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Two Sources of Beauty in Programs

For me beauty in a program arises from two sources:

• Structure: code as an expression of an idea.

• Efficiency: code as instructions for a computer.

This has given rise to two theories of computation.

• Logical: compositionality (human effort).

• Combinatorial: efficiency (machine effort).

Oddly, these are largely disparate communities!
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Reconciling the Two Theories

Historically,

• The logical side neglects efficiency in favor of structure.

• The combinatorial side neglects structure in favor of efficiency.

Prospectively,

• The logical side should pay more attention to efficiency.

• The combinatorial side should pay more attention to structure.

The λ-calculus is the key!
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The Great Rift

“On the fact that the Atlantic Ocean has two sides.” [EWD]

• American theory ≈ combinatorial theory.

• Euro-theory ≈ semantics and logic.

Both have had a big influence on practice:

• Efficient algorithms for a broad range of problems.

• Language design and verification tools.

Yet these two “theories” operate largely in isolation!
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American Theory

Algorithm analysis is based on machine models:

• Turing machine (TM) or Random Access Machine (RAM).

• Low-level: no abstraction, no composition.

• Allegedly, close to the hardware.

Machine models provide natural complexity measures:

• Time = number of instructions.

• Space = tape or memory usage.

Asymptotics smoothes over differences among models.



American Theory

In practice algorithms are described using C-like notation.

• Clearer than TM or RAM code.

• Analyze compiled code, rather than source code.

An improvement, but still very limited:

• ephemeral data structures.

• manual memory management.

• poor composability.

• no abstraction.



Euro Theory

Euro theory is based on language models:

• Church’s (typed and untyped) λ-calculus.

• High-level: abstraction, composition are fundamental.

• Platform-independent.

Language models support composition via variables:

• If φ true ` ψ true, then if φ true, then ψ true.

• If x : σ ` N : τ , then if M : σ, then [M/x ]N : τ .

The λ-calculus is an elegant theory of composition.



Euro Theory

Languages based on λ-calculus stress

• persistent data structures.

• automatic memory management.

• strong composability.

• abstract types.

But there is relatively little emphasis on efficiency.

• No clear complexity measures.

• Few analytic results (but see Okasaki’s CMU Ph.D.).



A (Tendentious) Thesis

Traditional imperative methods of programming are obsolete.

• Tedious to program, a nightmare to maintain.

• Largely incompatible with parallelism.

Functional methods are destined to dominate.

• Support verification and composition.

• Naturally accommodate parallelism.

The way forward is to synthesize Euro- and American theory.



An Iatrogenic Disorder

Consider the AHU Quicksort Algorithm:

• Naturally parallel: recursive calls are independent.

• Elegantly high-level: uses only a sequence abstraction.

An imperative reformulation on a PRAM mutilates the algorithm:

• Manual storage allocation and mutation.

• Manual processor allocation for scheduling.

• Concurrency control for mutation.

What should be a matter of efficiency becomes a matter of
correctness!



AHU Quicksort



Cost Semantics

To elevate the level of discourse we require a cost semantics.

• Define the abstract cost of execution of a language.

• Defines the parallel and sequential complexity.

Algorithm analysis is conducted at the level of the code we write.

• Cost semantics assigns a measure to each execution.

• Analyze asymptotic complexity in terms of this measure.



Cost Semantics

The abstract cost is validated by a provable implementation.

• Transform abstract cost into concrete cost on a machine.

• Account for platform characteristics such as number of
processors, cache hierarchy, and interconnect.

An end-to-end asymptotics with a clear separation of concerns.

• High-level, composable development and reasoning.

• Low-level implementation on hardware platforms.

So simple we teach it to first-year undergraduates!
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Cost Semantics for Time

Associate a cost graph to the evaluation of a program.

• Dynamic, fully accurate record of data dependencies.

• Not a static analysis or approximation!

Example: function application.

e1 ⇓

g1

λx .e e2 ⇓

g2

v2 [v2/x ]e ⇓

g

v

e1(e2) ⇓

(g1⊗g2)⊕1⊕g

v
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Cost Graphs

Series-parallel cost graphs:

• 1: one unit of computation.

• g1 ⊕ g2: g2 depends on result of g1.

• g1 ⊗ g2: g1 and g2 are independent.

Application cost (g1 ⊗ g2)⊕ 1⊕ g specifies that

• Function and argument are evaluated in parallel.

• Function call costs one unit.

• Function execution depends on the function and argument.
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Cost Semantics

Operations on sequences have similar cost semantics:

e ⇓

g

λx .e e ′ ⇓

g ′

[v1, . . . , vn]

[v1/x ]e ⇓

g1

v ′1 . . . [vn/x ]e ⇓

gn

v ′n

map(e; e ′) ⇓

(g⊗g ′)⊕(
⊗

i gi )⊕1

[v ′1, . . . , v
′
n]

To map a function over a sequence,

• Evaluate the function and the sequence in parallel, and then

• Apply the function to each element in parallel.

• Create a new sequence of results.
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Work and Span

The work w(g) of a cost graph g is the size of g .

• w(1) = 1, w(g1 ⊗ g2) = w(g1 ⊕ g2) = w(g1) + w(g2).

• Measures the sequential time complexity.

The span d(g) of a cost graph g is the critical path length of g .

• d(1) = 1, d(g1 ⊗ g2) = max(d(g1), d(g2)),
d(g1 ⊕ g2) = d(g1) + d(g2).

• Measures the parallel time complexity.
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Mergesort

fun merge xs ys =

case (xs, ys) of

([], ys) ⇒ ys

| (xs,[]) ⇒ xs

| (x::xs’, y::ys’) ⇒
case x<y of

true ⇒ x :: merge xs’ ys

| false ⇒ y :: merge xs ys’

fun sort [] = []

| sort [x] = [x]

| sort xs =

let val (ys, zs) = split xs

in merge (sort ys, sort zs) end



Mergesort

The work (sequential time) is optimal, O(n log n) for n items.

The span (parallel time) is sensitive to the data structure:

• For lists, O(n), because splitting is slow.

• For trees, O(log3 n), using rebalancing.

The parallelizability ratio, w/d , is O(n/ log2 n) for trees.

The correctness of the parallel implementation is never in question!



Provable Implementation

Brent’s Principle: A computation with work w and span d can be
implemented on a p-processor PRAM in time O(max(w/p, d)).

• Work in chunks of p as much as possible.

• Number of processors is chosen at run-time.

• Proof is constructive: exhibits a scheduler.

Parallelizability ratio determines which factor dominates.



2-DFS Schedule

A schedule is a pebbling of the cost graph.

• Given p > 0 pebbles.

• Goal: move a pebble from the start to the end node.

• Move: when all predecessors are pebbled, then pick them up
and pebble the successor.

A pebbling strategy is an algorithm for pebbling a cost graph.

• p-DFS: depth-first search, p visits at a time.

• p-BFS: breadth-first search, p visits at a time.

• p-WS: work-stealing schedule.



2-DFS Schedule
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2-WS Schedule
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Scheduling and Space

Key idea: measure the number of deviations from sequential order.

• Each deviation implies an interaction with the scheduler.

• Deviations incur cache misses.

Thm (Spoonhower): Space for scheduling is proportional to
number of deviations.

Thm (Spoonhower, et al.): For parallel futures a work-stealing
scheduler incurs expected O(p d + t d) deviations on p processors
with t touches.



Visualization of Cost Graphs

Red edges mark live roots at high-water mark.



Introductory CS at CMU

Introductory curriculum emphasizes:

• Parallelism as the general case, sequential being degenerate.

• Verification by rigorous proof.

The best way to achieve this is functional programming.

• 2nd semester: parallel FP, abstraction, verification.

• 3rd semester: parallel data structures and algorithms using FP.

See
www.cs.cmu.edu/~15150/previous-semesters/2012-spring

and
www.cs.cmu.edu/afs/cs/academic/class/15210-s12/www/.

www.cs.cmu.edu/~15150/previous-semesters/2012-spring
www.cs.cmu.edu/afs/cs/academic/class/15210-s12/www/


Fallacies Refuted

It is often alleged that machine models are “realistic”.

• Manual storage allocation.

• Manual scheduling.

• Primary and secondary storage effects.

But research developments have shown

• Automatic storage management is faster and more robust.

• Automatic scheduling is practical and efficient.

Even memory hierarchy effects can be accounted for cleanly and
elegantly using cost semantics.



IO Efficiency

Aggarwal and Vitter introduced the IO Model:

• Distinguish primary from secondary memory.

• Cache size M = k × B words.

• Evaluate algorithm efficiency in terms of M and B.

Main result: k-way merge sort is optimal for the IO model:

O(n/B logM/B(n/B))

(Not cache-oblivious: k is proportional to M/B.)



IO Efficiency

A&V’s results can be matched in a purely functional model.

• No manual memory management.

• Natural functional programming.

Key idea: temporal locality implies spatial locality.

• Allocation order determines proximity.

• Reloading of migrated objects preserves proximity.

• Control stack specially managed to avoid cache contention.



Cost Semantics for IO

Cost semantics makes storage explicit:

σ @ e ⇓n σ′ @ v

Store σ has three components:

• Unbounded main memory with blocks of size B.

• Read cache of size M = k × B.

• Linearly ordered allocation cache of size M.

In-cache operations are zero cost; reads and evictions are unit cost.
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(Simplified) Cost Semantics
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Provable Implementation for IO

Thm (Blelloch & H) An evaluation of cost n may be implemented
on a stack machine with cache of size 4×M + B with cache
complexity k × n for some small constant k .

• Sleator, et al.: LRU eviction policy is 2-competitive with ICM.

• Appel: cost of copying GC is asymptotically free.

• B&H: Stack management induces small constant overhead.

Thus, the cost semantics is a valid basis for IO analysis.
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Merge, Revisited

fun merge nil ys = ys

| merge xs nil = xs

| merge (xs as x::xs’) (ys as y::ys’) =

case compare x y of

LESS ⇒ !a::merge xs’ ys

| GTEQ ⇒ !b::merge xs ys’
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Merge, Revisited

A data structure is compact iff it may be traversed in time O(n/B).

Thm: For compact inputs xs and ys the call merge xs ys has
cache complexity O(n/B).

• Recurs down lists allocating only stack n frames: O(n/B).

• Returns allocating n list cells: O(n/B).

Copying operations !a and !b are needed to ensure compactness
(locality).



Stack Management

The main complication is accounting for the control stack.

• For map stack space may be amortized against allocation of
the result.

• But this is not always possible!

Consider non-tail recursive factorial:

fun fact 0 = 1

| fact n = n * fact (n-1)

Without accounting for stack, we would predict O(1) cost, but the
true cost is O(n/B).
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Cost Semantics for IO

The cost semantics must be enhanced to allocate frames:
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n′1
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σ′1 @ l ′1 ↓n
′′
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σ @ app(e1; e2) ⇓n1+n′1+n′′1 +n′′′1 +n2+n′2

R σ′ @ l ′

Modifications:

• Frames are never read, but just allocated for their effect.

• Root set R records live data in the control stack.
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Stack Management

Stack frames are allocated in the nursery.

• May exist solely within nursery.

• May migrate to secondary memory.

Dedicate a cache block of B frames in primary memory.

• Not influenced by frames in nursery.

• Specially managed read cache for stack frames.
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Stack Management

Stack cache block may be evicted up to B times.

• Newer frames may overflow nursery.

• Reading evicted frames replaces stack cache.

Amortize cost of eviction over allocation of newer frames.

• Put $3 on each frame block as it is migrated to secondary.

• Use $1 for migration.

• Use $1 for initial load.

• Use $1 for reload of evicted block.
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Summary

Cost semantics supports analysis of complexity of high-level code.

• No need for “pseudo-code”.

• Avoid reasoning about compilation.

Costs can be chosen to reflect different notions of complexity:

• Sequential and parallel time [B & Greiner 96].

• Space effects of scheduling [Spoonhower, B, Gibbons, & H
09].

• Memory hierarchy effects [B& H 13].
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Summary

λ-calculus provides a logical model of computation.

• Inherently compositional.

• Mathematically elegant.

Cost semantics integrates the combnatorial aspects:

• Enrich the tools available to algorithms designers.

• Extend complexity analysis to mathematically elegant
languages.

What’s not to like?
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