PROBLEM SET 2 SOLUTION BY YUAN ZHOU

1. We can write A as

$$A = \sum_{i=1}^d \ell_i \cdot rac{oldsymbol{w_i}}{\ell_i} \cdot oldsymbol{e_i}^T,$$

where e_i is the *i*-th unit vector with all entries 0 except for the *i*-th entry being 1.

2. Since the row vectors of A are orthonormal, we have that $AA^T = I$. For square matrix A, this implies that $A^T = A^{-1}$. Since $A^{-1}A = I$, we have $A^TA = I$, which implies that the column vectors of A are also orthonormal.

When A is not a square matrix (when $A \in \mathbb{R}^{m \times n}$ where m < n), the statement is not true. The following matrix is a counterexample,

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right].$$

3. (a) Since A has rank n, A^TA also has rank n (full rank). Therefore A^TA is a positive definite matrix, and $(A^TA)^{1/2}$, $(A^TA)^{-1/2}$, $(A^TA)^{-1}$ exist. Now, note that

$$||Ax - b||^{2} = (Ax - b)^{T}(Ax - b)$$

$$= x^{T}(A^{T}A)x - 2b^{T}Ax + b^{T}b$$

$$= ((A^{T}A)^{1/2}x)^{T}((A^{T}A)^{1/2}x) - 2((A^{T}A)^{-1/2}A^{T}b)^{T}((A^{T}A)^{1/2}x) + ||b||^{2}$$

$$= ||(A^{T}A)^{1/2}x - (A^{T}A)^{-1/2}A^{T}b||^{2} - ||(A^{T}A)^{-1/2}A^{T}b||^{2} + ||b||^{2}.$$

The second term above is a constant (independent of x), while the first term is always nonnegative, and it is 0 only when $x = (A^TA)^{-1}A^Tb$. Therefore, $x = (A^TA)^{-1}A^Tb$ is the unique minimizer of $||Ax - b||^2$ (as well as ||Ax - b||), and the minimum value is $(||b||^2 - ||(A^TA)^{-1/2}A^Tb||^2)$ ($\sqrt{||b||^2 - ||(A^TA)^{-1/2}A^Tb||^2}$ correspondingly).

(b) Fix an x, let $x = \sum_{i=1}^{r} \alpha_i v_i + x^{\perp}$ where $x^{\perp} \perp v_i$ for all i. We also let $b = \sum_{i=1}^{r} \beta_i u_i + b^{\perp}$ where $b^{\perp} \perp u_i$ for all i. Now we have

$$||Ax - b||^2 = \left\| \sum_{i=1}^r (\sigma_i \alpha_i - \beta_i) u_i + b^{\perp} \right\|^2 = \sum_{i=1}^r (\sigma_i \alpha_i - \beta_i)^2 + ||b^{\perp}||^2 \ge ||b^{\perp}||^2.$$

Where the equality is achieved when $\alpha_i = \frac{\beta_i}{\sigma_i} = \frac{\langle b, u_i \rangle}{\sigma_i}$ for all i. Therefore,

$$x^* = \sum_{i=1}^r \beta_i v_i = \sum_{i=1}^r \frac{\langle b, u_i \rangle}{\sigma_i} v_i$$

minimizes $||Ax - b||^2$ (which also minimizes ||Ax - b||).

4. (a) The *n* singular values are $\lambda_1, \lambda_2, \dots, \lambda_n$.

- (b) "If" part: since M is real symmetric, we can assume v_1, v_2, \dots, v_n is a set of orthonormal eigenvectors. The corresponding eigenvalue $\lambda_i = v_i^T M v_i \geq 0$ for all i. Therefore M is p.s.d. by definition.
 - "Only if" part: if M is p.s.d., then we can write $M = \sum_{i=1}^{n} \lambda_i v_i v_i^T$ where v_1, v_2, \dots, v_n is a set of orthonormal eigenvectors and $\lambda_i \geq 0$ for all i. Now, for any $x \in \mathbb{R}^n$, $x^T M x = \sum_{i=1}^n \lambda_i (v_i^T x)^2 \geq 0$.
- (c) For all $x \in \mathbb{R}^n$, $x^T V M V^T x = (V^T x) M (V^T x) \ge 0$ (by part(b)). Therefore, $V M V^T$ is p.s.d. (by part(b) again).
- (d) Write $A = U\Sigma V^T$ in its singular value decomposition form. Therefore $A = UV^TV\Sigma V^T = WP$ where we define $W = UV^T$ and $P = V\Sigma V^T$. Observe that $W^TW = VU^TUV^T = I$, $WW^T = UV^TVU^T = I$ and P is p.s.d. by part (c).
- 5. (a) Note that for all $x \in \mathbb{R}^n$,

$$x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2 \ge 0.$$

Therefore L is p.s.d. .

- (b) Let $x = (1, 1, 1, \dots, x)^T$. We see that $Lx = \mathbf{0}$. Therefore the smallest eigenvalue of L is 0 (since all the eigenvalues are nonnegative).
- (c) For all unit vector x,

$$x^T L x = \sum_{(i,j)\in E} (x_i - x_j)^2 \le \sum_{(i,j)\in E} 2(x_i^2 + x_j^2) = 2d \sum_i x_i^2 = 2d.$$

Therefore the largest eigenvalue (which is $||L||_2$, since L is p.s.d.) is at most 2d.