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1. (a) o(u(S)v(S)+ u(T)v(T) +u(U)v(U)).

(b) Since |Jull2 = ||v]|2 = 1, we have ||u||1, ||v]|1 < v/n. Therefore, there are at most 2v/n/d
possibilities for each of w(S),v(S),u(T),v(T),u(U),v(U). Therefore, there are at most
(2y/1/8)® possible f(S,T,U) vectors needed for the purpose of approximation.

(c) We maintain a list £; of f(S,T,U) vectors for the first i vertices. We start from Ly =
{(0,0,0,0,0,0)}, and at each of the n iterations, we derive £; from £;_1, where 1 < i < n.
For each element (a,b,c,d e, f,g) € L;—1, we consider the new vectors (a + u;,b +
vi, ¢, dye, f), (a,b, ¢ + ui,d + vy, e, f), (a,b,c,d, e + u;,d + v;) (corresponding to adding
vertex i to S,T,U). Round the three new vectors to the nearest multiple of ¢’ (which
will be chosen later), and add them to L;.

Finally, £, is the desired set of approximation vectors.

Now that at each iteration, we might introduce a ¢’ additive error. There might be a nd’
additive error in the final approximation vectors. Therefore, we need to set &' = d/n,
and the list size is upper bounded by (2v/n/8")% = O(n'*/5)S.

(d) We use the natural extension of the dynamic programming described above, getting a list
of at most O(n'®/§)%* approximating vectors (at precision 6). By choosing k = O(1/e),
the additive error introduced in the SVD step can be upper bounded by en?/2. The rest
of the error is upper bounded by (for every partition S,T,U)
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where |0; ;| < § are the error terms. The value above is upper bounded by
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Therefore, we can upper bound this value by en?/2 by choosing § = €/(6ky/n) =

Q(e?/y/n). This would give an algorithm with en? additive error which runs in time
nO(l) . O(nl.S/é)Gk — (n/E)O(l/e)‘

2. The probability that at least one of the x;’s is one is
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for large enough I.

Now back to our problem of estimating the number of distinct elements. Suppose we want
a (1 + €) approximation and there are [ distinct elements. To get an estimation within
[(1 £ €) for the min-hash method, at least one of the [ elements should be mapped to the
first 1/(1(1 — €)) fraction of the hash buckets (which happens with probability 1/(I(1 —€)) ~
(1+¢€)/l). Even when the hash function is [-wise independent (i.e., the [ elements are hashed
in a fully independent way), by the exercise above, the probability that at least one of the I
elements mapped to the first 1/(I(1 — ¢)) fraction of the hash buckets is at most 1 — 1/e!*¢.
Therefore, with constant probability, we are not able to get a (1 + €) approximation.

(a)
(b)

The different fs’s might cancel each other due to difference in their signs.

/Iz 1odt 1
t=0 s 1+t2_2’

we get the median value of |[A| is z = 1.

By solving the equation

Let 21, zo be the value such that
PriZ <z|=1/2—¢€Pr[Z <z]=1/2+¢.
Now, we only need to prove that,
Prz1 < M < z]>1-4.

We are going to show that Pr{z; < M| > 1 —§/2. Similarly, we can show that Pr[M <
z9] > 1 —6/2. By a union bound, we prove the desired statement.
To prove Pr[z; < M] > 1 — /2, we note that

Pr[z; < M| > Pr[more than half of s;’s are no less than z1].

Since each s; is an independent sample of Z and therefore is no less than z; with prob-
ability 1/2 + e (by the definition of z1). By a Chernoff bound, we know that as long as
k = Clog(1/8)/e? for some large enough C, we have

Pr[more than half of s;’s are no less than z;] > 1 —§/2,

which implies that Pr[z; < M]>1—4§/2.
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We are going to show that
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which would imply the desired statement.

Note that for z € [1 — 10,1+ 10¢] and small enough €, we have 2- < - 1+1xQ >2.1>1/6.
Therefore,
/1 o 1 de >/1 de _10
. —. > —_— = — . € €,
1c0e ® 1+a2? 7 Ji 406 6
and

1+10e 1 dx 1+10e dx 10
2. —- > — =—-€c>e€
) T 1422 =) 6 6

Let k = Clog(1/5)/e® as defined in part (c). Take ks independent samples of A :
{Xi(t)}igs’tgk. Now we keep k running sums Sy = > ., aiXZ-(t), and return the value
median(|S1|, [Sa|,- - ,|Sk])-

Note that the algorithm runs in sub-linear space: only keeps k = Clog(1/d)/€? values
(if not considering the samples from A).

Now we are going to analyze the performance of the algorithm. Observe that each §; is
independently distributed as Y ;_, |a;|A. By part (c), we know that for an independent
A, with probability at least 1 — §, we have

1/2—e<Pr [(Z\(M) |A| < median(|Si|, [Sa],---,|Sk])| <1/2+e€

=1

Now, by part (c), we know that (1 — 10€) (3°7_; |as]) < median(]Si|,|Sal,--- ,[Sk]) <
(1410€) (374 |ail). Le., the algorithm gives a (1+O(¢)) approximation with probability
at least 1 — 4.

For (il,ig) 75 (jl,jg), we have
<U(i1,i2)7v(j17j2)> — Z(—l)ail+ai2+ah+m‘
aeC

Note that by 4-wise independence of C, this value is 0 as long as there is an element (from
[n]) which appears exactly once in 41, i2, j1, j2, while this is true for (i1,i2) # (j1,j2) and
i1 <2,J1 < J2.

For any set of coefficients {a"%2)}; i <i,<p, we have

13" ativiyi))2 = 37 (a(il:i2))2 [FEELI T (am,m)ﬂ

11,02 11,82 11,82
where the first equality is because of part (a). Therefore, if Zil’iz alini2)y(ini2) = 0, we
have a("1+%2) = 0 for all 1 < i; < 49 < n. This means that the vectors {v;, i, }1<i, <in<n
are linearly independent over reals.

Since the vectors {vj, i, }1<i;<ip<n are |C|-dimensional vectors. There can be at most
|C| of them. Therefore, we have (3) < |C], i.e. |C]| = Q(n?).



