenient for specifying lexical tokens, but we need
a formalism that can be implemented as a computer program. For this we can
use finite automata (N.B. the singular of automata is automaton). A finite
automaton has a finite set of states; edges lead from one state to another, and
each edge is labeled with a symbol. One state is the start state, and certain of
the states are distinguished as final states.

Figure 2.3 shows some finite automata. We number the states just for con-
venience in discussion. The start state is numbered 1 in each case. An edge
labeled with several characters is shorthand for many parallel edges; so in
the ID machine there are really 26 edges each leading from state 1 to 2, each
labeled by a different letter.

19

CHAPTER TWO. LEXICAL ANALYSIS

a-e, g-z, 0-9

IF ID error REAL

O O S O

A\ 48

blank,
etc.

white space

REAL

©)

error white space

error a

FIGURE 2.4.

Combined finite automaton.

In a deterministic finite automaton (DFA), no two edges leaving from the
same state are labeled with the same symbol. A DFA accepts or rejects a
string as follows. Starting in the start state, for each character in the input
string the automaton follows exactly one edge to get to the next state. The
edge must be labeled with the input character. After making n transitions for
an n-character string, if the automaton is in a final state, then it accepts the
string. If it is not in a final state, or if at some point there was no appropriately
labeled edge to follow, it rejects. The language recognized by an automaton
is the set of strings that it accepts.

For example, it is clear that any string in the language recognized by au-
tomaton ID must begin with a letter. Any single letter leads to state 2, which
is final; so a single-letter string is accepted. From state 2, any letter or digit
leads back to state 2, so a letter followed by any number of letters and digits
is also accepted.

In fact, the machines shown in Figure 2.3 accept the same languages as the
regular expressions of Figure 2.2.

These are six separate automata; how can they be combined into a single
machine that can serve as a lexical analyzer? We will study formal ways of
doing this in the next section, but here we will just do it ad hoc: Figure 2.4
shows such a machine. Each final state must be labeled with the token-type

20

2.3. FINITE AUTOMATA

that it accepts. State 2 in this machine has aspects of state 2 of the IF machine
and state 2 of the ID machine; since the latter is final, then the combined state
must be final. State 3 is like state 3 of the IF machine and state 2 of the ID
machine; because these are both final we use rule priority to disambiguate
— we label state 3 with IF because we want this token to be recognized as a
reserved word, not an identifier.

We can encode this machine as a transition matrix: a two-dimensional ar-
ray (a vector of vectors), subscripted by state number and input character.
There will be a “dead” state (state 0) that loops to itself on all characters we
use this to encode the absence of an edge.

val edges =

vector| (* <01 2----ce £ ghi j-..*)
(* state 0 *) vector(0,0,---0,0,0.--0---0,0,0,0,0,0---],
(* state 1 *) vector[0,0,---7,7,7---9---4,4,4,4,2,4---],
(* state 2 *) vector(0,0,---4,4,4.-.0---4,3,4,4,4,4---],
(* state 3 *) vector(0,0,---4,4,4.-.0---4,4,4,4,4,4---],
(* state 4 *) vector{0,0,---4,4,4.-.0---4,4,4,4,4,4---],
(* state 5 *) vector{o0,0,---6,6,6.--0---0,0,0,0,0,0---1,
(* state 6 *) vector(0,0,---6,6,6---0---0,0,0,0,0,0---7,
(* state 7 *) vector(o,0,.--7,7,7.--0---0,0,0,0,0,0---7,

et cetera

]

There must also be a “finality” array, mapping state numbers to actions — final
state 2 maps to action ID, and so on.

RECOGNIZING THE LONGEST MATCH

It is easy to see how to use this table to recognize whether to accept or reject
a string, but the job of a lexical analyzer is to find the longest match, the
longest initial substring of the input that is a valid token. While interpreting
transitions, the lexer must keep track of the longest match seen so far, and the
position of that match.

Keeping track of the longest match just means remembering the last time
the automaton was in a final state with two variables, Last-Final (the state
number of the most recent final state encountered) and Input-Position-
at-Last-Final. Every time a final state is entered, the lexer updates these
variables; when a dead state (a nonfinal state with no output transitions) is
reached, the variables tell what token was matched, and where it ended.

Figure 2.5 shows the operation of a lexical analyzer that recognizes longest
matches; note that the current input position may be far beyond the most
recent position at which the recognizer was in a final state.

21

CHAPTER TWO. LEXICAL ANALYSIS

Last Current Current Accept
Final State Input Action

0 1 Jff --not-a-com

2 2 iff --not-a-com

3 3 lif] --not-a-com

3 0 Lfl --not-a-com return IF

0 1 if[~-not-a-com

12 12 ifl F-not-a-com

12 0 iflT4-not-a-com found white space; resume

0 1 if J--not-a-com

9 9 if |--not-a-com

9 10 if [H-pot-a-com

9 10 if H-npt-a-com

9 10 if [F-ngt-a-com

9 10 if H-not-a-com

9 0 if |FFnot-p-com error, illegal token ‘-’; resume

0 1 if -}-not-a-com

9 9 if -lhot-a-com

9 0 if --lpt-a-com error, illegal token ‘-’; resume

FIGURE 2.5. The automaton of Figure 2.4 recognizes several tokens. The
symbol | indicates the input position at each successive call
to the lexical analyzer, the symbol L indicates the current
position of the automaton, and T indicates the most recent
position in which the recognizer was in a final state.
24 NONDETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton (NFA) is one that has a choice of edges
— labeled with the same symbol — to follow out of a state. Or it may have
special edges labeled with € (the Greek letter epsilon), that can be followed
without eating any symbol from the input.

Here is an example of an NFA:

22

2.4. NONDETERMINISTIC FINITE AUTOMATA

In the start state, on input character a, the automaton can move either right or
left. If left is chosen, then strings of a’s whose length is a multiple of three
will be accepted. If right is chosen, then even-length strings will be accepted.
Thus, the language recognized by this NFA is the set of all strings of a’s
whose length is a multiple of two or three.

On the first transition, this machine must choose which way to go. It is
required to accept the string if there is any choice of paths that will lead to
acceptance. Thus, it must “guess,” and must always guess correctly.

Edges labeled with € may be taken without using up a symbol from the
input. Here is another NFA that accepts the same language:

Again, the machine must choose which e-edge to take. If there is a state
with some e-edges and some edges labeled by symbols, the machine can
choose to eat an input symbol (and follow the corresponding symbol-labeled
edge), or to follow an e-edge instead.

CONVERTING A REGULAR EXPRESSION TO AN NFA
Nondeterministic automata are a useful notion because it is easy to convert
a (static, declarative) regular expression to a (simulatable, quasi-executable)
NFA.

The conversion algorithm turns each regular expression into an NFA with
a tail (start edge) and a head (ending state). For example, the single-symbol
regular expression a converts to the NFA

a

-0

The regular expression ab, made by combining a with b using concatena-
tion is made by combining the two NFAs, hooking the head of a to the tail of
b. The resulting machine has a tail labeled by a and a head into which the b
edge flows.

23

CHAPTER TWO. LEXICAL ANALYSIS

/\O M* constructed as M - M*
€
/NO M? constructed as M | €

€ € ¢ a
MI|N —‘C>@\ [abc] /b—\
Ij G,Q abc /\%()
M-N ‘abc* constructedasa-b-¢
/\«
:

FIGURE 2.6.

Translation of regular expressions to NFAs.

In general, any regular expression M will have some NFA with a tail and
head:

We can define the translation of regular expressions to NFAs by induc-
tion. Either an expression is primitive (a single symbol or €) or it is made
from smaller expressions. Similarly, the NFA will be primitive or made from
smaller NFAs.

Figure 2.6 shows the rules for translating regular expressions to nonde-
terministic automata. We illustrate the algorithm on some of the expressions
in Figure 2.2 — for the tokens IF, ID, NUM, and error. Each expression is
translated to an NFA, the “head” state of each NFA is marked final with a dif-
ferent token type, and the tails of all the expressions are joined to a new start
node. The result — after some merging of equivalent NFA states — is shown in
Figure 2.7.

24

2.4. NONDETERMINISTIC FINITE AUTOMATA

an error

character

FIGURE 2.7,

Four regular expressions translated to an NFA.

CONVERTING AN NFA TO A DFA

As we saw in Section 2.3, implementing deterministic finite automata (DFAs)
as computer programs is easy. But implementing NFAs is a bit harder, since
most computers don’t have good “guessing” hardware.

We can avoid the need to guess by trying every possibility at once. Let
us simulate the NFA of Figure 2.7 on the string in. We start in state 1. Now,
instead of guessing which e-transition to take, we just say that at this point the
NFA might take any of them, so it is in one of the states {1, 4,9, 14}; that is,
we compute the €-closure of {1}. Clearly, there are no other states reachable
without eating the first character of the input.

Now, we make the transition on the character i. From state 1 we can reach
2, from 4 we reach 5, from 9 we go nowhere, and from 14 we reach 15. So we
have the set {2, 5, 15}. But again we must compute ¢-closure: from 5 there is
an e-transition to 8, and from 8 to 6. So the NFA must be in one of the states
{2,5,6, 8, 15}.

On the character n, we get from state 6 to 7, from 2 to nowhere, from 5 to
nowhere, from 8 to nowhere, and from 15 to nowhere. So we have the set {7};
its e-closure is {6, 7, 8}.

Now we are at the end of the string in; is the NFA in a final state? One
of the states in our possible-states set is 8, which is final. Thus, in is an ID
token.

We formally define e-closure as follows. Let edge(s,) be the set of all
NFA states reachable by following a single edge with label ¢ from state s.

25

CHAPTER TWO. LEXICAL ANALYSIS

For a set of states S, closure(S) is the set of states that can be reached from a
state in S without consuming any of the input, that is, by going only through
€ edges. Mathematically, we can express the idea of going through € edges
by saying that closure(S) is smallest set 7' such that

T=SU <U edge(s, e)) .

seT

We can calculate T by iteration:

T «S§
repeat 7' « T

T < T'U (Usep edge(s, €))
until 7 = 77

Why does this algorithm work? T can only grow in each iteration, so the
final T must include S.If T = T’ after an iteration step, then T must also in-
clude | ;.- edge(s, €). Finally, the algorithm must terminate, because there
are only a finite number of distinct states in the NFA.

Now, when simulating an NFA as described above, suppose we are in a set
d = {si, sk, s;} of NFA states s;, s¢, 5. By starting in d and eating the input
symbol ¢, we reach a new set of NFA states; we’ll call this set DFAedge(d, c):

DFAedge(d, c) = closure(|_] edge(s, ¢))

sed

Using DFAedge, we can write the NFA simulation algorithm more formally.
If the start state of the NFA is sy, and the input string is ci, .. ., ¢k, then the
algorithm is:
d <« closure({s;})
fori < 1tok
d < DFAedge(d, c;)

Manipulating sets of states is expensive — too costly to want to do on every
character in the source program that is being lexically analyzed. But it is
possible to do all the sets-of-states calculations in advance. We make a DFA
from the NFA, such that each set of NFA states corresponds to one DFA state.
Since the NFA has a finite number n of states, the DFA will also have a finite
number (at most 2") of states.

DFA construction is easy once we have closure and DFAedge algorithms.
The DFA start state d; is just closure(s;), as in the NFA simulation algo-

26

2.4. NONDETERMINISTIC FINITE AUTOMATA

a-e, g-z, 0-9

FIGURE 2.8. NFA converted to DFA.

rithm. Abstractly, there is an edge from d; to d; labeled with ¢ if d; =
DFAedge(d;, c). We let T be the alphabet.

states[0] < {}; states[1] <« closure({s;})
p<l; j<«0O
while j < p
foreachc e =
e < DFAedge(states[j], c¢)
if e = states[i] for some i < p
then trans(j, ¢] « i
elsep <« p+1
states[p] « e
trans(j, c] « p
J<j+1

The algorithm does not visit unreachable states of the DFA. This is ex-
tremely important, because in principle the DFA has 2" states, but in practice
we usually find that only about n of them are reachable from the start state.
It is important to avoid an exponential blowup in the size of the DFA inter-
preter’s transition tables, which will form part of the working compiler.

A state d is final in the DFA if any NFA-state in states[d] is final in the
NFA. Labeling a state final is not enough; we must also say what token is
recognized; and perhaps several members of states[d] are final in the NFA.
In this case we label d with the token-type that occurred first in the list of

27

CHAPTER TWO. LEXICAL ANALYSIS

2.5

regular expressions that constitute the lexical specification. This is how rule
priority is implemented.

After the DFA is constructed, the “states” array may be discarded, and the
“trans” array is used for lexical analysis.

Applying the DFA construction algorithm to the NFA of Figure 2.7 gives
the automaton in Figure 2.8.

This automaton is suboptimal. That is, it is not the smallest one that recog-
nizes the same language. In general, we say that two states s and s, are equiv-
alent when the machine starting in s, accepts a string o if and only if starting
in 5, it accepts o. This is certainly true of the states labeled | 5,6,8,15] and
in Figure 2.8; and of the states labeled [10,11,13,15] and [11,12,13}
In an automaton with two equivalent states s; and s, we can make all of 5’s
incoming edges point to s, instead and delete s».

How can we find equivalent states? Certainly, s; and s, are equivalent if
they are both final or both non-final and for any symbol ¢, trans[s;, c] =
trans[s;, c]; [10,11,13,15] and | 11,12,13 | satisfy this criterion. But this con-
dition is not sufficiently general; consider the automaton

Wowo
O =,
OO,

Here, states 2 and 4 are equivalent, but trans[2, a] # trans{4, a].
After constructing a DFA it is useful to apply an algorithm to minimize it
by finding equivalent states; see Exercise 2.6.

ML-Lex: A LEXICAL ANALYZER GENERATOR

DFA construction is a mechanical task easily performed by computer, so it
makes sense to have an automatic lexical analyzer generator to translate reg-
ular expressions into a DFA.

ML-Lex is a lexical analyzer generator that produces an ML program from
a lexical specification. For each token type in the programming language to
be lexically analyzed, the specification contains a regular expression and an

28

2.5. ML-LEX: A LEXICAL ANALYZER GENERATOR

(* ML Declarations: *)
type lexresult = Tokens.token

fun eof ()
%%

(* Lex Definitions:

= Tokens.EQF(0,0)

*)

digits=[0-9]+

%%

(* Regular Expressions and Actions: *)

if => (Tokens.IF(yypos,yypos+2));
[a-2z] [a-20-9]* => (Tokens.ID(yytext,yypos,yypos+size yytext));
{digits} => (Tokens.NUM(Int.fromString yytext,

YYPOS,yypos+size yytext));

({digits}".*[0-9]1*) 1 ([0-9]1*"*."{digits})

=> (Tokens.REAL(Real.fromString yytext,
YYyDoOs, yypos+size yytext));

("—=*la-z]*"\n") 1 (" "I"\n"1"\t")+

=> (continue());
=> (ErrorMsg.error yypos "illegal character";
continue());

PROGRAM2.9.

ML-Lex specification of the tokens from Figure 2.2.

action. The action communicates the token type (perhaps along with other
information) to the next phase of the compiler.

The output of ML-Lex is a program in ML - a lexical analyzer that in-
terprets a DFA using the algorithm described in Section 2.3 and executes the
action fragments on each match. The action fragments are just ML statements
that return token values.

The tokens described in Figure 2.2 are specified in ML-Lex as shown in
Program 2.9.

The first part of the specification, above the first $% mark, contains func-
tions and types written in ML. These must include the type lexresult,
which is the result type of each call to the lexing function; and the func-
tion eof, which the lexing engine will call at end of file. This section can
also contain utility functions for the use of the semantic actions in the third
section.

The second part of the specification contains regular-expression abbrevi-
ations and state declarations. For example, the declaration digits=[0-9]+
in this section allows the name {digits} to stand for a nonempty sequence
of digits within regular expressions.

The third part contains regular expressions and actions. The actions are
fragments of ordinary ML code. Each action must return a value of type

29

CHAPTER TWO. LEXICAL ANALYSIS

lexresult. In this specification, lexresult is a token from the Tokens
structure.

In the action fragments, several special variables are available. The string
matched by the regular expression is yytext. The file position of the be-
ginning of the matched string is yypos. The function continue () calls the

lexical analyzer recursively.

In this particular example, each token is a data constructor parameterized
by two integers indicating the position — in the input file — of the beginning
and end of the token.

structure Tokens =
struct
type pos = int

datatype token EOF of pos * pos

| IF of pos * pos

| ID of string * pos * pos
| NUM of int * pos * pos

| REAL of real * pos * pos

end

Thus, it is appropriate to pass yypos and yypos + size(yytext) to the
constructor. Some tokens have semantic values associated with them. For ex-
ample, ID’s semantic value is the character string constituting the identifier;
NUM'’s semantic value is an integer; and IF has no semantic value (one IF is
indistinguishable from another). Thus, the ID and NUM constructors have an
extra argument for the semantic value, and this value can be computed from
yytext.

START STATES

Regular expressions are static and declarative; automata are dynamic and
imperative. That is, you can see the components and structure of a regular
expression without having to simulate an algorithm, but to understand an
automaton it is often necessary to “execute” it in your mind. Thus, regular
expressions are usually more convenient to specify the lexical structure of
programming-language tokens.

But sometimes the step-by-step, state-transition model of automata is ap-
propriate. ML-Lex has a mechanism to mix states with regular expressions.
One can declare a set of start states; each regular expression can be prefixed
by the set of start states in which it is valid. The action fragments can explic-
itly change the start state. In effect, we have a finite automaton whose edges

30

PROGRAMMING EXERCISE

PROGRAM

are labeled, not by single symbols, but by regular expressions. This example
shows a language with simple identifiers, i f tokens, and comments delimited
by (* and *) brackets:

(*

[a-m.

Though it is possible to write a single regular expression that matches an en-
tire comment, as comments get more complicated it becomes more difficult,

or even impossible if nested comments are allowed.
The ML-Lex specification corresponding to this machine is

the usual preamble ...
%%
%s COMMENT
%
<INITIAL>if => (Tokens.IF (yypos,yypos+2));
<INITIAL>[a-z]+ => (Tokens.ID(yytext,yypos,
yypos+size(yytext)));
> (YYBEGIN COMMENT; continue(});
> (YYBEGIN INITIAL; continue());
> (continue();)

<INITIAL>" (*"
<COMMENT>"*) "
<COMMENT> .

L]

where INITIAL is the start state, provided by default in all specifications. Any
regular expression not prefixed by a <STATE> operates in all states; this fea-
ture is rarely useful.

This example can be easily augmented to handle nested comments, via a
global variable that is incremented and decremented in the semantic actions.

LEXICAL ANALYSIS
Use ML-Lex to implement a lexical analyzer for the Tiger language. Ap-
pendix A describes, among other things, the lexical tokens of Tiger.

This chapter has left out some of the specifics of how the lexical analyzer
should be initialized and how it should communicate with the rest of the com-
piler. You can learn this from the ML-Lex manual, but the “skeleton” files in

the STIGER/chap2 directory will also help get you started.
Along with the tiger. lex file you should turn in documentation for the

following points:

31

CHAPTER TWO. LEXICAL ANALYSIS

how you handle comments;

how you handle strings;

error handling;

end-of-file handling;

other interesting features of your lexer.

Supporting files are available in $TIGER/chap2 as follows:

tokens.sig Signature of the Tokens structure. .

tokens.sml The Tokens structure, containing the token type and construc-
tors that your lexer should use to build instances of the token type. It is
important to do it in this way, so that things will still work when the “real”
parser is attached to this lexer, and the “real” Tokens structure is used.

errormsg.sml The ErrorMsg structure, useful for producing error messages
with file names and line numbers.

driver.sml A test scaffold to run your lexer on an input file.

tiger.lex The beginnings of a real tiger.lex file.

sources.cm A “makefile” for the ML Compilation Manager.

When reading the Tiger Language Reference Manual (Appendix A), pay
particular attention to the paragraphs with the headings Identifiers, Com-
ments, Integer literal, and String literal.

The reserved words of the language are: while, for, to, break, let, in,
end, function, var, type, array, if, then, else, do,of,nil.

The punctuation symbols used in the language are:

, s s ()Y L1 LYy o+ %/ =<><<=>0>= & | 2=

The string value that you return for a string literal should have all the es-
cape sequences translated into their meanings.

There are no negative integer literals; return two separate tokens for -32.

Detect unclosed comments (at end of file) and unclosed strings.

The directory $TIGER/ testcases contains a few sample Tiger programs.

To get started: Make a directory and copy the contents of $TIGER/chap2
into it. Make a file test.tig containing a short program in the Tiger lan-
guage. Then execute sml and type the command CM.make () ; the CM (com-
pilation manager) make system will run m1-1lex, if needed, and will compile
and link the ML source files (as needed).

Finally, Parse.parse "test.tig"; will lexically analyze the file us-
ing a test scaffold.

32

FURTHER READING

FURTHER
READING

Lex was the first lexical-analyzer generator based on regular expressions
[Lesk 1975]; it is still widely used.

Computing e-closure can be done more efficiently by keeping a queue or
stack of states whose edges have not yet been checked for e-transitions [Aho
et al. 1986). Regular expressions can be converted directly to DFAs without
going through NFAs [McNaughton and Yamada 1960; Aho et al." 1986].

DFA transition tables can be very large and sparse. If represented as a sim-
ple two-dimensional matrix (states x symbols) they take far too much mem-
ory. In practice, tables are compressed; this reduces the amount of memory
required, but increases the time required to look up the next state [Aho et al.
1986].

Lexical analyzers, whether automatically generated or handwritten, must
manage their input efficiently. Of course, input is buffered, so that a large
batch of characters is obtained at once; then the lexer can process one charac-
ter at a time in the buffer. The lexer must check, for each character, whether
the end of the buffer is reached. By putting a sentinel — a character that can-
not be part of any token — at the end of the buffer, it is possible for the lexer
to check for end-of-buffer only once per token, instead of once per character
[Aho et al. 1986]. Gray [1988] uses a scheme that requires only one check
per line, rather than one per token, but cannot cope with tokens that contain
end-of-line characters. Bumbulis and Cowan [1993] check only once around
each cycle in the DFA; this reduces the number of checks (from once per
character) when there are long paths in the DFA.

Automatically generated lexical analyzers are often criticized for being
slow. In principle, the operation of a finite automaton is very simple and
should be efficient, but interpreting from transition tables adds overhead.
Gray [1988] shows that DFAs translated directly into executable code (imple-
menting states as case statements) can run as fast as hand-coded lexers. The
Flex “fast lexical analyzer generator” [Paxson 1995] is significantly faster
than Lex.

33

CHAPTER TWO. LEXICAL ANALYSIS

EXERCISES

2.1 Write regular expressions for each of the following.
a. Strings over the alphabet {a, b, ¢} where the first a precedes the first b.
. Strings over the alphabet {a, b, c} with an even number of a’s.
. Binary numbers that are multiples of four.
. Binary numbers that are greater than 101001.

o o 0 o

. Strings over the alphabet {a, b, c} that don’t contain the contiguous sub-
string baa.

f. The language of nonnegative integer constants in C, where numbers
beginning with 0 are octal constants and other numbers are decimal
constants.

g. Binary numbers n such that there exists an integer solution of a” +b" = ¢”".

2.2 For each of the following, explain why you're not surprised that there is no
regular expression defining it.

a. Strings of a’s and b’s where there are more a’s than b's.
b. Strings of a’s and b’s that are palindromes (the same forward as backward).
c. Syntactically correct ML programs.

2.3 Explain in informal English what each of these finite state automata recognizes.

/‘@——*%4—*@—' One O,
’\o—a»QL»Q—f—»Q—f»Q
k——//
a
e 0 C®\/@Ol
1 0
2.4 Convert these regular expressions to nondeterministic finite automata.

a. (if|then|else)
b. a((bja*c)x)*|x*a

34

EXERCISES

2.5

2.6

Convert these NFAs to deterministic finite automata.

’\@‘L»/_ZE@

a. xlz y
€ e

b’“g O@C@F @O0

QoootG
SN
oo

(9-2>(19)-2>(19=>1)>(1)

Find two equwalent states in the following automaton, and merge them to
produce a smaller automaton that recognizes the same language. Repeat until
there are no longer equivalent states.

Actually, the general algorithm for minimizing finite automata works in re-
verse. First, find all pairs of inequivalent states. States X, Y are inequivalent if
X is final and Y is not or (by iteration) if X > X’ and ¥ 5 ¥’ and X', Y’ are
inequivalent. After this iteration ceases to find new pairs of inequivalent states,
then X, Y are equivalent if they are not inequivalent. See Hopcroft and Ullman
[1979], Theorem 3.10.

35

CHAPTER TWO. LEXICAL ANALYSIS

*2.7

*2.8

29

**2.10

Any DFA that accepts at least one string can be converted to a regular ex-
pression. Convert the DFA of Exercise 2.3c to a regular expression. Hint: First,
pretend state 1 is the start state. Then write a regular expression for excursions
to state 2 and back, and a similar one for excursions to state 0 and back. Or
look in Hopcroft and Ullman [1979], Theorem 2.4, for the algorithm.

Suppose this DFA were used by Lex to find tokens in an input file.

a. How many characters past the end of a token might Lex have to examine
before matching the token?

b. Given your answer k to part (a), show an input file containing at least
two tokens such that the first call to Lex will examine k characters past
the end of the first token before returning the first token. If the answer to
part (a) is zero, then show an input file containing at least two tokens,
and indicate the endpoint of each token.

An interpreted DFA-based lexical analyzer uses two tables,

edges indexed by state and input symbol, yielding a state number, and
final indexed by state, returning O or an action-number.

Starting with this lexical specification,

(aba) + (action 1);
(a(b*)a) (action 2);
{alb) (action 3);

generate the edges and final tables for a lexical analyzer.

Then show each step of the lexer on the string abaabbaba. Be sure to show
the values of the important internal variables of the recognizer. There will be
repeated calls to the lexer to get successive tokens.

Lex has a lookahead operator / so that the regular expression abc/de £ matches

abc only when followed by def (but def is not part of the matched string,
and will be part of the next token(s)). Aho et al. [1986] describe, and Lex

36

EXERCISES

[Lesk 1975] uses, an incorrect algorithm for implementing lookahead (it fails
on (alab) /ba with input aba, matching ab where it should match a). Flex
[Paxson 1995] uses a better mechanism that works correctly for (atab) /ba
but fails (with a warning message) on zx* /xy*.

Design a better lookahead mechanism.

37

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Andrew W. Appel 1998

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1998

Revised and expanded edition of Modern Compiler Implementation in ML: Basic Techniques
Reprinted with corrections, 1999

First paperback edition 2004

Typeset in Times, Courier, and Optima
A catalogue record for this book is available from the British Library
Library of Congress Cataloguing-in-Publication data

Appel, Andrew W., 1960—
Modern compiler implementation in ML / Andrew W. Appel. — Rev.
and expanded ed.
X, 538 p. 1 ill. ; 24 cm.
Includes bibliographical references (p. 522-530) and index.
ISBN 0 521 58274 | (hardback)
1. ML (Computer program language) 2. Compilers (Computer programs)
I. Title.
QA76.73.M6A65 1998
005.4"53—dc21 97-031091
CIP

ISBN 0 521 58274 1 hardback
ISBN 0 521 60764 7 paperback

