PROBLEM SET 3 SOLUTION BY YUAN ZHOU

- 1. (a) $\sigma(u(S)v(S) + u(T)v(T) + u(U)v(U))$.
 - (b) Since $||u||_2 = ||v||_2 = 1$, we have $||u||_1, ||v||_1 \le \sqrt{n}$. Therefore, there are at most $2\sqrt{n}/\delta$ possibilities for each of u(S), v(S), u(T), v(T), u(U), v(U). Therefore, there are at most $(2\sqrt{n}/\delta)^6$ possible f(S, T, U) vectors needed for the purpose of approximation.
 - (c) We maintain a list \mathcal{L}_i of f(S,T,U) vectors for the first i vertices. We start from $\mathcal{L}_0 = \{(0,0,0,0,0,0)\}$, and at each of the n iterations, we derive \mathcal{L}_i from \mathcal{L}_{i-1} , where $1 \leq i \leq n$. For each element $(a,b,c,d,e,f,g) \in \mathcal{L}_{i-1}$, we consider the new vectors $(a+u_i,b+v_i,c,d,e,f),(a,b,c+u_i,d+v_i,e,f),(a,b,c,d,e+u_i,d+v_i)$ (corresponding to adding vertex i to S,T,U). Round the three new vectors to the nearest multiple of δ' (which will be chosen later), and add them to \mathcal{L}_i .

Finally, \mathcal{L}_n is the desired set of approximation vectors.

Now that at each iteration, we might introduce a δ' additive error. There might be a $n\delta'$ additive error in the final approximation vectors. Therefore, we need to set $\delta' = \delta/n$, and the list size is upper bounded by $(2\sqrt{n}/\delta')^6 = O(n^{1.5}/\delta)^6$.

(d) We use the natural extension of the dynamic programming described above, getting a list of at most $O(n^{1.5}/\delta)^{6k}$ approximating vectors (at precision δ). By choosing $k = O(1/\epsilon)$, the additive error introduced in the SVD step can be upper bounded by $\epsilon n^2/2$. The rest of the error is upper bounded by (for every partition S, T, U)

$$\left| \sum_{t=1}^{k} \sigma_{t}(u_{t}(S)v_{t}(S) + u_{t}(T)v_{t}(T) + u_{t}(U)v_{t}(U)) - \sum_{t=1}^{k} \sigma_{t}((u_{t}(S) + \delta_{t,1})(v'_{t}(S) + \delta_{t,2}) + (u_{t}(T) + \delta_{t,3})(v'_{t}(T) + \delta_{t,4}) + (u_{t}(U) + \delta_{t,5})(v_{t}(U) + \delta_{t,6})) \right|,$$

where $|\delta_{t,j}| \leq \delta$ are the error terms. The value above is upper bounded by

$$\begin{split} \sum_{t=1}^{k} \sigma_{t} \Big(|u_{t}(S)v_{t}(S) - (u_{t}(S) + \delta_{t,1})(v_{t}(S) + \delta_{t,2})| \\ &+ |u_{t}(T)v_{t}(T) - (u_{t}(T) + \delta_{t,3})(v_{t}(T) + \delta_{t,4})| + |u_{t}(U)v_{t}(U) - (u_{t}(U) + \delta_{t,5})(v_{t}(U) + \delta_{t,6}))| \Big) \\ = \sum_{t=1}^{k} \sigma_{t} \Big(|\delta_{t,1}v_{t}(S) + \delta_{t,2}u_{t}(S) + \delta_{t,1}\delta_{t,2}| \\ &+ |\delta_{t,3}v_{t}(T) + \delta_{t,4}u_{t}(T) + \delta_{t,3}\delta_{t,4}| + |\delta_{t,5}v_{t}(U) + \delta_{t,6}u_{t}(U) + \delta_{t,5}\delta_{t,6}| \Big) \\ \leq \sum_{t=1}^{k} \sigma_{t} \Big(\delta(|u_{t}(S)| + |v_{t}(S)| + |u_{t}(T)| + |v_{t}(T)| + |u_{t}(U)| + |v_{t}(U)| + 3\delta^{2} \Big) \\ \leq \sum_{t=1}^{k} \sigma_{t} \Big(\delta \cdot 2\sqrt{n} + 3\delta^{2} \Big) \qquad \text{(since } ||u||_{1}, ||v||_{1} \leq \sqrt{n}) \\ \leq \sum_{t=1}^{k} \sigma_{t} \cdot 3\sqrt{n}\delta \qquad \text{(for large enough } n) \end{split}$$

$$\leq k\sigma_1 \cdot 3\sqrt{n}\delta$$

$$\leq kn^2 \cdot 3\sqrt{n}\delta.$$

Therefore, we can upper bound this value by $\epsilon n^2/2$ by choosing $\delta = \epsilon/(6k\sqrt{n}) = \Omega(\epsilon^2/\sqrt{n})$. This would give an algorithm with ϵn^2 additive error which runs in time $n^{O(1)} \cdot O(n^{1.5}/\delta)^{6k} = (n/\epsilon)^{O(1/\epsilon)}$.

2. The probability that at least one of the x_i 's is one is

$$1 - \prod_{i=1}^{n} (1 - \Pr[x_i = 1]) \le 1 - (1 - (1 - \epsilon)/l)^l \approx 1 - 1/e^{1 - \epsilon},$$

for large enough l.

Now back to our problem of estimating the number of distinct elements. Suppose we want a $(1 + \epsilon)$ approximation and there are l distinct elements. To get an estimation within $l(1 \pm \epsilon)$ for the min-hash method, at least one of the l elements should be mapped to the first $1/(l(1-\epsilon))$ fraction of the hash buckets (which happens with probability $1/(l(1-\epsilon)) \approx (1+\epsilon)/l$). Even when the hash function is l-wise independent (i.e., the l elements are hashed in a fully independent way), by the exercise above, the probability that at least one of the l elements mapped to the first $1/(l(1-\epsilon))$ fraction of the hash buckets is at most $1-1/e^{1+\epsilon}$. Therefore, with constant probability, we are not able to get a $(1+\epsilon)$ approximation.

- 3. (a) The different f_s 's might cancel each other due to difference in their signs.
 - (b) By solving the equation

$$\int_{t=0}^{x} 2 \cdot \frac{1}{\pi} \cdot \frac{dt}{1+t^2} = \frac{1}{2},$$

we get the median value of $|\Lambda|$ is x=1.

(c) Let z_1, z_2 be the value such that

$$\Pr[Z \le z_1] = 1/2 - \epsilon, \Pr[Z \le z_2] = 1/2 + \epsilon.$$

Now, we only need to prove that,

$$\Pr[z_1 \le M \le z_2] \ge 1 - \delta.$$

We are going to show that $\Pr[z_1 \leq M] \geq 1 - \delta/2$. Similarly, we can show that $\Pr[M \leq z_2] \geq 1 - \delta/2$. By a union bound, we prove the desired statement.

To prove $\Pr[z_1 \leq M] \geq 1 - \delta/2$, we note that

$$\Pr[z_1 \leq M] \geq \Pr[\text{more than half of } s_i\text{'s are no less than } z_1].$$

Since each s_i is an independent sample of Z and therefore is no less than z_1 with probability $1/2 + \epsilon$ (by the definition of z_1). By a Chernoff bound, we know that as long as $k = C \log(1/\delta)/\epsilon^2$ for some large enough C, we have

Pr[more than half of s_i 's are no less than z_1] $\geq 1 - \delta/2$,

which implies that $\Pr[z_1 \leq M] \geq 1 - \delta/2$.

(d) We are going to show that

$$\begin{split} &\int_{1-10\epsilon}^{1} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} > \epsilon, \\ &\int_{1}^{1+10\epsilon} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} > \epsilon, \end{split}$$

which would imply the desired statement.

Note that for $x \in [1 - 10\epsilon, 1 + 10\epsilon]$ and small enough ϵ , we have $2 \cdot \frac{1}{\pi} \cdot \frac{1}{1 + x^2} \ge \frac{2}{\pi} \cdot \frac{1}{3} \ge 1/6$. Therefore,

$$\int_{1-10\epsilon}^{1} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} \ge \int_{1-10\epsilon}^{1} \frac{dx}{6} = \frac{10}{6} \cdot \epsilon > \epsilon,$$

and

$$\int_{1}^{1+10\epsilon} 2 \cdot \frac{1}{\pi} \cdot \frac{dx}{1+x^2} \ge \int_{1}^{1+10\epsilon} \frac{dx}{6} = \frac{10}{6} \cdot \epsilon > \epsilon.$$

(e) Let $k = C \log(1/\delta)/\epsilon^2$ as defined in part (c). Take ks independent samples of Λ : $\{X_i^{(t)}\}_{i \leq s,t \leq k}$. Now we keep k running sums $S_t = \sum_{i=1}^s a_i X_i^{(t)}$, and return the value $\operatorname{median}(|S_1|, |S_2|, \dots, |S_k|)$.

Note that the algorithm runs in sub-linear space: only keeps $k = C \log(1/\delta)/\epsilon^2$ values (if not considering the samples from Λ).

Now we are going to analyze the performance of the algorithm. Observe that each S_i is independently distributed as $\sum_{i=1}^{s} |a_i| \Lambda$. By part (c), we know that for an independent Λ , with probability at least $1 - \delta$, we have

$$1/2 - \epsilon \le \Pr\left[\left(\sum_{i=1}^{s} |a_i|\right) |\Lambda| \le \operatorname{median}(|S_1|, |S_2|, \cdots, |S_k|)\right] \le 1/2 + \epsilon.$$

Now, by part (c), we know that $(1 - 10\epsilon) (\sum_{i=1}^{s} |a_i|) \leq \text{median}(|S_1|, |S_2|, \dots, |S_k|) \leq (1+10\epsilon) (\sum_{i=1}^{s} |a_i|)$. I.e., the algorithm gives a $(1+O(\epsilon))$ approximation with probability at least $1 - \delta$.

4. (a) For $(i_1, i_2) \neq (j_1, j_2)$, we have

$$\left\langle v^{(i_1,i_2)}, v^{(j_1,j_2)} \right\rangle = \sum_{a \in C} (-1)^{a_{i_1} + a_{i_2} + a_{j_1} + a_{j_2}}.$$

Note that by 4-wise independence of C, this value is 0 as long as there is an element (from [n]) which appears exactly once in i_1, i_2, j_1, j_2 , while this is true for $(i_1, i_2) \neq (j_1, j_2)$ and $i_1 < i_2, j_1 < j_2$.

(b) For any set of coefficients $\{\alpha^{(i_1,i_2)}\}_{1 \leq i_1 \leq i_2 \leq n}$, we have

$$\|\sum_{i_1,i_2} \alpha^{(i_1,i_2)} v^{(i_1,i_2)}\|^2 = \sum_{i_1,i_2} \left(\alpha^{(i_1,i_2)}\right)^2 \|v^{(i_1,i_2)}\|^2 = n \cdot \sum_{i_1,i_2} \left(\alpha^{(i_1,i_2)}\right)^2,$$

where the first equality is because of part (a). Therefore, if $\sum_{i_1,i_2} \alpha^{(i_1,i_2)} v^{(i_1,i_2)} = \mathbf{0}$, we have $\alpha^{(i_1,i_2)} = 0$ for all $1 \leq i_1 < i_2 \leq n$. This means that the vectors $\{v_{i_1,i_2}\}_{1 \leq i_1 < i_2 \leq n}$ are linearly independent over reals.

(c) Since the vectors $\{v_{i_1,i_2}\}_{1\leq i_1< i_2\leq n}$ are |C|-dimensional vectors. There can be at most |C| of them. Therefore, we have $\binom{n}{2}\leq |C|$, i.e. $|C|=\Omega(n^2)$.