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The interpolation algorithm plays an essential role in the digital image correlation (DIC) technique for shape,
deformation, and motion measurements with subpixel accuracies. At the present, little effort has been made to
improve the interpolation methods used in DIC. In this Letter, a family of recursive interpolation schemes based
on B-spline representation and its inverse gradient weighting version is employed to enhance the accuracy of DIC
analysis. Theories are introduced, and simulation results are presented to illustrate the effectiveness of the method
as compared with the common bicubic interpolation. © 2011 Optical Society of America
OCIS codes: 120.4290, 120.6165, 100.2000, 150.1135.

Digital image correlation (DIC) [1] is a noncontact, non-
interferometric optical metrology for displacement,
motion, and deformation measurements. The technique
works by comparing the grayscale images of an object
captured at different times, stages of deformation, or
views. Through tracking each pixel of interest in the re-
ference and target images using a square subset of pixels
centered at the interrogated pixel, the DIC technique can
build up whole-field two-dimensional (2D) and three-
dimensional (3D) deformation or motion vector fields
and their gradient maps. In recent years, DIC has found
numerous applications in many fields [2].
Generally, DIC uses an iterative algorithm, such as the

Newton–Raphson or Levenberg–Marquardt method, to
carry out the registration of subsets (i.e., matching sub-
sets) according to a correlation criterion [3,4]. Because
the smallest element in a digital image is one pixel, an
interpolation process of the target image is essential
for the measurement to achieve subpixel accuracies.
In addition, during the analysis, the subset matching pro-
cess resorts to image interpolation many times. Because
there are many subsets, each containing hundreds of
pixels, and the entire DIC processing takes a number
of iteration cycles for each subset analysis, it is evident
that a great amount of computation time in DIC is dedi-
cated to the intensity interpolations of noninteger pixels.
One of the most commonly used interpolation methods

for DIC is the bicubic interpolation, which is a robust
algorithm capable of providing high accuracy at a low
computational cost. Nevertheless, the ever-increasing
applications of DIC in a broad range of scientific and en-
gineering fields result in a strong demand for higher
levels of accuracy. In this Letter, we will present a family
of interpolation methods, which is based on B-spline
functions. Since the first application of the B-spline inter-
polation in image processing by Hou and Andrews [5],
much progress has been made by the digital filter
approach proposed by Unser et al. [6]. Owing to their
work, one can now implement the B-spline interpolation
prefiltering using recurrence relation, which greatly im-
proves the calculation speed compared with the matrix
approach in [5]. Figure 1 illustrates a general procedure
of the B-spline interpolation. The gain factor G and the

pole zk come from the derivation of the digital filter form
of B-spline interpolation, and K is the order of the
B-spline function [6].

Since the work of Unser et al. [6,7], many other mod-
ifications have been suggested to further improve the ac-
curacy of B-spline interpolation. For instance, in [8] an
approximation theory is used to minimize the asymptotic
approximation constant and, accordingly, minimize the
interpolation error. From the analytical solution prop-
osed in [8], we can design the prefilter and postfilter
for B-spline interpolation as it is done for the classical
B-spline [6]. For the case of the cubic optimal maximal-
order-minimal-support (O-MOMS) algorithm, the all-pole
prefilter assumes the form
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p Þ=8 is the pole and the gain fac-
tor is −21z1=4. The corresponding impulse response of
the postfilter can be written as
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Like the above cubic algorithm, higher order O-MOMS
algorithms can be obtained in a similar manner. One can
refer to [7] for a similar implementation procedure of the
pre- and postfilters.

Gotchev et al. presented a variation of the B-spline by
linearly combining the B-spline function with its lower or-
der counterparts [9]. This variation, named the modified

Fig. 1. Block diagram of B-spline interpolation.
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cubic B-spline, has also been incorporated into the simu-
lation and comparison.
Another notable technique named the inverse gradient

weighting initially introduced for bicubic interpolation
[10] is also extended and incorporated here into the family
of B-spline interpolation. Generally, because all the convo-
lution-based interpolations tend to smooth out the data at
the steep edge of the image, this modification will enhance
the performance of the interpolation at those points owing
to the approximation of the image gradient. The inverse
gradient weighting factors in one dimension are

Hl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þajf i−f i−1j

p
Hr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þajf iþ2−f iþ1j
p

D ¼ Hlð1 − sÞ þHrs

; ð3Þ

where f i is the intensity level of pixel i, s is the subpixel
location with the origin at pixel i, and a is the sharpness
factor. For the case of linear interpolation with the convo-
lution kernel ðw0; w1Þ, where w0 ¼ 1 − s and w1 ¼ s, the
modified coefficients become w0 ¼ Hlð1 − sÞ=D and
w1 ¼ Hrs=D. This modification can be directly extended
to the 2D case for other interpolation kernels of higher
orders [10].
To investigate the performance and accuracy of the

B-spline interpolation in the DIC analysis, numerical ex-
periments have been carried out using computer-gener-
ated images. The reason for the use of simulated images
instead of real experimental images is that it can provide
controlled displacements of exact values for accuracy
examination purpose and can eliminate errors caused
by the image acquisition system, imperfect loading,
and other uncertainties to avoid clouding the error asso-
ciated with interpolation. The equations used to generate
the images to be tested by the DIC algorithm are [11]

Irðx; yÞ ¼
P

n
k¼1 Ak expð−ððx − xkÞ2 þ ðy − ykÞ2Þ=R2Þ

Itðx; yÞ ¼
P

n
k¼1 Ak expð−ððx − xk − u0 − uxx − uyyÞ2 þ ðy − yk − v0 − vxx − vyyÞ2Þ=R2Þ ; ð4Þ

where n is the number of granules in the image; R is the
feature size of the granules; ðxk; ykÞ and Ak are random
positions and intensity levels of the granules; u0, v0, ux,
uy, vx, and vy are deformation parameters; and Ir and It
are the intensity levels at pixel ðx; yÞ in the reference and
target images, respectively. In image generation, we set
n ¼ 2500, R ¼ 3, the image size is set to 300 × 300 pixels,
and the grayscale quantization is set to 16 bits. In the DIC
analysis, we use a subset size of 31 × 31 pixels, a simple
yet robust correlation criterion named the parametric
sum of squared difference (PSSDab) [3], and the classic
Newton–Raphson algorithm [2] for subset matching.
In the first numerical experiment, we simulated the

successive rigid-body translation by assigning 0 to 1 pixel

to u0 with an increment of 0.05 pixel and setting the
other parameters to zeros. Figure 2 shows the root-
mean-squared error (RMSE) obtained by different inter-
polation algorithms for each displacement. For clarifica-
tion, the data have been separated into two subfigures
with the same cubic B-spline results shown in both. It
is evident that the family of B-spline interpolation yields
much better results than the bicubic one. Particularly, the
quartic O-MOMS algorithm and the quintic B-spline algo-
rithm yield the highest accuracies, which are hundreds of
times better than the accuracy provided by the bicubic
algorithm with respect to the RMSE.

In the second simulation, we take into account all of the
deforming parameters with the following representative
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Fig. 2. RMSE of displacements obtained by using various
interpolation algorithms.
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values: u0 ¼ 10:25, ux ¼ 0:01, uy ¼ 0:02, v0 ¼ 5:75,
vx ¼ 0:03, and vy ¼ 0:04. The images are shown in Fig. 3.
TheRMSEs are summarized inTable 1. It is clearly verified
that the B-spline interpolation functions are superior to
the bicubic algorithm.
The aforementioned two numerical experiments are

conducted with the inverse gradient weighting approach
of the B-spline interpolation. Because of page limitations,
only the special case a ¼ 0, which corresponds to the
normal B-spline interpolation, has been presented.
To demonstrate the validity of the inverse gradient

weighting scheme, Fig. 4 shows a representative result
from the first simulation, where the data are obtained
by the cubic B-spline interpolation with various values
of the inverse gradient weighting coefficient a. It can
be seen from the figure that a decrease in the value of
a yields a higher accuracy for most displacements but
causes worse results at the two ends of the investigated
displacements, i.e., 0, 0.05, 0.95 and 1 pixel. An appropri-
ate selection of coefficient a can help enhance the accu-
racy of the B-spline family of interpolation. From the
analysis of a number of numerical images with various
contrasts, it is found that the same trend holds and
the value of a around −3:0 × 10−5 is recommended for
the best trade-off between the errors of the displacement
at the two ends and those otherwise. The same result is
observed for other B-spline functions as well. It is note-
worthy that a is chosen from the simulation results, not
from analytical calculation.
By means of the recursive implementation, the compu-

tation speed of the B-spline interpolation is almost
equivalent to that of the bicubic interpolation in the
presented numerical experiments. This agrees with the
results reported in other literatures [6,7].

Because of the nature of the B-spline interpolation,
which consists of a prefilter acting as a high-pass filter,
the noise encountered in real-world applications can sub-
stantially affect the accuracies of the corresponding DIC
analysis. For instance, when random noise with an
amplitude up to 0.5% of the maximum intensity of the
pattern is added to every pixel in the reference and de-
formed images in the second simulation, the RMSEs as-
sociated with the bicubic algorithm change slightly to
1:927 × 10−3 and 8:450 × 10−4, for u and v displacements,
respectively, whereas the errors from all the B-spline al-
gorithms increase to similar values ranging from 4:058 ×
10−4 ∼ 4:125 × 10−4 for u displacement and 4:288 × 10−4 ∼
4:534 × 10−4 for v displacement. For this reason, in addi-
tion to using accurate interpolation algorithms, it is
highly demanded in DIC applications to use a high-
pixel-depth, high-quality imaging system.
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Table 1. RMSE Yielded by Various Interpolation

Algorithms for Displacements with Large

Shear Strains

RMSE (Pixel)

Interpolation Algorithm u v

Bicubic 1:881 × 10−3 7:199 × 10−4

Cubic B-spline 7:666 × 10−5 4:933 × 10−5

Quartic B-spline 2:093 × 10−5 1:135 × 10−5

Modified cubic B-spline 3:809 × 10−5 3:399 × 10−5

Cubic O-MOMS 3:759 × 10−5 1:943 × 10−5

Quartic O-MOMS 6:657 × 10−6 5:719 × 10−6

Quintic B-spline 1:062 × 10−5 7:965 × 10−6

Fig. 3. Reference and deformed images.
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Fig. 4. RMSE of displacements obtained by using inverse gra-
dient weighting version of the cubic B-spline.
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