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1 Markov Chains

The study of Markov chains is a classical subject with many applications such as
Markov Chain Monte Carlo techniques for integrating multivariate probability distribu-
tions over complex volumes. An important recent application is in defining the pagerank
of pages on the World Wide Web by their stationary probabilities.

A Markov chain has a finite set of states. For each pair x and y of states, there
is a probability pxy of going from state x to state y where for each x,

∑
y pxy = 1. A

random walk in the Markov chain consists of a sequence of states starting at some state
x0. In state x, the next state y is selected randomly with probability pxy. The starting
probability distribution puts a mass of one on the start state x0 and zero on every other
state. More generally, one could start with any probability distribution p, where p is a
row vector with non-negative components summing to one, with pi being the probability
of starting in state i. The probability of being at state j at time t + 1 is the sum over
each state i of being at i at time t and taking the transition from i to j. Let p(t) be a
row vector with a component for each state specifying the probability mass of the state at
time t and let p(t+1) be the row vector of probabilities at time t+ 1. In matrix notation

p(t)P = p(t+1).

Many real-world situations can be modeled as Markov chains. At any time, the only
information about the chain is the current state, not how the chain got there. At the
next unit of time the state is a random variable whose distribution depends only on the
current state. A gambler’s assets can be modeled as a Markov chain where the current
state is the amount of money the gambler has on hand. The model would only be valid
if the next state does not depend on past states, only on the current one. Human speech
has been modeled as a Markov chain, where the state represents either the last syllable
(or the last several syllables) uttered. The reader may consult sources on Markov chains
for other examples; our discussion here focuses on the theory behind them.

A Markov chain can be represented by a directed graph with a vertex representing
each state and an edge labeled pij from vertex i to vertex j if pij > 0. We say that the
Markov chain is strongly connected if there is a directed path from each vertex to every
other vertex. The matrix P of the pij is called the transition probability matrix of the chain.

A fundamental property of a Markov chain is that in the limit the long-term average
probability of being in a particular state is independent of the start state or an initial
probability distribution over states provided that the directed graph is strongly connected.
This is the Fundamental Theorem of Markov chains which we now prove.
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1.1 Stationary Distribution

Suppose after t steps of the random walk, the probability distribution is p(t). Define
the long-term probability distribution a(t) by

a(t) =
1

t

(
p(0) + p(1) + · · ·+ p(t−1)

)
.

The next theorem proves that the long-term probability distribution of a strongly
connected Markov chain converges to a unique probability vector. This does not mean
that the probability distribution of the random walk converges. This would require an
additional condition called aperiodic.

Theorem 1.1 (Fundamental Theorem of Markov chains) If the Markov chain is
strongly connected, there is a unique probability vector π satisfying πP = π. Moreover,
for any starting distribution, lim

t→∞
a(t) exists and equals π.

Proof:

a(t)P − a(t) =
1

t

[
p(0)P + p(1)P + · · ·+ p(t−1)P

]
− 1

t

[
p(0) + p(1) + · · ·+ p(t−1)

]
=

1

t

[
p(1) + p(2) + · · ·+ p(t)

]
− 1

t

[
p(0) + p(1) + · · ·+ p(t−1)

]
=

1

t

(
p(t) − p(0)

)
.

Thus, b(t) = a(t)P − a(t) satisfies |b(t)| ≤ 2
t
→ 0, as t→∞. Letting A be the n× (n+ 1)

matrix [P − I , 1] obtained by augmenting the matrix P − I with an additional column
of ones. Then a(t)A = [b(t) , 1]. The matrix A has rank n since each row sum in P is

1 and hence row sums in P − I are all 0. Thus A

(
1
0

)
= 0. If the rank of A is less

than n, there is a vector w perpendicular to 1 and scalar α so that (P − I)w = α1 or
Pw − α1 = w. If α > 0, then for the i with maximum value of wi, wwi is a convex
combination of some wj, all at most wi minus α, a contradiction. Similarly for α < 0.
So assume α = 0. For the i with maximum wi, if for some j, pij > 0, then wj = wi.
Otherwise, (Pw)i would be less than wi. Now suppose S is the set of k with wk equal to
the maximum value. S̄ is not empty since

∑
k wk = 0. Connectedness implies that there

exist k ∈ S, l ∈ S̄ with pkl > 0, which is a contradiction. So A has rank n and the n× n
submatrix B of A consisting of all its columns except the first is invertible. Let c(t) be
obtained from b(t) by removing the first entry. Then, a(t) = [c(t) , 1]B−1 → [0 , 1]B−1.
We have the theorem with π = [0 , 1]B−1.

The vector π is called the stationary probability distribution of the Markov chain. The
equations πP = π expanded say that for every i,∑

j

πjpji = πi.
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Thus, executing one step of the Markov Chain starting with the distribution π results
in the same distribution. Of course the same conclusion holds for any number of steps.
Hence the name stationary distribution, sometimes called the steady state distribution.

1.2 Electrical Networks and Random Walks

In the next few sections, we study a special class of Markov chains derived from electri-
cal networks. These include Markov chains on undirected graphs where one of the edges
incident to the current vertex is chosen uniformly at random and the walk proceeds to
the vertex at the other end of the edge. There are nice analogies between such Markov
chains and certain electrical quantities.

An electrical network is a connected, undirected graph in which each edge xy has a
resistance rxy > 0. In what follows, it is easier to deal with conductance defined as the
reciprocal of resistance, cxy = 1

rxy
, rather then resistance. Associated with an electrical

network is a Markov chain on the underlying graph defined by assigning a probability
pxy = cxy

cy
to the edge (x, y) incident to a vertex, where the normalizing constant cx equals∑

y

cxy. Note that although cxy equals cyx, the probabilities pxy and pyx may not be equal

due to the required normalization so that the probabilities at each vertex sum to one.
Thus, the matrix P may not be symmetric. We shall soon see that there is a relationship
between current flowing in an electrical network and a random walk on the underlying
graph.

Denote by P the matrix whose xyth entry pxy is the probability of a transition from
x to y. The matrix P is called the transition probability matrix . Suppose a random walk
starts at a vertex x0. At the start, the probability mass is one at x0 and zero at all other
vertices. At time one, for each vertex y, the probability of being at y is the probability,
px0y, of going from x0 to y.

If the underlying electrical network is connected, then the Markov chain is strongly
connected and has a stationary probability distribution. We claim that the stationary
probability is given by fx = cx

c
where c =

∑
x

cx. By Theorem 1.1, it suffices to check that

fP = f :
(fP )x =

∑
y

cy
c

cyx
cy

=
∑
y

cxy
c

=
cx
c

= fx.

Note that if each edge has resistance one, then the value of cx =
∑
y

cxy is dx where dx

is the degree of x. In this case, c =
∑
x

cx equals 2m where m is the total number of

edges and the stationary probability is 1
2m

(d1, d2, . . . , dn). This means that for undirected
graphs, the stationary probability of each vertex is proportional to its degree and if the
walk starts with the stationary distribution, every edge is traversed in each direction with
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the same probability of 1
2m

.

A random walk associated with an electrical network has the important property that
given the stationary probability f , the probability fxpxy of traversing the edge xy from
vertex x to vertex y is the same as the probability fypyx of traversing the edge in the reverse
direction from vertex y to vertex x. This follows from the manner in which probabilities
were assigned and the fact that the conductance cxy equals cyx.

fxpxy =
cx
c

cxy
cx

=
cxy
c

=
cyx
c

=
cy
c

cyx
cy

= fypyx.

Harmonic functions

Harmonic functions are useful in developing the relationship between electrical net-
works and random walks on undirected graphs. Given an undirected graph, designate
a nonempty set of vertices as boundary vertices and the remaining vertices as interior
vertices. A harmonic function g on the vertices is one in which the value of the function
at the boundary vertices is fixed to some boundary condition and the value of g at any
interior vertex x is a weighted average of the values at all the adjacent vertices y, where
the weights pxy sum to one over all y. Thus, if gx =

∑
y

gypxy at every interior vertex x,

then g is harmonic. From the fact that fP = f , it follows that the function gx = fx
cx

is
harmonic:

gx = fx
cx

= 1
cx

∑
y

fypyx = 1
cx

∑
y

fy
cyx
cy

= 1
cx

∑
y

fy
cxy
cy

=
∑
y

fy
cy

cxy
cx

=
∑
y

gypxy.

A harmonic function on a connected graph takes on its maximum and minimum on
the boundary. Suppose not. Let S be the set of interior vertices at which the maximum
value is attained. Since S contains no boundary vertices, S̄ is nonempty. Connectedness
implies that there is at least one edge (x, y) with x ∈ S and y ∈ S̄. But then the value of
the function at x is the average of the value at its neighbors, all of which are less than or
equal to the value at x and the value at y is strictly less, a contradiction. The proof for
the minimum value is identical.

There is at most one harmonic function satisfying a given set of equations and bound-
ary conditions. For suppose there were two solutions f(x) and g(x). The difference of two
solutions is itself harmonic. Since h(x) = f(x)− g(x) is harmonic and has value zero on
the boundary, by the maximum principle it has value zero everywhere. Thus f(x) = g(x).

The analogy between electrical networks and random walks

There are important connections between random walks on undirected graphs and
electrical networks. Choose two vertices a and b. For reference purposes let the voltage
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vb equal zero. Attach a current source between a and b so that the voltage va equals
one. Fixing the voltages at va and vb induces voltages at all other vertices along with a
current flow through the edges of the network. The analogy between electrical networks
and random walks is the following. Having fixed the voltages at the vertices a and b, the
voltage at an arbitrary vertex x equals the probability of a random walk starting at x
reaching a before reaching b. If the voltage va is adjusted so that the current flowing into
vertex a is one, then the current flowing through an edge is the net frequency in which a
random walk from a to b traverses the edge.

Probabilistic interpretation of voltages

Before showing that the voltage at an arbitrary vertex x equals the probability of a
random walk from x reaching a before reaching b, we first show that the voltages form
a harmonic function. Let x and y be adjacent vertices and let ixy be the current flowing
through the edge from x to y. By Ohm’s law,

ixy =
vx − vy
rxy

= (vx − vy)cxy.

By Kirchoff’s Law the currents flowing out of each vertex sum to zero.∑
y

ixy = 0

Replacing currents in the above sum by the voltage difference times the conductance
yields ∑

y

(vx − vy)cxy = 0

or
vx
∑
y

cxy =
∑
y

vycxy.

Observing that
∑
y

cxy = cx and that pxy = cxy
cx

, yields vxcx =
∑
y

vypxycx. Hence,

vx =
∑
y

vypxy. Thus, the voltage at each vertex x is a weighted average of the volt-

ages at the adjacent vertices. Hence the voltages are harmonic.

Now let px be the probability that a random walk starting at vertex x reaches a before
b. Clearly pa = 1 and pb = 0. Since va = 1 and vb = 0, it follows that pa = va and pb = vb.
Furthermore, the probability of the walk reaching a from x before reaching b is the sum
over all y adjacent to x of the probability of the walk going from x to y and then reaching
a from y before reaching b. That is

px =
∑
y

pxypy.
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Hence, px is the same harmonic function as the voltage function vx and v and p satisfy the
same boundary conditions (a and b form the boundary). Thus, they are identical func-
tions. The probability of a walk starting at x reaching a before reaching b is the voltage vx.

Probabilistic interpretation of current

In a moment we will set the current into the network at a to have some value which
we will equate with one random walk. We will then show that the current ixy is the
net frequency with which a random walk from a to b goes through the edge xy before
reaching b. Let ux be the expected number of visits to vertex x on a walk from a to b
before reaching b. Clearly ub = 0. Since every time the walk visits x, x not equal to a,
it must come to x from some vertex y, the number of visits to x before reaching b is the
sum over all y of the number of visits uy to y before reaching b times the probability pyx
of going from y to x. Thus

ux =
∑
y

uypyx =
∑
y

uy
cxpxy
cy

and hence ux
cx

=
∑
y

uy
cy
pxy. It follows that ux

cx
is harmonic (with a and b as the boundary).

Now, ub
cb

= 0. Setting the current into a to one, fixed the value of va. Adjust the current
into a so that va equals ua

ca
. Since ux

cx
and vx satisfy the same harmonic conditions, they

are the same harmonic function. Let the current into a correspond to one walk. Note
that if our walk starts at a and ends at b, the expected value of the difference between
the number of times the walk leaves a and enters a must be one and thus the amount of
current into a corresponds to one walk.

Next we need to show that the current ixy is the net frequency with which a random
walk traverses edge xy.

ixy = (vx − vy)cxy =

(
ux
cx
− uy
cy

)
cxy = ux

cxy
cx
− uy

cxy
cy

= uxpxy − uypyx

The quantity uxpxy is the expected number of times the edge xy is traversed from x to y
and the quantity uypyx is the expected number of times the edge xy is traversed from y to
x. Thus, the current ixy is the expected net number of traversals of the edge xy from x to y.

Effective Resistance and Escape Probability

Set va = 1 and vb = 0. Let ia be the current flowing into the network at vertex a and
out at vertex b. Define the effective resistance reff between a and b to be reff = va

ia
and

the effective conductance ceff to be ceff = 1
reff

. Define the escape probability, pescape, to

be the probability that a random walk starting at a reaches b before returning to a. We
now show that the escape probability is

ceff
ca
.

ia =
∑
y

(va − vy)cay
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Since va = 1,

ia =
∑
y

(1− vy)
cay
ca
ca

= ca

[∑
y

cay
ca
−
∑
y

vy
cay
ca

]

= ca

[
1−

∑
y

payvy

]
.

For each y adjacent to the vertex a, pay is the probability of the walk going from vertex
a to vertex y. vy is the probability of a walk starting at y going to a before reaching b,
as was just argued. Thus,

∑
y

payvy is the probability of a walk starting at a returning to

a before reaching b and 1 −
∑
y

payvy is the probability of a walk starting at a reaching b

before returning to a. Thus ia = capescape. Since va = 1 and ceff = ia
va

, it follows that

ceff = ia . Thus ceff = capescape and hence pescape =
ceff
ca

.

For a finite graph the escape probability will always be nonzero. Now consider an
infinite graph such as a lattice and a random walk starting at some vertex a. Form a
series of finite graphs by merging all vertices at distance d or greater from a into a single
vertex b for larger and larger values of d. The limit of pescape as d goes to infinity is the
probability that the random walk will never return to a. If pescape → 0, then eventually
any random walk will return to a. If pescape → q where q > 0, then a fraction of the walks
never return. Thus, the escape probability terminology.

1.3 Random Walks on Undirected Graphs

We now focus our discussion on random walks on undirected graphs with uniform
edge weights. At each vertex, the random walk is equally likely to take any edge. This
corresponds to an electrical network in which all edge resistances are one. Assume the
graph is connected. If it is not, the analysis below can be applied to each connected
component separately. We consider questions such as what is the expected time for a
random walk starting at a vertex x to reach a target vertex y, what is the expected time
until the random walk returns to the vertex it started at, and what is the expected time
to reach every vertex?

Hitting time

The hitting time hxy, sometimes called discovery time, is the expected time of a ran-
dom walk starting at vertex x to reach vertex y. Sometimes a more general definition is
given where the hitting time is the expected time to reach a vertex y from a start vertex
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selected at random from some given probability distribution.

One interesting fact is that adding edges to a graph may either increase or decrease
hxy depending on the particular situation. An edge can shorten the distance from x to
y thereby decreasing hxy or the edge could increase the probability of a random walk
going to some far off portion of the graph thereby increasing hxy. Another interesting
fact is that hitting time is not symmetric. The expected time to reach a vertex y from a
vertex x in an undirected graph may be radically different from the time to reach x from y.

We start with two technical lemmas. The first lemma states that the expected time
to traverse a chain of n vertices is Θ (n2).

Lemma 1.2 The expected time for a random walk starting at one end of a chain of n
vertices to reach the other end is Θ (n2).

Proof: Consider walking from vertex 1 to vertex n in a graph consisting of a single path
of n vertices. Let hij, i < j, be the hitting time of reaching j starting from i. Now h12 = 1
and

hi,i+1 = 1
2
× 1 + 1

2
(1 + hi−1,i + hi,i+1) 2 ≤ i ≤ n− 1.

Solving for hi,i+1 yields the recurrence

hi,i+1 = 2 + hi−1,i.

Solving the recurrence yields
hi,i+1 = 2i− 1.

To get from 1 to n, go from 1 to 2, 2 to 3, etc. Thus

h1,n =
n−1∑
i=1

hi,i+1 =
n−1∑
i=1

(2i− 1)

= 2
n−1∑
i=1

i−
n−1∑
i=1

1

= 2
n (n− 1)

2
− (n− 1)

= (n− 1)2 .

The next lemma shows that the expected time spent at vertex i by a random walk
from vertex 1 to vertex n in a chain of n vertices is 2(i− 1) for 2 ≤ i ≤ n− 1.

Lemma 1.3 Consider a random walk from vertex 1 to vertex n in a chain of n vertices.
Let t(i) be the expected time spent at vertex i. Then

t (i) =


n− 1 i = 1
2 (n− i) 2 ≤ i ≤ n− 1
1 i = n.
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Proof: Now t (n) = 1 since the walk stops when it reaches vertex n. Half of the time when
the walk is at vertex n − 1 it goes to vertex n. Thus t (n− 1) = 2. For 3 ≤ i ≤ n− 1,
t (i) = 1

2
[t (i− 1) + t (i+ 1)] and t (1) and t (2) satisfy t (1) = 1

2
t (2) + 1 and t (2) =

t (1) + 1
2
t (3). Solving for t(i+ 1) for 3 ≤ i ≤ n− 1 yields

t(i+ 1) = 2t(i)− t(i− 1)

which has solution t(i) = 2(n− i) for 3 ≤ i ≤ n− 1. Then solving for t(2) and t(1) yields
t (2) = 2 (n− 2) and t (1) = n− 1. Thus, the total time spent at vertices is

n− 1 + 2 (1 + 2 + · · ·+ n− 2) + 1 = n− 1 + (n− 1)(n− 2) + 1 = (n− 1)2 + 1

which is one more than h1n and thus is correct.

Next we show that adding edges to a graph might either increase or decrease the
hitting time hxy. Consider the graph consisting of a single path of n vertices. Add edges
to this graph to get the graph in Figure 1.1 consisting of a clique of size n/2 connected
to a path of n/2 vertices. Then add still more edges to get a clique of size n. Let x be
the vertex at the midpoint of the original path and let y be the other endpoint of the
path consisting of n/2 vertices as shown in Figure 1.1. In the first graph consisting of a
single path of length n, hxy = Θ (n2). In the second graph consisting of a clique of size
n/2 along with a path of length n/2, hxy = Θ (n3). To see this latter statement, note
that starting at x, the walk will go down the chain towards y and return to x n times on
average before reaching y for the first time. Each time the walk in the chain returns to
x, with probability (n − 1)/n it enters the clique and thus on average enters the clique
Θ(n) times before starting down the chain again. Each time it enters the clique, it spends
Θ(n) time in the clique before returning to x. Thus, each time the path returns to x from
the chain it spends Θ(n2) time in the clique before starting down the chain towards y for
a total expected time that is Θ(n3) before reaching y. In the third graph, which is the
clique of size n, hxy = Θ (n). Thus, adding edges first increased hxy from n2 to n3 and
then decreased it to n.

Hitting time is not symmetric even in the case of undirected graphs. In the graph of
Figure 1.1, the expected time, hxy, of a random walk from x to y, where x is the vertex of
attachment and y is the other end vertex of the chain, is Θ(n3). However, hyx is Θ(n2).

Next we ask what is the maximum that the hitting time could be. We first show that
if vertices x and y are connected by an edge, then the expected time, hxy, of a random
walk from x to y plus the expected time, hyx, from y to x is at most twice the number of
edges.

Lemma 1.4 If vertices x and y are connected by an edge, then hxy + hyx ≤ 2m where m
is the number of edges in the graph.
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x
y

n/2

︸ ︷︷ ︸

clique of
size n/2

Figure 1.1: Illustration that adding edges to a graph can either increase or decrease hitting
time.

Proof: In a random walk on an undirected graph starting in the steady state, the prob-
ability of traversing any edge in either direction is 1/(2m). This is because for any edge
(u, v), the probability of being at u (in the steady state) is du/(2m) and the probability
of selecting the edge (u, v) is 1/du. Hence, the probability of traversing the edge (u, v)
is 1/(2m) implying that the expected time between traversals of the edge (x, y) from x
to y is 2m. Thus, if we traverse edge (x, y), the expected time to traverse a path from
y back to x and then traverse the edge (x, y) again is 2m. But since a random walk is
a memory less process, we can drop the condition that we started by traversing the edge
(x, y). Hence the expected time from y to x and back to y is at most 2m. Note that
the path went from y to x and then may have returned to x several times before going
through the edge (x, y). Thus, the less than or equal sign in the statement of the lemma
since the path have gone from y to x to y without going through the edge (x, y).

Notice that the proof relied on the fact that there was an edge from x to y and thus
the theorem is not necessarily true for arbitrary x and y. When x and y are not con-
nected by an edge consider a path from x to y. The path is of length at most n. Consider
the time it takes to reach each vertex on the path in the order they appear. Since the
vertices on the path are connected by edges, the expected time to reach the next vertex
on the path is at most twice the number of edges in the graph by the above theorem.
Thus, the total expected time is Θ (n3). This result is asymptotically tight since the bound
is met by the graph of Figure 1.1 consisting of a clique of size n/2 and a path of length n/2.

Commute time

The commute time, commute(x, y), is the expected time of a random walk starting at
x reaching y and then returning to x. Think of going from home to office and returning
home.

Theorem 1.5 Given an undirected graph, consider the electrical network where each edge
of the graph is replaced by a one ohm resistor. Given vertices x and y, the commute time,
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commute(x, y), equals 2mrxy where rxy is the effective resistance from x to y and m is the
number of edges in the graph.

Proof: Insert at each vertex i a current equal to the degree di of vertex i. The total
current inserted is 2m where m is the number of edges. Extract from a specific vertex j
all of this 2m current. Let vij be the voltage difference from i to j. The current into i
divides into the di resistors at node i. The current in each resistor is proportional to the
voltage across it. Let k be a vertex adjacent to i. Then the current through the resistor
between i and k is vij − vkj, the voltage drop across the resister. The sum of the currents
out of i through the resisters must equal di, the current injected into i.

di =
∑
k adj
to i

(vij − vkj)

Noting that vij does not depend on k, write

di = divij −
∑
k adj
to i

vkj.

Solving for vij

vij = 1 +
∑
k adj
to i

1
di
vkj =

∑
k adj
to i

1
di

(1 + vkj). (1.1)

Now the expected time from i to j is the average time over all paths from i to k
adjacent to i and then on from k to j. This is given by

hij =
∑
k adj
to i

1
di

(1 + hkj). (1.2)

Subtracting (1.2) from (1.1), gives vij−hij =
∑
k adj
to i

1
di

(vkj − hkj). Thus, the function vij−hij

is harmonic. Designate vertex j as the only exterior vertex. The value of vij − hij at j,
namely vjj − hjj, is zero, since both vjj and hjj are zero. So the function vij − hij must
be zero everywhere. Thus, the voltage vij equals the expected time hij from i to j.

To complete the proof, note that hij = vij is the voltage from i to j when currents
are inserted at all nodes in the graph and extracted at node j. If the current is extracted
from i instead of j, then the voltages change and vji = hji in the new setup. Finally,
reverse all currents in this latter step. The voltages change again and for the new voltages
−vji = hji. Since −vji = vij, we get hji = vij.
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Thus, when a current is inserted at each node equal to the degree of the node and the
current is extracted from j, the voltage vij in this set up equals hij. When we extract the
current from i instead of j and then reverse all currents, the voltage vij in this new set
up equals hji. Now, superpose both situations (i.e., add all the currents and voltages).
By linearity, for the resulting vij, vij = hij + hji. All currents cancel except the 2m amps
injected at i and withdrawn at j. Thus, 2mrij = vij = hij + hji = commute(i, j). Thus,
commute(i, j) = 2mrij.

Note that Lemma 1.4 also follows from Theorem 1.5 since the effective resistance ruv
is less than or equal to 1 when u and v are connected by an edge.

Corollary 1.6 For any n vertex graph and for any vertices x and y, the commute time,
commute(x, y), is less than or equal to n3.

Proof: By Theorem 1.5 the commute time is given by the formula commute(x, y) =
2mrxy where m is the number of edges. In an n vertex graph there exists a path from
x to y of length at most n. This implies rxy ≤ n since the resistance can not be greater
than that of any path from x to y. Since the number of edges is at most

(
n
2

)
commute(x, y) = 2mrxy ≤ 2

(
n

2

)
n ∼= n3.

Again adding edges to a graph may increase or decrease the commute time. To see this,
consider the graph consisting of a chain of n vertices, the graph of Figure 1.1, and the
clique on n vertices.

Cover times

The cover time cover(x,G) is the expected time of a random walk starting at vertex x
in the graph G to reach each vertex at least once. We write cover(x) when G is understood.
The cover time of an undirected graph G, denoted cover(G), is

cover(G) = max
x

cover(x,G).

For cover time of an undirected graph, increasing the number of edges in the graph
may increase or decrease the cover time depending on the situation. Again consider three
graphs, a chain of length n which has cover time Θ(n2), the graph in Figure 1.1 which has
cover time Θ(n3), and the complete graph on n vertices which has cover time Θ(n log n).
Adding edges to the chain of length n to create the graph in Figure 1.1 increases the
cover time from n2 to n3 and then adding even more edges to obtain the complete graph
reduces the cover time to n log n.
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Note: The cover time of a clique is n log n since that is the time to select every in-
teger out of n integers with high probability, drawing integers at random. This is called
the coupon collector problem. The cover time for a straight line is Θ(n2) since it is the
same as the hitting time. For the graph in Figure 1.1, the cover time is Θ(n3) since one
takes the maximum over all start states and cover(x,G) = Θ (n3).

Theorem 1.7 Let G be a connected graph with n vertices and m edges. The time for a
random walk to cover all vertices of the graph G is bounded above by 2m(n− 1).

Proof: Consider a depth first search (dfs) of the graph G starting from vertex z and
let T be the resulting dfs spanning tree of G. The dfs covers every vertex. Consider the
expected time to cover every vertex in the order visited by the depth first search. Clearly
this bounds the cover time of G starting from vertex z.

cover (z,G) ≤
∑

(x,y)∈T

hxy.

If (x, y) is an edge in T , then x and y are adjacent and thus Lemma 1.4 implies hxy ≤ 2m.
Since there are n − 1 edges in the dfs tree and each edge is traversed twice, once
in each direction, cover(z) ≤ 2m(n − 1). Since this holds for all starting vertices z,
cover(G) ≤ 2m(n− 1)

The theorem gives the correct answer of n3 for the n/2 clique with the n/2 tail. It
gives an upper bound of n3 for the n-clique where the actual cover time is n log n.

Let rxy be the effective resistance from x to y. Define the resistance r(G) of a graph
G by r(G) = max

x,y
(rxy).

Theorem 1.8 Let G be an undirected graph with m edges. Then the cover time for G is
bounded by the following inequality

mr(G) ≤ cover(G) ≤ 2e3mr(G) lnn+ n

where e=2.71 is Euler’s constant and r(G) is the resistance of G.

Proof: By definition r(G) = max
x,y

(rxy). Let u and v be the vertices of G for which

rxy is maximum. Then r(G) = ruv. By Theorem 1.5, commute(u, v) = 2mruv. Hence
mruv = 1

2
commute(u, v). Clearly the commute time from u to v and back to u is less

than twice the max(huv, hvu) and max(huv, hvu) is clearly less than the cover time of G.
Putting these facts together

mr(G) = mruv = 1
2
commute(u, v) ≤ max(huv, hvu) ≤ cover(G).

For the second inequality in the theorem, by Theorem 1.5, for any x and y commute(x, y)
equals 2mrxy implying hxy ≤ 2mr(G). By the Markov inequality, since the expected value
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of hxy is less than 2mr(G), the probability that y is not reached from x in 2mr(G)e3 steps
is at most 1

e3
. Thus, the probability that a vertex y has not been reached in 2e3mr(G) log n

steps is at most 1
e3

lnn
= 1

n3 because a random walk of length 2e3mr(G) log n is a sequence
of log n independent random walks, each of length 2e3mr(G). Suppose after a walk of
2e3mr(G) log n steps, vertices v1, v2, . . . , vl where not reached. Walk until v1 is reached,
then v2, etc. By Corollary 1.6 the expected time for each of these is n3, but since each
happens only with probability 1/n3, we effectively take O(1) time per vi, for a total time
of at most n.

Return time

The return time is the expected time of a walk starting at x returning to x. We explore
this quantity later.

1.4 Random Walks in Euclidean Space

Many physical processes such as Brownian motion are modeled by random walks.
Random walks in Euclidean d-space consisting of fixed length steps parallel to the coor-
dinate axes are really random walks on a d-dimensional lattice and are a special case of
random walks on graphs. In a random walk on a graph, at each time unit an edge from
the current vertex is selected at random and the walk proceeds to the adjacent vertex.
We begin by studying random walks on lattices.

Random walks on lattices

We now apply the analogy between random walks and current to lattices. Consider
a random walk on a finite segment −n, . . . ,−1, 0, 1, 2, . . . , n of a one dimensional lattice
starting from the origin. Is the walk certain to return to the origin or is there some prob-
ability that it will escape, i.e., reach the boundary before returning? The probability of
reaching the boundary before returning to the origin is called the escape probability. We
shall be interested in this quantity as n goes to infinity.

Convert the lattice to an electrical network by replacing each edge with a one ohm
resister. Then the probability of a walk starting at the origin reaching n or –n before
returning to the origin is the escape probability given by

pescape =
ceff
ca

where ceff is the effective conductance between the origin and the boundary points and ca
is the sum of the conductance’s at the origin. In a d-dimensional lattice, ca = 2d assuming
that the resistors have value one. For the d-dimensional lattice

pescape =
1

2d reff
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(a)

4 12 20

0 1 2 3

Number of resistors
in parallel

(b)

Figure 1.2: 2-dimensional lattice along with the linear network resulting from shorting
resistors on the concentric squares about the origin.

In one dimension, the electrical network is just two series connections of n one ohm re-
sistors connected in parallel. So, reff goes to infinity and the escape probability goes to
zero as n goes to infinity. Thus, the walk in the unbounded one dimensional lattice will
return to the origin with probability one.

Two dimensions

For the 2-dimensional lattice, consider a larger and larger square about the origin for
the boundary as shown in Figure 1.2a and consider the limit of reff as the squares get
larger. Shorting the resistors on each square can only reduce reff . Shorting the resistors
results in the linear network shown in Figure 1.2b. As the paths get longer, the number of
resistors in parallel also increases. So the resistor between node i and i+ 1 is really made
up of O(i) unit resistors in parallel. The effective resistance of O(i) resistors in parallel is
1/O(i). Thus,

reff ≥ 1
4

+ 1
12

+ 1
20

+ · · · = 1
4
(1 + 1

3
+ 1

5
+ · · · ) = Θ(lnn).

Since the lower bound on the effective resistance goes to infinity, the escape probability
goes to zero for the 2-dimensional lattice.

Three dimensions

In three dimensions, the resistance along any path to infinity grows to infinity but the
number of paths in parallel also grows to infinity. It turns out that reff remains finite
and thus there is a nonzero escape probability.

16



Figure 1.3: Paths in a 2-dimensional lattice obtained from the 3-dimensional construction
applied in 2-dimensions.

The construction used in three dimensions is easier to explain first in two dimensions.
Draw dotted diagonal lines at x+ y = 2n−1. Consider two paths that start at the origin.
One goes up and the other goes to the right. Each time a path encounters a dotted
diagonal line, split the path into two, one which goes right and the other up. Where
two paths cross, split the vertex into two, keeping the paths separate. By a symmetry
argument, splitting the vertex does not change the resistance of the network. Remove
all resistors except those on these paths. The resistance of the original network is less
than that of the tree produced by this process since removing a resistor is equivalent to
increasing its resistance to infinity.

The distances between splits increase and are 1, 2, 4, etc. At each split the number of
paths in parallel doubles. Thus, the resistance to infinity in this two dimensional example
is

1

2
+

1

4
2 +

1

8
4 + · · · = 1

2
+

1

2
+

1

2
+ · · · =∞.

In the analogous three dimensional construction, paths go up, to the right, and out of
the plane of the paper. The paths split three ways at planes given by x+ y + z = 2n − 1.
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Each time the paths split the number of parallel segments triple. Segments of the paths
between splits are of length 1, 2, 4, etc. and the resistance of the segments are equal to
the lengths. The resistance out to infinity for the tree is

1
3

+ 1
9
2 + 1

27
4 + · · · = 1

3

(
1 + 2

3
+ 4

9
+ · · ·

)
= 1

3
1

1− 2
3

= 1

The resistance of the three dimensional lattice is less. Thus, in three dimensions the
escape probability is nonzero. The upper bound on reff gives the lower bound

pescape = 1
2d

1
reff
≥ 1

6
.

A lower bound on reff gives an upper bound on pescape. To get the upper bound on pescape,
short all resistors on surfaces of boxes at distances 1, 2, 3,, etc. Then

reff ≥ 1
6

[
1 + 1

9
+ 1

25
+ · · ·

]
≥ 1.23

6
≥ 0.2

This gives
pescape = 1

2d
1

reff
≥ 5

6
.

1.5 Random Walks on Directed Graphs

A major application of random walks on directed graphs comes from trying to establish
the importance of pages on the World Wide Web. One way to do this would be to take
a random walk on the web and rank pages according to their stationary probability.
However, several situations occur in random walks on directed graphs that did not arise
with undirected graphs. One difficulty occurs if there is a node with no out edges. In this
case, the directed graph is not strongly connected and so Markov chain is not strongly
connected either even though the underlying undirected graph may be connected. When
the walk encounters this node the walk disappears. Another difficulty is that a node or
a strongly connected component with no in edges is never reached. One way to resolve
these difficulties is to introduce a random restart condition. At each step, with some
probability r, jump to a node selected uniformly at random and with probability 1 − r
select an edge at random and follow it. If a node has no out edges, the value of r for that
node is set to one. This has the effect of converting the graph to a strongly connected
graph so that the stationary probabilities exist.

1.6 Finite Markov Processes

A Markov process is a random process in which the probability distribution for the
future behavior depends only on the current state, not on how the process arrived at
the current state. Markov processes are equivalent mathematically to random walks on
directed graphs but the literature on the two topics developed separately with different
terminology. Since much of the terminology of Markov processes appears in the literature
on random walks, we introduce the terminology here to acquaint the reader with it.
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A B C
(a)

A B C
(b)

Figure 1.4: (a) A directed graph with nodes with no out out edges and a strongly con-
nected component A with no in edges.
(b) A directed graph with three strongly connected components.

In a Markov process, nodes of the underlying graph are referred to as states. A state
is persistent if it has the property that should the state ever be reached, the random
process will return to it with probability one. This means that the state is in a strongly
connected component with no out edges. Consider the directed graph in Figure 1.4b with
three strongly connected components A, B, and C. Starting from any node in A there
is a nonzero probability of eventually reaching any node in A. However, the probability
of returning to a node in A is less than one and thus nodes in A and similarly nodes in
B are not persistent. From any node in C, the walk will return with probability one to
that node eventually since there is no way of leaving component C. Thus, nodes in C are
persistent.

A state is periodic if it is contained only in cycles in which the greatest common divisor
(gcd) of the cycle lengths is greater than one. A Markov process is irreducible if it consists
of a single strongly connected component. An ergodic state is one that is aperiodic and
persistent. A Markov process is ergodic if all states are ergodic. In graph theory this
corresponds to a single strongly connected component that is aperiodic.

Page rank and hitting time

The page rank of a node in a directed graph is the stationary probability of the node.
We assume some restart value, say r = 0.15, is used. The restart ensures that the graph
is strongly connected. The page rank of a page is the fractional frequency with which the
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0.85πi
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0.15πi

πi = πjpji + 0.85
2
πi

πi = 1.74(πjpji)

Figure 1.5: Impact on page rank of adding a self loop

page will be visited over a long period of time. If the page rank is p, then the expected
time between visits or return time is 1/p. Notice that one can increase the pagerank of a
page by reducing the return time and this can be done by creating short cycles.

Consider a node i with a single edge in from node j and a single edge out. The
stationary probability π satisfies πP = π, and thus

πi = πjpji.

Adding a self-loop at i, results in a new equation

= pii = πjpji +
1

2
πi

or
πi = 2 πjpji.

Of course, πj would have changed too, but ignoring this for now, pagerank is doubled by
the addition of a self-loop. Adding k self loops, results in the equation

πi = πjpji +
k

k + 1
πi,

and again ignoring the change in πj, we now have πi = (k + 1)πjpji. What prevents
one from increasing the page rank of a page arbitrarily? The answer is the restart. We
neglected the 0.15 probability that is taken off for the random restart. With the restart
taken into account, the equation for πi when there is no self-loop is

πi = 0.85πjpji

whereas, with k self-loops, the equation is

πi = 0.85πjpji + 0.85
k

k + 1
πi.

Adding a single loop only increases pagerank by a factor of 1.74 and adding k loops in-
creases it by at most a factor of 6.67 for arbitrarily large k.
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Hitting time

Related to page rank is a quantity called hitting time. Hitting time is closely related
to return time and thus to the reciprocal of page rank. One way to return to a node
v is by a path in the graph from v back to v. Another way is to start on a path that
encounters a restart, followed by a path from the random restart node to v. The time
to reach v after a restart is the hitting time. Thus, return time is clearly less than the
expected time until a restart plus hitting time. The fastest one could return would be if
there were only paths of length two since self loops are ignored in calculating page rank. If
r is the restart value, then the loop would be traversed with at most probability (1− r)2.
With probability r + (1− r) r = (2− r) r one restarts and then hits v. Thus, the return
time is at least (1− r)2 + (2− r) r × (hitting time). Combining these two bounds yields

(1− r)2 + (2− r) rE (hitting time) ≤ E (return time) ≤ E (hitting time)

The relationship between return time and hitting time can be used to see if a node has
unusually high probability of short loops. However, there is no efficient way to compute
hitting time for all nodes as there is for return time. For a single node v, one can compute
hitting time by removing the edges out of the node v for which one is computing hitting
time and then run the page rank algorithm for the new graph. The hitting time for v
is the reciprocal of the page rank in the graph with the edges out of v removed. Since
computing hitting time for each node requires removal of a different set of edges, the
algorithm only gives the hitting time for one node at a time. Since one is probably only
interested in the hitting time of nodes with low hitting time, an alternative would be to
use a random walk to estimate the hitting time of low hitting time nodes.

Spam

Suppose one has a web page and would like to increase its page rank by creating some
other web pages with pointers to the original page. The abstract problem is the following.
We are given a directed graph G and a node v whose page rank we want to increase. We
may add new nodes to the graph and add edges from v or from the new nodes to any
nodes we want. We cannot add edges out of other nodes. We can also delete edges from v.

The page rank of v is the stationary probability for node v with random restarts. If
we delete all existing edges out of v, create a new node u and edges (v, u) and (u, v),
then the page rank will be increased since any time the random walk reaches v it will
be captured in the loop v → u → v. A search engine can counter this strategy by more
frequent random restarts.

A second method to increase page rank would be to create a star consisting of the
node v at its center along with a large set of new nodes each with a directed edge to v.
These new nodes will sometimes be chosen as the target of the random restart and hence
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the nodes increase the probability of the random walk reaching v. This second method is
countered by reducing the frequency of random restarts.

Notice that the first technique of capturing the random walk increases page rank but
does not effect hitting time. One can negate the impact of someone capturing the random
walk on page rank by increasing the frequency of random restarts. The second technique
of creating a star increases page rank due to random restarts and decreases hitting time.
One can check if the page rank is high and hitting time is low in which case the page
rank is likely to have been artificially inflated by the page capturing the walk with short
cycles.

Personalized page rank

In computing page rank, one uses a restart probability, typically 0.15, in which at each
step, instead of taking a step in the graph, the walk goes to a node selected uniformly at
random. In personalized page rank, instead of selecting a node uniformly at random, one
selects a node according to a personalized probability distribution. Often the distribution
has probability one for a single node and whenever the walk restarts it restarts at that
node.

Algorithm for computing personalized page rank

First, consider the normal page rank. Let α be the restart probability with which
the random walk jumps to an arbitrary node. With probability 1 − α the random walk
selects a node uniformly at random from the set of adjacent nodes. Let p be a row vector
denoting the page rank and let G be the adjacency matrix with rows normalized to sum
to one. Then

p = α
n

(1, 1, . . . , 1) + (1− α) pG

p[I − (1− α)G] =
α

n
(1, 1, . . . , 1)

or
p = α

n
(1, 1, . . . , 1) [I − (1− α)G]−1.

Thus, in principle, p can be found by computing the inverse of [I − (1 − α)G]−1. But
this is far from practical since for the whole web one would be dealing with matrices with
billions of rows and columns. A more practical procedure is to run the random walk and
observe using the basics of the power method in Chapter ?? that the process converges
to the solution p.

For the personalized page rank, instead of restarting at an arbitrary vertex, the walk
restarts at a designated vertex. More generally, it may restart in some specified neighbor-
hood. Suppose the restart selects a vertex using the probability distribution s. Then, in
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the above calculation replace the vector 1
n

(1, 1, . . . , 1) by the vector s. Again, the compu-
tation could be done by a random walk. But, we wish to do the random walk calculation
for personalized pagerank quickly since it is to be performed repeatedly. With more care
this can be done, though we do not describe it here.

1.7 Markov Chain Monte Carlo

The Markov Chain Monte Carlo method is a technique for sampling a multivariate
probability distribution p(x), where x = (x1, x2, . . . , xd) is the set of variables. Given the
probability distribution p (x), one might wish to calculate the marginal distribution

p (x1) =
∑

x2,...,xd

p (x1, . . . , xd)

or the expectation of some functionf (x)

E (f) =
∑

x1,...,xd

f (x1, . . . , xd) p (x1, . . . , xd).

The difficulty is that both computations require a summation over an exponential number
of values. If each xi can take on a value from the set {1, 2, . . . , n} of values, then there
are nd possible values for x. One could compute an approximate answer by generating
a sample set of values for x = (x1, . . . , xd) according to the distribution p (x1, . . . , xd).
This is done by designing a Markov chain whose stationary probabilities are exactly
p(x1, x2, . . . , xd) and running the chain for a sufficiently large number of steps and aver-
aging f over the states seen in the run. The number of steps must be large enough that
we are close to the limit which is the stationary distribution. In the rest of this section,
we will show that under some mild conditions, the number of steps needed grows only
polynomially, though the total number of states grows exponentially with d.

For ease of explanation, assume that the variables take on values from some finite
set. Create a directed graph with one node corresponding to each possible value of x. A
random walk on the the graph is designed so that the stationary probability of the walk is
p(x). The walk is designed by specifying the probability of the transition from one node
to another in such a way as to achieve the desired stationary distribution. Two common
techniques for designing the walks are the Metropolis-Hasting algorithm and Gibbs sam-
pling. We will see that the sequence of nodes after a sufficient number of steps of the walk
provides a good sample of the distribution. The number of steps the walk needs to take
depends on its convergence rate to its stationary distribution. We will show that this rate
is related to a natural quantity called the minimum escape probability (MEP).

We used x ∈ Rd to emphasize that our distributions are multi-variate. From a Markov
chain perspective, each value x can take on is a state, i.e., a node of the graph on which
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the random walk takes place. Henceforth, we will use the subscripts i, j, k, . . . to denote
states and will use pi instead of p(x1, x2, . . . , xd) to denote the probability of the state
corresponding to a given set of values for the variables. Recall that in the Markov chain
terminology, nodes of the graph are called states.

Recall the notation that p(t) is the row vector of probabilities of the random walk
being at each state (node of the graph) at time t. So, p(t) has as many components as

there are states and its ith component, p
(t)
i , is the probability of being in state i at time

t. Recall the long-term (t-step) average is

a(t) =
1

t

[
p(0) + p(1) + · · ·+ p(t−1)

]
. (1.3)

The expected value of the function f under the probability distribution p is E(f) =∑
i fipi. Our estimate of this quantity will be the average value of f at the states seen in

a t step run. Call this estimate a. Clearly, the expected value of a is

E(a) =
∑
i

fia
(t)
i .

The expectation here is with respect to the “coin tosses” of the algorithm, not with respect
to the underlying distribution p. Letting fmax denote the maximum absolute value of f .
It is easy to see that∣∣∣∣∣E(a)−

∑
i

fipi

∣∣∣∣∣ ≤ fmax

∑
i

|pi − a(t)
i | = fmax|p− a(t)|1 (1.4)

where the quantity |p − a(t)|1 is the l1 distance between the probability distributions p
and a(t) and is often called the “total variation distance” between the distributions. We
will build tools to upper bound |p− a(t)|1. Since p is the steady state distribution, the t
for which |p−a(t)|1 becomes small is determined by the rate of convergence of the Markov
chain to its steady state.

The following proposition is often useful.

Proposition 1.9 For two probability distributions p and q, |p− q|1 = 2
∑

i(pi − qi)+ =
2
∑

i(qi − pi)+.

The proof is left as an exercise (Exercise 1.34).

1.7.1 Time Reversibility

Definition: A Markov chain is said to be time-reversible if for the steady state proba-
bilities π, πipij = πjpji for all i and j.
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The phrase “time-reversible” comes from the following fact. For a time-reversible Markov
chain started in the steady state, the probability of a path (sequence of states) is the same
as its reversal. That is

πi1 pi1,i2pi2,i3 · · · pik−1,ik = πik pik,ik−1
pik−1,ik−2

· · · pi2,i1 .

Given only the sequence of states seen, one cannot tell if time runs forward or backward,
both having the same probability. More important is the fact that time reversibility
simplifies the underlying mathematics as illustrated in the following lemma. The lemma
states that if a probability distribution q has the property that the probability of traversing
each edge is the same in both directions, then the probability distribution must be the
steady state distribution of the Markov chain. The lemma is used frequently.

Lemma 1.10 In a strongly connected Markov chain with transition probabilities pij, if a
vector q with non-negative components satisfies

qipij = qjpji

for all i and j, then qi/
∑
k

qk is the stationary probability of node i.

Proof: Since the chain is strongly connected, there is a unique stationary probability
vector π satisfying the equations πP = π and

∑
i πi = 1. Now q/

∑
k qk satisfies these

equations since
∑

i qi/
∑

k qk = 1 and for each fixed j,
∑

i qipij =
∑

i qjpji = qj
∑

i pji = qj.
Thus q must be the steady state distribution.

1.7.2 Metropolis-Hasting Algorithm

Metropolis-Hasting algorithm is a general method to design a Markov chain whose
stationary distribution is a given target distribution p. Start with a connected undirected
graphG on the set of states. For example, if the states are the lattice points (x1, x2, . . . , xd)
in Rd with {xi ∈ {0, 1, 2, , . . . , n}}, then G is the lattice graph with 2d coordinate edges
at each interior vertex. In general, let r be the maximum degree of any node of G. The
transitions of the Markov chain are defined as follows. At state i select neighbor j with
probability 1

r
. Since the degree of i may be less than r, with some probability no edge

is selected and the walk remains at i. If a neighbor j is selected and pj ≥ pi, go to j. If
pj < pi, go to j with probability pj/pi and stay at i with probability 1− pj

pi
. Intuitively, this

favors “heavier” states with higher p values. For i and j adjacent in G, pij = 1
r

min
(

1,
pj
pi

)
and pii = 1−

∑
j 6=i

pij. Then

pipij =
pi
r

min

(
1,
pj
pi

)
=

1

r
min(pi, pj) =

pj
d

min

(
1,
pi
pj

)
= pjpji.

By Lemma 1.10, the stationary probabilities are p(x) as desired.
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3
− 1

3
− 1

3
= 0

b→ a 1
3

d→ a 1
3

b→ c 1
3

1
8

4
1

= 1
6

d→ c 1
3

b→ b 1− 1
3
− 1

6
= 1

2
d→ d 1− 1

3
− 1

3
= 1

3

p(a) = p(a)p(a→ a) + p(b)p(b→ a) + p(c)p(c→ a) + P (d)p(d→ a)
= 1

2
2
3

+ 1
4

1
3

+ 1
8

1
3

+ 1
8

1
3

= 1
2

p(b) = p(a)p(a→ b) + p(b)p(b→ b) + p(c)p(c→ b)
= 1

2
1
6

+ 1
4

1
2

+ 1
8

1
3

= 1
4

p(c) = p(a)p(a→ c) + p(b)p(b→ c) + p(c)p(c→ c) + P (d)p(d→ c)
= 1

2
1
12

+ 1
4

1
6

+ 1
8

0 + 1
8

1
3

= 1
8

p(d) = p(a)p(a→ d) + p(c)p(c→ d) + P (d)p(d→ d)
= 1

2
1
12

+ 1
8

1
3

+ 1
8

1
3

= 1
8

Figure 1.6: Using the Metropolis-Hasting algorithm to set probabilities for a random walk
so that the stationary probability will be a desired probability.

Example: Consider the graph in Figure 1.6. Using the Metropolis-Hasting algorithm,
assign transition probabilities so that the stationary probability of a random walk is
p(a) = 1

2
, p(b) = 1

4
, p(c) = 1

8
, and p(d) = 1

8
. The maximum degree of any vertex is three

so at a the probability of taking the edge (a, b) is 1
3

1
4

2
1

or 1
6
. The probability of taking the

edge (a, c) is 1
3

1
8

2
1

or 1
12

and of taking the edge (a, d) is 1
3

1
8

2
1

or 1
12

. Thus the probability
of staying at a is 2

3
. The probability of taking the edge from b to a is 1

3
. The probability

of taking the edge from c to a is 1
3

and the probability of taking the edge from d to a
is 1

3
. Thus the stationary probability of a is 1

4
1
3

+ 1
8

1
3

+ 1
8

1
3

+ 1
2

2
3

= 1
2
, which is what is

desired.

1.7.3 Gibbs Sampling

Gibbs sampling is another Markov Chain Monte Carlo method to sample from a
multivariate probability distribution. Let p (x) be the target distribution where x =
(x1, . . . , xd). Gibbs sampling consists of a random walk on a graph whose vertices corre-
spond to the values of x = (x1, . . . , xd) and in which there is an edge from x to y if x and
y differ in only one coordinate.
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To generate samples of x = (x1, . . . , xd) with a target distribution p (x), the Gibbs
sampling algorithm repeats the following steps. One of the variables xi is chosen to be
updated. Its new value is chosen based on the marginal probability of xi with the other
variables fixed. There are two commonly used schemes to determine which xi to update.
One scheme is to choose xi randomly, the other is to choose xi by sequentially scanning
from x1 to xd.

Suppose that x and y are two states that differ in only one coordinate xi. Then, in
the scheme where a coordinate is randomly chosen to modify, the probability pxy of going
from x to y is

pxy =
1

d
p(yi|x1, x2, . . . , xi−1, xi+1, . . . , xd).

The normalizing constant is 1/d since for a given value i the probability distribution of
p(yi|x1, x2, . . . , xi−1, xi+1, . . . , xd) sums to one, and thus summing i over the d-dimensions
results in a value of d. Similarly,

pyx =
1

d
p(xi|x1, x2, . . . , xi−1, xi+1, . . . , xd).

Here use was made of the fact that for j 6= i, xj = yj.

It is simple to see that this chain is time reversible with stationary probability pro-
portional to p (x). Rewrite pxy as

pxy =
1

d

p(yi|x1, x2, . . . , xi−1, xi+1, . . . , xd)p(x1, x2, . . . , xi−1, xi+1, . . . , xd)

p(x1, x2, . . . , xi−1, xi+1, . . . , xd)

=
1

d

p(x1, x2, . . . , xi−1, yi, xi+1, . . . , xd)

p(x1, x2, . . . , xi−1, xi+1, . . . , xd)

=
1

d

p(y)

p(x1, x2, . . . , xi−1, xi+1, . . . , xd)

again using xj = yj for j 6= i. Similarly write

pyx =
1

d

p(x)

p(x1, x2, . . . , xi−1, xi+1, . . . , xd)

from which it follows that p(x)pxy = p(y)pyx. By Lemma 1.10 the stationary probability
of the random walk is p(x).

1.8 Convergence to Steady State

The Metropolis-Hasting algorithm and Gibbs sampling both involve a random walk.
Initial states of the walk are highly dependent on the start state of the walk. An impor-
tant question is how fast does the walk start to reflect the stationary probability of the
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Figure 1.7: A constriction.

Markov process. If the convergence time was proportional to the number of states the
algorithms would not be very useful, since as we remarked, the number of states can be
exponentially large.

There are clear examples of connected chains that take a long time to converge. A
chain with a constriction (see Figure 1.7) takes a long time to converge since the walk is
unlikely to reach the narrow passage between the two halves, which are both reasonably
big. The interesting thing is that a converse is also true. If there is no constriction, then
the chain converges fast. We show this shortly.

A function is unimodal if it has a single maximum, i.e., it increases and then decreases..
A unimodal function like the normal density has no constriction blocking a random walk
from getting out of a large set, whereas a bimodal function can have a constriction.
Interestingly, many common multivariate distributions as well as univariate probability
distributions like the normal and exponential are unimodal and sampling according to
these distributions can be done using the methods here.

A natural problem is estimating the probability of a convex region in d-space according
to a normal distribution. Let R be the region defined by the inequality x1+x2+· · ·+xd/2 ≤
x(d/2)+1 + · · ·+xd. Pick a sample according to the normal distribution and accept the sam-
ple if it satisfies the inequality. If not, reject the sample and retry until one gets a number
of samples satisfying the inequality. Then the probability of the region is approximated
by the fraction of the samples that satisfied the inequality. However, suppose R was the
region x1 + x2 + · · · + xd−1 ≤ xd. The probability of this region is exponentially small
in d and so rejection sampling runs into the problem that we need to pick exponentially
many samples before we expect to accept even one sample. This second situation is typ-
ical. Imagine computing the probability of failure of a system. The object of design is to
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Figure 1.8: Area enclosed by curve.

make the system reliable, so the failure probability is likely to be very low and rejection
sampling will take a long time to estimate the failure probability.

A similar problem is one of computing areas and volumes. First consider the problem
of computing the area enclosed by the curve in Figure 1.8. One method would be to find a
“nicer” enclosing shape. The picture on the right shows a convex polygon whose area we
can compute in closed form by adding up the areas of the triangles. Throw darts at the
larger shape, i.e., pick samples uniformly at random from the larger shape, and estimate
the ratio of areas by the proportion of samples that land in the area enclosed by the curve.

Such methods fail in higher dimensions. For example, to compute the volume of a
d-dimensional sphere by enclosing the sphere in a cube where the ratio of volume of the
sphere to the cube is exponentially small, requires throwing exponentially many darts
before getting any nonzero answer.

A different way to solve the problem of drawing a uniform random sample from a
d-dimensional region is to put a grid on the region and do a random walk on the grid
points. At each time, pick one of the 2d coordinate neighbors of the current grid point,
each with probability 1/(2d), then go to the neighbor if it is still in the set; otherwise, stay
put and repeat. This can be shown to lead to a polynomial time algorithm for drawing a
uniform random sample from a bounded convex d-dimensional region. It turns out that
this can be used to estimate volumes of such a region by immersing the region in a magni-
fied copy of itself intersected with a nice object like a cube. We do not give the details here.

In general, there could be constrictions that prevent rapid convergence to the station-
ary probability. However, if the set is convex in any number of dimensions, then there are
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S S̄

Figure 1.9: Each grid point in the ellipse is a state. The set of states in the ellipse
is divided into two sets, S and S̄, by the curve. The transitions from S to S̄, which
contribute to Φ(S), are marked with arrows.

no constrictions and there is rapid convergence although the proof of this is beyond the
scope of this book.

Suppose q is any probability distribution on the states. Execute one step of the Markov
chain starting with distribution q. Then the amount of probability that “flows” from i to
j is qipji. If S and T are two possibly intersecting subsets of states, the total flow from S
to T is

∑
i∈S,j∈T

qipij. We use the notation

flow(i, j) = qipij

and
flow(S, T )) =

∑
i∈S,j∈T

qipij.

We define below a combinatorial measure of constriction for a Markov chain, called the
minimum escape probability, and relate this quantity to the rate of convergence to the
stationarity probability.1

1In the Markov Chain literature, the word “conductance” is often used for minimum escape probability.
Here, we have reserved the word conductance for the natural electrical quantity which is the reciprocal
of resistance.
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Definition: For a subset S of states of a Markov chain with stationary probabilities π,
define Φ(S), the escape probability of S, by

Φ(S) =
flow(S, S̄)

π(S)
.

The escape probability of S is the probability of taking a step from S to outside S
conditioned on starting in S where the stationary probability at state i in S is proportional
to its stationary probability, i.e., πi/π(S). The minimum escape probability MEP of the
Markov chain, denoted Φ, is defined by

Φ = min
S

π(S)≤1/2

Φ(S).

The restriction to sets with π ≤ 1/2 in the definition of φ is natural. One does not need
to escape from big sets. Note that a constriction would mean a small Φ.

Definition: Fix an ε > 0. The ε-mixing time of a Markov chain is the minimum integer
t such that for any starting distribution p(0), the 1-norm distance between the t-step
running average probability distribution a(t) and the stationary distribution is at most
ε.

The theorem below states that if the minimum escape probability Φ is large, then
there is fast convergence of the running average probability. Intuitively, if Φ is large then
the walk rapidly leaves any subset of states. Later we will see examples where the mixing
time is much smaller than the cover time. That is, the number of steps before a random
walk reaches a random state independent of its starting state is much smaller than the
average number of steps needed to reach every state. We assume time reversibility, namely
that πipij = πjpji.

Theorem 1.11 The ε mixing time of a time-reversible Markov chain is

O

(
ln(1/πmin)

Φ2ε3

)
.

Proof: Recall that a(t) is the long term average probability distribution. Let

t =
c ln(1/πmin)

Φ2ε2
,

for a suitable constant c. For convenience, let a = a(t). We need to show that |a− π| ≤ ε.

Let vi denote the ratio of the long term average probability at time t divided by the
stationary probability. Thus vi = ai

πi
. Renumber states so that v1 ≤ v2 ≤ · · · . Since
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aP is the probability vector after executing one step of the Markov chain starting with
probabilities a, a− aP is the net loss of probability due to the step. Let k be any integer
with vk > 1. Let A = {1, 2, . . . , k}. The net loss of probability from the set A in one step
is
∑k

i=1(ai − (aP )i) ≤ 2
t

as in the proof of Theorem 1.1.

Another way to reckon the net loss of probability from A is to take the difference of
the probability flow from A to Ā and the flow from Ā to A. By time-reversibility, for
i < j,

flow(i, j)− flow(j, i) = πipijvi − πjpjivj = πjpji(vi − vj) ≥ 0,

Thus for any l ≥ k, the flow from A to {k + 1, k + 2, . . . , l} minus the flow from {k +
1, k + 2, . . . , l} is non-negative. The net loss from A is at least∑

i≤k
j>l

πjpji(vi − vj) ≥ (vk − vl+1)
∑
i≤k
j>l

πjpji.

Thus,

(vk − vl+1)
∑
i≤k

j>l

πjpji ≤
2

t
.

If π({i|vi ≤ 1}) ≤ ε/2, then

|a− π|1 = 2
∑
i

vi≤1

(1− vi)πi ≤ ε,

so we are done. Assume π({i|vi ≤ 1}) > ε/2 so that π(A) ≥ εmin(π(A), π(Ā))/2. Choose
l to be the largest integer greater than or equal to k so that

∑l
j=k+1 πj ≤ εΦπ(A)/2. Since

k∑
i=1

l∑
j=k+1

πjpji ≤
l∑

j=k+1

πj ≤ εΦπ(A)/2

by the definition of MEP,∑
i≤k<j

πjpji ≥ Φ min(π(A), π(Ā)) ≥ εΦπ(A).

Thus
∑
i≤k
j>l

πjpji ≥ εΦπ(A)/2 and substituting into the above inequality gives

vk − vl+1 ≤
8

tεΦπ(A)
. (1.5)

Now, divide {1, 2, . . .} into groups as follows. The first group G1 is {1}. In general, if the
rth group Gr begins with state k, the next group Gr+1 begins with state l + 1 where l is

32



as defined above. Let i0 be the largest integer with vi0 > 1. Stop with Gm, if Gm+1 would
begin with an i > i0. If group Gr begins in i, define ur = vi. Let ρ = 1 + εΦ

2
.

|a− π|1 ≤ 2

i0∑
i=1

πi(vi − 1) ≤
m∑
r=1

π(Gr)(ur − 1) =
m∑
r=1

π(G1 ∪G2 ∪ . . . ∪Gr)(ur − ur+1),

where the analog of integration by parts (for sums) is used in the last step and used the
convention that um+1 = 1. Since ur − ur+1 ≤ 8/εΦπ(G1 ∪ . . . ∪ Gr), the sum is at most
8m/tεΦ. Since π1 + π2 + · · ·+ πl+1 ≥ ρ(π1 + π2 + · · ·+ πk),

m ≤ lnρ(1/π1) ≤ ln(1/π1)/(ρ− 1).

Thus |a− π|1 ≤ O(ln(1/πmin)/tΦ2ε2) ≤ ε for a suitable choice of c and this completes
the proof.

1.8.1 Using Minimum Escape Probability to Prove Convergence

We now give some examples where Theorem 1.11 is used to bound the minimum
escape probability and hence show rapid convergence. For the first example, consider a
random walk on an undirected graph consisting of an n-vertex path with self-loops at
the both ends. With the self loops, the stationary probability is a uniform 1

n
over all

vertices. The set with minimum escape probability consists of the first n/2 vertices, for
which flow(S, S̄) = πn/2pn/2,1+n/2 = Ω( 1

n
) and π(S) = 1

2
. Thus

Φ(S) =
flow(S, S̄)

π(S)
= 2πn

2
pn

2
,n
2

+1 = Ω(1/n).

By Theorem 1.11, for ε a constant such as 1/100, after O(n2 log n) steps, |a(t) − π|1 ≤
1/100. For this graph, the hitting time and the cover time are O(n2). In many interesting
cases, the mixing time may be much smaller than the cover time. We will see such an
example later.

For the second example, consider the n × n lattice in the plane where from each
point there is a transition to each of the coordinate neighbors with probability 1/4. At the
boundary there are self-loops with probability 1-(number of neighbors)/4. It is easy to see
that the chain is connected. Since pij = pji, the function fi = 1/n2 satisfies fipij = fjpji
and by Lemma 1.10 is the stationary probability. Consider any subset S consisting of at
most half the states. For at least half the states (x, y) in S, (each state is indexed by its
x and y coordinate), either row x or column y intersects S̄ (Exercise 1.35). Each state in
S adjacent to a state in S̄ contributes Ω(1/n2) to the flow(S, S̄). Thus,

flow(S, S̄) =
∑
i∈S

∑
j /∈S

πipij ≥
π(S)

2

1

n2
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establishing that

Φ =
flow(S, S̄)

π(S)
≥ 1

2n
.

By Theorem 1.11, after O(n2 lnn/ε2) steps, |a(t) − π|1 ≤ 1/100.

Next consider the n × n × n · · · × n grid in d-dimensions with a self-loop at each
boundary point with probability 1 − (number of neighbors)/2d. The self loops make all
πi equal to n−d. View the grid as an undirected graph and consider the random walk on
this undirected graph. Since there are nd states, the cover time is at least nd and thus
exponentially dependent on d. It is possible to show (Exercise 1.49) that MEP is Ω(1/dn).
Since all πi are equal to n−d, the mixing time is O(d3n2 lnn/ε2), which is polynomially
bounded in n and d.

Next consider a random walk on a connected n vertex undirected graph where at each
vertex all edges are equally likely. The stationary probability of a vertex equals the degree
of the vertex divided by the sum of degrees which equals twice the number of edges. The
sum of the vertex degrees is at most n2 and thus, the steady state probability of each
vertex is at least 1

n2 . Since the degree of a vertex is at most n, the probability of each
edge at a vertex is at least 1

n
. For any S,

flow(S, S̄) ≥ 1

n2

1

n
=

1

n3
.

Thus the minimum escape probability is at least 1
n3 . Since πmin ≥ 1

n2 , ln 1
πmin

= O(lnn).

Thus, the mixing time is O(n6(lnn)/ε2).

For our final example, consider the interval [−1, 1]. Let δ be a “grid size” speci-
fied later and let G be the graph consisting of a path on the 2

δ
+ 1 vertices {−1,−1 +

δ,−1 + 2δ, . . . , 1 − δ, 1} having self loops at the two ends. Let πx = ce−αx
2

for x ∈
{−1,−1+δ,−1+2δ, . . . , 1−δ, 1} where α > 1 and c has been adjusted so that

∑
x πx = 1.

We now describe a simple Markov chain with the πx as its stationary probability and
argue its fast convergence. With the Metropolis-Hastings’ construction, the transition
probabilities are

px,x+δ =
1

2
min

(
1,
e−α(x+δ)2

e−αx2

)
and px,x−δ =

1

2
min

(
1,
e−α(x−δ)2

e−αx2

)
.

Let S be any subset of states with π(S) ≤ 1
2
. Consider the case when S is an interval
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[kδ, 1] for k ≥ 1. It is easy to see that

π(S) ≤
∫ ∞
x=(k−1)δ

ce−αx
2

dx

≤
∫ ∞

(k−1)δ

x

(k − 1)δ
ce−αx

2

dx

= O

(
ce−α((k−1)δ)2

α(k − 1)δ

)
.

Now there is only one edge from S to S̄ and

flow(S, S̄) =
∑
i∈S

∑
j /∈S

πipij = πkδpkδ,(k−1)δ = min(ce−αk
2δ2 , ce−α(k−1)2δ2) = ce−αk

2δ2 .

Using 1 ≤ k ≤ 1/δ and α ≥ 1, the minimum escape probability of S is

Φ(S) =
flow(S, S̄)

π(S)
≥ ce−αk

2δ2 α(k − 1)δ

ce−α((k−1)δ)2

≥ Ω(α(k − 1)δe−αδ
2(2k−1)) ≥ Ω(δe−O(αδ)).

For δ < 1
α

, we have αδ < 1, so e−O(αδ) = Ω(1), thus, Φ(S) ≥ Ω(δ). Now, πmin ≥ ce−α ≥
e−1/δ, so ln(1/πmin) ≤ 1/δ.

If S is not an interval of the form [k, 1] or [−1, k], then the situation is only better
since there is more than one “boundary” point which contributes to flow(S, S̄). We do
not present this argument here. By Theorem 1.11 in Ω(1/δ3ε2) steps, a walk gets within
ε of the steady state distribution.

In these examples, we have chosen simple probability distributions. The methods ex-
tend to more complex situations.

1.9 Bibliographic Notes

The material on the analogy between random walks on undirected graphs and electrical
networks is from [?] as is the material on random walks in Euclidean space. Additional
material on Markov Chains can be found in [?], [?], and [?]. For material on Markov
Chain Monte Carlo methods see [?] and [?].

The use of Minimum Escape Probability (also called conductance) to prove conver-
gence of Markov Chains is by Sinclair and Jerrum, [?] and Alon [?]. A polynomial time
bounded Markov Chain based method for estimating the volume of convex sets was de-
veloped by Dyer, Frieze and Kannan [?].
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Figure 1.10: An electrical network of resistors.

1.10 Exercises

Exercise 1.1

a Give an example of a graph, with cycles of more than one length, for which the
greatest common divisor of all cycle lengths is three.

b Prove that a graph is bipartite if and only if it has no odd length cycle.

c Show that for the random walk on a bipartite graph (with any edge weights), the
steady state probabilities do not exist.

Exercise 1.2

(a) What is the set of possible harmonic functions on a graph if there are only interior
vertices and no boundary vertices that supply the boundary condition?

(b) Let qx be the steady state probability of vertex x in a random walk on an undirected
graph and let dx be the degree of vertex x. Show that qx

dx
is a harmonic function.

(c) If there are multiple harmonic functions when there are no boundary conditions why
is the steady state probability of a random walk on an undirected graph unique?

(d) What is the steady state probability of a random walk on an undirected graph?

Exercise 1.3 Consider the electrical resistive network in Figure 1.10 consisting of ver-
tices connected by resistors. Kirchoff’s law states that the currents at each node sum to
zero. Ohm’s law states that the voltage across a resistor equals the product of the resis-
tance times the current through it. Using these laws calculate the effective resistance of
the network.

Solution:
(r1+r3)r2
r1+r2+r3
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Figure 1.11: An electrical network of resistors.

Exercise 1.4 Given a graph consisting of a single path of five vertices numbered 1 to 5,
what is the probability of reaching vertex 1 before vertex 5 when starting at vertex 4.

Exercise 1.5 Consider the electrical network of Figure 1.11.

(a) Set the voltage at a to one and at b to zero. What are the voltages at c and d?

(b) What is the current in the edges a to c, a to d, c to d. c to b and d to b?

(c) What is the effective resistance between a and b?

(d) Convert the electrical network to a graph. What are the edge probabilities at each
vertex?

(e) What is the probability of a walk starting at c reaching a before b? a walk starting at
d?

(f) How frequently does a walk from a to b go through the edge from c to d?

(g) What is the probability that a random walk starting at a will return to a before reaching
b?

Exercise 1.6 Prove that the escape probability pescape =
ceff
ca

must be less than or equal
to one.

Exercise 1.7 Prove that reducing the value of a resistor in a network cannot increase
the effective resistance. Prove that increasing the value of a resistor cannot decrease the
effective resistance.

Exercise 1.8 The energy dissipated by the resistance of edge xy in an electrical network is
given by i2xyrxy. The total energy dissipation in the network is E = 1

2

∑
x,y

i2xyrxy where the 1
2

accounts for the fact that the dissipation in each edge is counted twice in the summation.
Show that the actual current distribution is that distribution satisfying Ohm’s law that
minimizes energy dissipation.
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u u uv v v

Figure 1.12: Three graphs

u v

Figure 1.13: A graph consisting of a circle of edges along with a path of length m

Exercise 1.9 What is the hitting time huv for two adjacent vertices on a cycle of length
n? What is the hitting time if the edge (u, v) is removed?

Exercise 1.10 What is the hitting time huv for the three graphs if Figure 1.14.

Exercise 1.11 Consider the n node connected graph shown in Figure 1.13 consisting of
an edge (u, v) plus a connected graph on n− 1 vertices and some number of edges. Prove
that huv = 2m− 1 where m is the number of edges in the n− 1 vertex subgraph.

Exercise 1.12 What is the most general solution to the difference equation t(i + 2) −
5t(i + 1) + 6t(i) = 0/ How many boundary conditions do you need to make the solution
unique?

Exercise 1.13 Given the difference equation akt(i+k) +at(i+k− 1) + · · ·+a1t(i+ 1) +
a0t(i) = 0 the polynomial akt

k + ak−it
k−1 + · · · + a1t + a0 = 0 is called the characteristic

polynomial.

(a) If the equation has a set of r distinct roots, what is the most general form of the
solution?

(b) If the roots of the characteristic polynomial are not unique what is the most general
form of the solution?

(c) What is the dimension of the solution spaced?
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Figure 1.14: Three graph

(d) If the difference equation is not homogeneous and f(i) is a specific solution to the non
homogeneous difference equation, what is the full set of solutions to the difference
equation?

Exercise 1.14 Consider the set of integers {1, 2, . . . , n}. How many draws d with re-
placement are necessary so that every integer is drawn?

Exercise 1.15 Consider a random walk on a clique of size n. What is the expected
number of steps before a given vertex is reached?

Solution:
1
n

+ 2 1
n
(1− 1

n
) + 3 1

n
(1− 1

n

2
) + · · ·

= 1
n
(1− 1

n
)
[
1 + 2(1− 1

n
) + 3(1− 1

n
)2 + · · ·

= 1
n

[
1
n

1−(1− 1
n

)2

]
= 1

n

1− 1
n

( 1
n

)2

n−1

Exercise 1.16 Show that adding an edge can either increase or decrease hitting time by
calculating h24 for the three graphs in figure 1.14.

Exercise 1.17 Show that adding an edge to a graph can either increase or decrease com-
mute time.

Exercise 1.18 Prove that two independent random walks on a two dimensional lattice
will hit with probability one.

Exercise 1.19 Consider the lattice in 2-dimensions. In each square add the two diagonal
edges. What is the escape probability for the resulting graph?
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Exercise 1.20 Determine by simulation the escape probability for the 3-dimensional lat-
tice.

Exercise 1.21 What is the escape probability for a random walk starting at the root of a
binary tree?

Exercise 1.22 Consider a random walk on the positive half line, that is the integers
1, 2, 3, . . .. At the origin, always move right one step. At all other integers move right
with probability 2/3 and left with probability 1/3. What is the escape probability?

Exercise 1.23 What is the probability of returning to the start vertex on a random walk
on an infinite planar graph?

Exercise 1.24 Create a model for a graph similar to a 3-dimensional lattice in the way
that a planar graph is similar to a 2-dimensional lattice. What is probability of returning
to the start vertex in your model?

Exercise 1.25 Consider a strongly connected directed graph. In the steady state calculate
the flow through each edge of a random walk.

Exercise 1.26 Create a random directed graph with 200 nodes and roughly eight edges
per node. Add k new nodes and calculate the page rank with and without directed edges
from the k added nodes to node 1. How much does adding the k edges change the page
rank of nodes for various values of k and restart frequency? How much does adding a loop
at node 1 change the page rank? To do the experiment carefully one needs to consider the
page rank of a node to which the star is attached. If it has low page rank its page rank is
likely to increase a lot.

Exercise 1.27 Repeat the experiment in Exercise 1.26 for hitting time.

Exercise 1.28 Search engines ignore self loops in calculating page rank. Thus, to increase
page rank one needs to resort to loops of length two. By how much can you increase the
page rank of a page by adding a number of loops of length two?

Exercise 1.29 Can one increase the page rank of a node v in a directed graph by doing
something some distance from v? The answer is yes if there is a long narrow chain of
nodes into v with no edges leaving the chain. What if there is no such chain?

Exercise 1.30 Consider modifying personal page rank as follows. Start with the uniform
restart distribution and calculate the steady state probabilities. Then run the personalized
page rank algorithm using the steady state distribution calculated instead of the uniform
distribution. Keep repeating until the process converges. That is, we get a steady state
probability distribution such that if we use the steady state probability distribution for the
restart distribution we will get the steady state probability distribution back. Does this
process converge? What is the resulting distribution? What distribution do we get for the
graph consisting of two vertices u and v with a single edge from u to v?
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Exercise 1.31

(a) What is the hitting time for a vertex in a complete directed graph with self loops?

(b) What is the hitting time for a vertex in a directed cycle with n nodes?

Exercise 1.32 Using a web browser bring up a web page and look at the source html.
How would you extract the url’s of all hyperlinks on the page if you were doing a crawl
of the web? With Internet Explorer click on “source” under “view” to access the html
representation of the web page. With Firefox click on “page source” under “view”.

Exercise 1.33 Sketch an algorithm to crawl the World Wide Web. There is a time delay
between the time you seek a page and the time you get it. Thus, you cannot wait until the
page arrives before starting another fetch. There are conventions that must be obeyed if
one were to actually do a search. Sites specify information has to how long or which files
can be searched. Do not attempt an actual search without guidance from a knowledgeable
person.

Exercise 1.34 Prove Proposition 1.9 that for two probability distributions p,q, |p−q|1 =
2
∑

i(pi − qi)+.

Exercise 1.35 Suppose S is a subset of at most n2/2 points in the n × n lattice. Show
that

|{(i, j) ∈ S : row i, col. j ⊆ S}| ≤ |S|/2.

Exercise 1.36 Show that the steady state probabilities of the chain described in the Gibbs
sampler is the correct p.

Exercise 1.37 A Markov chain is said to be symmetric if for all i and j, pij = pji. What
is the steady state distribution of a connected aperiodic symmetric chain? Prove your
answer.

Exercise 1.38 How would you integrate a multivariate polynomial distribution over some
region?

Exercise 1.39 Given a time-reversible Markov chain, modify the chain as follows. At
the current state, stay put (no move) with probability 1/2. With the other probability 1/2,
move as in the old chain. Show that the new chain has the same steady state. What
happens to the convergence time in this modification?

Exercise 1.40 Using the Metropolis-Hasting Algorithm create a Markov chain whose sta-
tionary probability is that given in the following table.

x1x2 00 01 02 10 11 12 20 21 22
Prob 1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8 1/16
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Exercise 1.41 Let p be a probability vector (nonnegative components adding up to 1) on
the vertices of a connected, aperiodic graph. Set pij (the transition probability from i to j)
to pj for all i 6= j which are adjacent in the graph. Show that the steady state probability
vector for the chain is p. Is running this chain an efficient way to sample according to a
distribution close to p? Think, for example, of the graph G being the n × n × n × · · ·n
grid.

Exercise 1.42 Construct the edge probability for a three state Markov chain so that the
steady state probability is

(
1
2
, 1

3
, 1

6

)
.

Exercise 1.43 Consider a three state Markov chain with steady state probability
(

1
2
, 1

3
, 1

6

)
.

Consider the Metropolis-Hastings algorithm with G the complete graph on these three
nodes. What is the expected probability that we would actually make a move along a
selected edge?

Exercise 1.44 Try Gibbs sampling on p (x) =

(
1
2

0
0 1

2

)
.

What happens? How does the Metropolis Hasting Algorithm do?

Exercise 1.45 Consider p(x), where, x = (x1, . . . , x100) and p (0) = 1
2
, p (x) = 1

2100
x 6=

0. How does Gibbs sampling behave?

Exercise 1.46 Construct an algorithm and compute the volume of a unit radius sphere
in 20 dimensions by carrying out a random walk on a 20× 20 grid with 0.1 spacing.

Exercise 1.47 Given a graph G and an integer k how would you generate a sequence
of connected subgraphs S1, S2, . . . of G of size k where Si is generated with probability
proportional to 2|Ei| where Ei is the set of edges in Si?

Exercise 1.48 What is the mixing time for

(a) a clique?

(b) two cliques connected by a single edge?

Exercise 1.49 Show that for the n× n× · · · × n grid in d space, MEP is Ω(1/dn).
Hint: The argument is a generalization of the argument in Exercise 1.35. Argue that for
any subset S containing at most 1/2 the grid points, for at least 1/2 the grid points in S,
among the d coordinate lines through the point, at least one intersects S̄.
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