15-496/859X: Computer Science Theory for the Information Age Carnegie Mellon University Spring 2012 V. Guruswami & R. Kannan

Problem Set 1 Solution by Yuan Zhou

- 1. (a) $\operatorname{Vol}(S) = (1/2)^{d/4} \operatorname{Vol}(K)$.
 - (b) Let V_{d-1} denote the volume of the unit ball under ℓ_4 norm in (d-1) dimension. We first upper bound the volume outside the slab by

$$2\int_{c/d^{1/4}}^{1} (1-x^4)^{(d-1)/4} V_{d-1} dx$$

$$\leq 2\int_{c/d^{1/4}}^{+\infty} (1-x^4)^{(d-1)/4} V_{d-1} dx$$

$$\leq 2V_{d-1}\int_{c/d^{1/4}}^{+\infty} \exp(-x^4(d-1)/4) dx$$

$$\leq 2V_{d-1}\int_{c/d^{1/4}}^{+\infty} \frac{x^3}{(c/d^{1/4})^3} \exp(-x^4(d-1)/4) dx$$

$$= 2V_{d-1} \cdot \frac{d^{3/4}}{c^3} \cdot \frac{1}{d-1} \cdot \left(-\exp(-x^4(d-1)/4)\right) \Big|_{c/d^{1/4}}^{+\infty}$$

$$\leq \frac{3V_{d-1}}{c^3(d-1)^{1/4}} \exp(-c^4/4). \quad \text{(for large d's)}$$

Now we lower bound the volume of K.

$$\begin{aligned} \operatorname{Vol}(K) &= 2 \int_0^1 (1 - x^4)^{(d-1)/4} V_{d-1} dx \\ &\geq 2 V_{d-1} \int_0^{1/(d-1)^{1/4}} (1 - x^4)^{(d-1)/4} dx \\ &\geq \frac{2 V_{d-1}}{(d-1)^{1/4}} \left(1 - \frac{1}{d-1} \right)^{(d-1)/4} dx \\ &\geq \frac{2 V_{d-1}}{(d-1)^{1/4}} (1 - \frac{1}{d-1} \cdot d - 14) \qquad \text{(for large } d\text{'s}) \\ &\geq \frac{V_{d-1}}{(d-1)^{1/4}}. \end{aligned}$$

Therefore, the fraction of volume of K outside the slab $|x_1| \leq c/d^{1/4}$ is at most

$$\frac{\frac{3V_{d-1}}{c^3(d-1)^{1/4}}\exp(-c^4/4)}{\frac{V_{d-1}}{(d-1)^{1/4}}} = \frac{3}{c^3}\exp(-c^4/4).$$

- 2. (a) $\mathbf{E}[x_i] = 0$, therefore $\mathbf{E}[\mathbf{x}] = \mathbf{0}$.
 - (b) By symmetry we have

$$\mathbf{E}[x_i^2] = \frac{1}{d} \mathbf{E}\left[\sum_{i=1}^d x_i^2\right] = 1/d.$$

Therefore

$$\mathbf{Var}[x_i] = \mathbf{E}[x_i^2] - \mathbf{E}[x_i]^2 = 1/d.$$

(c)

$$\begin{aligned} \mathbf{Var}[\boldsymbol{u}^T \boldsymbol{x}] &= \mathbf{E} \left[(\boldsymbol{u}^T \boldsymbol{x})^2 \right] - \mathbf{E} \left[\boldsymbol{u}^T \boldsymbol{x} \right]^2 \\ &= \mathbf{E} \left[(\boldsymbol{u}^T \boldsymbol{x})^2 \right] \qquad (\text{since } \mathbf{E}[x_i] = 0 \text{ for all } i) \\ &= \sum_{i,j} \mathbf{E} \left[u_i u_j x_i x_j \right] \\ &= \frac{1}{d} \sum_i u_i^2 \qquad (\text{since } \mathbf{E}[x_i x_j] = 0 \text{ when } i \neq j \text{ and } \mathbf{E}[x_i^2] = 1/d) \\ &= \frac{1}{d}. \end{aligned}$$

The standard deviation of $\boldsymbol{u}^T \boldsymbol{x}$ is $\sqrt{\mathbf{Var}[\boldsymbol{u}^T \boldsymbol{x}]} = 1/\sqrt{d}$.

(d) The ratio between the volume of intersection and the volume of each unit ball equals 2 times the fraction of the hemisphere above the plane $x_1 = a/2$ (of a unit ball centered at origin), which, by Lemma 1.2 in the book, is at most

$$2 \cdot \frac{2}{\sqrt{d-1} \cdot a/2} \exp\left(-\frac{(a/2)^2(d-1)}{2}\right) = \frac{8}{a\sqrt{d-1}} \exp\left(-\frac{a^2(d-1)}{8}\right)$$

(e) For $a = c/\sqrt{d-1}$ (think of $c \gg 1$ and note that we assume that the radius r = 1), the fraction of the intersection is at most $\frac{8}{c} \exp\left(-\frac{c^2}{8}\right)$, which is exponentially small in c.

3. (a)
$$\mathbf{E}[\langle \boldsymbol{u}, \boldsymbol{r} \rangle] = \sum_{i} \mathbf{E}[u_{i}r_{i}] = 0.$$

(b) By rotational symmetry, we can assume w.l.o.g. that $\boldsymbol{u} = (1, 0, 0, \dots, 0)$. Therefore $\mathbf{E}[|\langle \boldsymbol{u}, \boldsymbol{r} \rangle|] = \mathbf{E}[|r_1|] = \sqrt{2/\pi}$.

$$\begin{split} \mathbf{E}[\langle \boldsymbol{u}, \boldsymbol{r} \rangle \cdot \langle \boldsymbol{v}, \boldsymbol{r} \rangle] \\ &= \mathbf{E}\left[\left(\sum_{i} u_{i} r_{i}\right) \left(\sum_{j} v_{j} r_{j}\right)\right] \\ &= \sum_{i,j} u_{i} v_{j} \mathbf{E}[r_{i} r_{j}] \\ &= \sum_{i} u_{i} v_{i} \qquad (\text{since } \mathbf{E}[r_{i} r_{j}] = 0 \text{ for } i \neq j \text{ and } \mathbf{E}[r_{i}^{2}] = 1) \\ &= \langle \boldsymbol{u}, \boldsymbol{v} \rangle. \end{split}$$

(d) By rotational symmetry, we can assume w.l.o.g. that the vectors $\boldsymbol{u}, \boldsymbol{v}$ have non-zero entries only at their first 2 coordinates, i.e. $\boldsymbol{u} = (u_1, u_2, 0, 0, \cdots, 0)$ and $\boldsymbol{v} = (v_1, v_2, 0, 0, \cdots, 0)$. Note that $\langle \boldsymbol{u}, \boldsymbol{r} \rangle = u_1 r_1 + u_2 r_2$ and $\langle \boldsymbol{v}, \boldsymbol{r} \rangle = v_1 r_1 + v_2 r_2$ only involve the first two gaussian coordinates r_1, r_2 – the whole problem is reduce to the 2-dimensional problem. In the 2-dimensional problem, the event $\operatorname{sign}(\langle \boldsymbol{u}, \boldsymbol{r} \rangle) \neq \operatorname{sign}(\langle \boldsymbol{v}, \boldsymbol{r} \rangle)$ is equivalent to the event that \boldsymbol{u} and \boldsymbol{v} are on different sides of the line going through the origin, and with \boldsymbol{r} as its norm vector. Since \boldsymbol{r} is uniformly random in its direction, we know that

$$\Pr[\operatorname{sign}(\langle \boldsymbol{u}, \boldsymbol{r} \rangle) \neq \operatorname{sign}(\langle \boldsymbol{v}, \boldsymbol{r} \rangle)] = \frac{\operatorname{arccos}\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\pi}.$$

Therefore,

$$\Pr[\operatorname{sign}(\langle \boldsymbol{u}, \boldsymbol{r} \rangle) = \operatorname{sign}(\langle \boldsymbol{v}, \boldsymbol{r} \rangle)] = 1 - \frac{\operatorname{arccos}\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\pi}.$$

- 4. Since k < d, we know that A has a non-trivial null space. Then there are two vectors $\boldsymbol{x} \neq \boldsymbol{y}$ such that $A\boldsymbol{x} = A\boldsymbol{y}$. Now we have $\|\boldsymbol{x} \boldsymbol{y}\| \neq 0$ and $\|A\boldsymbol{x} A\boldsymbol{y}\| = 0$, which implies unbounded distortion.
- 5. (a) The total volume of the ϵ -neighborhoods of the points in COVER should be at least $1(=1^d)$. Therefore,

$$|\mathsf{COVER}| \ge \frac{1}{\text{volume of a } d\text{-dimensional ball with radius } \epsilon} \ge \frac{(d/2)!}{(\pi \epsilon^2)^{d/2}}$$

(b) Consider adding all points whose coordinates are multiples of ϵ/\sqrt{d} , i.e. let

$$\mathsf{COVER} = \{ (i_1 \epsilon / \sqrt{d}, i_2 \epsilon / \sqrt{d}, \cdots, i_d \epsilon / \sqrt{d} | i_1, i_2, \cdots, i_d \in \{0, 1, 2, \cdots, \lfloor \sqrt{d} / \epsilon \rfloor \} \}.$$

One can verify that COVER is a valid (d, ϵ) -covering set, and

$$|\mathsf{COVER}| = \left(\frac{\sqrt{d}}{\epsilon} + 1\right)^d \le \left(\frac{2d}{\epsilon^2}\right)^{d/2}$$

6. (a) Fix $x \neq y$. Let X_i be the indicator variable for the event $C(x)_i = C(y)_i$. We see that $\{X_i\}$ is a set of mutually independent variables, $\mathbf{E}[X_i] = 1/2$ and $X_i \in [0, 1]$. By Hoeffding's inequality, we have

$$\Pr[\operatorname{avg}(X_i) - 1/2] \le \exp\left(-2\left(\frac{2}{5}\right)^2 n\right) = \exp(-3.2m) < 2^{-3m}.$$

(b) By a union bound, we have

$$\Pr[\forall x \neq y, C(x) \text{ and } C(y) \text{ differ on more than } n/10 \text{ positions}]$$

$$\geq 1 - \sum_{x \neq y} \Pr[C(x) \text{ and } C(y) \text{ differ on no more than } n/10 \text{ positions}]$$

$$\geq 1 - 2^{2m} \cdot 2^{-3m} = 1 - 2^{-m}.$$

7. (a) Since there are |V| vectors, the optimal solution must reside in a |V|-dimensional space.

(b) Let $k = \frac{10^8}{\epsilon^2} \log(1/\epsilon)$, and let $\{x_u^*\}_{u \in V}$ be the optimal solution (in a |V|-dimensional space) of value Θ . Now we project $\{x_u^*\}_{u \in V}$ to a random k-dimensional subspace, denote the projection vectors by $\{\tilde{x}_u\}_{u \in V}$. Finally, let $x_u = \tilde{x}_u / \|\tilde{x}_u\|$ for all $u \in V$.

It is easy to see that $\{x_u\}_{u \in V}$ is a set of unit vectors. Now we are going to show that the value of (1) obtained by these vectors is at least $\Theta - \epsilon$. We are going to prove the following claim.

Claim 1

$$\forall u, v \in V, \Pr\left[\|x_u - x_v\|^2 < \|x_u^* - x_v^*\|^2 - \frac{\epsilon}{2}\right] < \frac{\epsilon}{8}.$$

Once we have Claim 1, we finish the proof as follows. For all $u, v \in V$, we have

$$\mathbf{E} \left[\|x_u^* - x_v^*\|^2 - \|x_u - x_v\|^2 \right] < \frac{\epsilon}{2} + \Pr\left[\|x_u - x_v\|^2 < \|x_u^* - x_v^*\|^2 - \frac{\epsilon}{2} \right] \cdot \|x_u^* - x_v^*\|^2 < \frac{\epsilon}{2} + \frac{\epsilon}{8} \cdot 4 = \epsilon.$$

Finally, by linearity of expectation,

$$\mathbf{E}\left[\frac{1}{|E|}\sum_{(u,v)\in E} \|x_u - x_v\|^2\right] \ge \frac{1}{|E|}\sum_{(u,v)\in E} \|x_u^* - x_v^*\|^2 - \epsilon = \Theta - \epsilon.$$

Now we are going to prove Claim 1.

Proof of Claim 1. For notational convenience, let $\tilde{x}'_u = \frac{|V|}{d}\tilde{x}_u$ for all $u \in V$. By the Random Projection Theorem and our choice of k (and assuming $\epsilon \leq 0.9$), each of the following 3 events happen with probability at most $\epsilon/24$.

- $|\|\tilde{x}'_u\|^2 1| > \frac{\epsilon}{100}.$
- $|\|\tilde{x}'_v\|^2 1| > \frac{\epsilon}{100}$.
- $|||\tilde{x}'_u \tilde{x}'_v||^2 ||x^*_u x^*_v||^2| > \frac{\epsilon}{100} \cdot ||x^*_u x^*_v||^2.$

By a union bound, with probability at least $1 - \epsilon/8$, none of the 3 events above happens. In this case, we are going to show that we have $|||x_u^* - x_v^*||^2 - ||x_u - x_v||^2| \leq \frac{\epsilon}{2}$. By triangle inequality,

$$|||x_u^* - x_v^*||^2 - ||x_u - x_v||^2| \le |||x_u^* - x_v^*||^2 - ||\tilde{x}_u' - \tilde{x}_v'||^2| + |||\tilde{x}_u' - \tilde{x}_v'||^2 - ||x_u - x_v||^2|.$$

For the first term, we upper bound it by $\frac{\epsilon}{100} \cdot ||x_u^* - x_v^*||^2 \le \frac{\epsilon}{100} \cdot 4 = \frac{\epsilon}{25}$. For the second term, we use

$$\begin{aligned} &||\tilde{x}'_{u} - \tilde{x}'_{v}||^{2} - ||x_{u} - x_{v}||^{2}| \\ &= |\langle (\tilde{x}'_{u} - \tilde{x}'_{v}) - (x_{u} - x_{v}), (\tilde{x}'_{u} - \tilde{x}'_{v}) + (x_{u} - x_{v}) \rangle| \\ &= |\langle (\tilde{x}'_{u} - x_{u}) - (\tilde{x}'_{v} - x_{v}), (\tilde{x}'_{u} - \tilde{x}'_{v}) + (x_{u} - x_{v}) \rangle| \\ &\leq ||(\tilde{x}'_{u} - x_{u}) - (\tilde{x}'_{v} - x_{v})|| ||(\tilde{x}'_{u} - \tilde{x}'_{v}) + (x_{u} - x_{v})|| \qquad (Cauchy-Schwartz) \\ &\leq 4 ||(\tilde{x}'_{u} - x_{u}) - (\tilde{x}'_{v} - x_{v})|| \\ &\leq 4 \left(||(\tilde{x}'_{u} - x_{u})|| + ||(\tilde{x}'_{v} - x_{v})|| \right). \qquad (triangle inequality) \end{aligned}$$

Since $x_u = \tilde{x}'_u / \|\tilde{x}'_u\|$, we have

$$\|(\tilde{x}'_u - x_u)\| = \|\|\tilde{x}'_u\| - 1\| = \frac{\|\|\tilde{x}'_u\|^2 - 1\|}{\|\tilde{x}'_u\| + 1} \le \frac{\epsilon}{100}$$

Similarly, we can show that $\|(\tilde{x}'_u - x_u)\| \leq \frac{\epsilon}{100}$. In all, we upper bound $\|\|\tilde{x}'_u - \tilde{x}'_v\|^2 - \|x_u - x_v\|^2\|$ by $2 \cdot \frac{\epsilon}{100} = \frac{\epsilon}{50}$. Therefore, we have

 $|||x_u^* - x_v^*||^2 - ||x_u - x_v||^2| \le \frac{\epsilon}{25} + \frac{\epsilon}{50} < \frac{\epsilon}{2}.$