15-496/859X: Computer Science Theory for the Information Age Spring 2012
Carnegie Mellon University V. Guruswami & R. Kannan

PROBLEM SET 3
Due by 6 pm, Friday, March 9

INSTRUCTIONS

e You should think about each problem by yourself for at least 30 minutes before choosing to
collaborate with others.

e You are allowed to collaborate with fellow students taking the class in solving the problems
(in groups of at most 3 people for each problem). In fact this is encouraged so that you
interact with and learn from each other. However, you must write up your solutions on
your own. If you collaborate in solving problems, you should clearly acknowledge your
collaborators for each problem.

e Reference to any external material besides the course text and material covered in lecture is
not allowed. In particular, you are not allowed to search for answers or hints on the web.
You are encouraged to contact the instructors or the TA for a possible hint if you feel stuck
on a problem and require some assistance.

e Solutions typeset in IfTEX are preferred.

e Feel free to email the instructors or the TA if you have any questions or would like any
clarifications about the problems.

e As always, you are strongly urged to start work on the problem set early. The problems
require some thought, and are best approached without time pressure.

1. (20 points) In this problem, you will use a method similar to the one we used for max-cut to
solve the following problem:

Given an undirected graph G(V, E), find within additive error en? the minimum number of
edges we need to remove from the graph to make it 3-colorable. [A graph is 3-colorable if
we can assign three colors to is vertices so that no two adjacent vertices get the same color.]

(a) Suppose A is the adjacency matrix of the graph. First suppose A was a rank-1 matrix
and is the outer product of two vectors 1, v, namely, A = cuv’, where o is a positive
real number and u,v are unit length vectors. For any subset S of vertices, denote
Y ics Wi by u(S) and similarly for v. For a partition of the vertex set into 3 parts (the 3
colors) S, T, U, define a 6-vector f(.S,T,U) by (u(S),v(S),u(T),v(T),u(U),v(U)).
Write down a formula for the number of edges which need to be removed if we color
the vertices as per the partition S, 7', U in terms of f(S,T,U).

(b) Next, still assuming that A = cuv’, suppose we approximate each coordinate of
f(S,T,U) to within £J (where we will choose ¢ later). How many possible vectors
f(S,T,U) can we get from such approximations?



(c) Describe a dynamic programming algorithm to enumerate all such possible approxi-
mate vectors we can get.

(d) Now in general, approximate A by a rank k£ matrix B by SVD, where, k is not too large.
Suppose B = Zle atutvtT , Where, u;, v; are now vectors.
For a partition S, T, U of the vertices, argue that the number of edges to be removed to
colorasin S, T, U is easy to get from the 6k—vector:

F(S,T,U) = (ur(S),us(T),u1 (U),v1(S),v1(T), v1(U), u(S), ua(T),...) .

Approximate this vector, enumerate all possible such approximate vectors again by
dynamic progamming.
Finally choose § and argue error bounds so that we get an overall error of at most en?.

2. (10 points) In trying to estimate the number of distinct elements in a data stream, it was
suggested in class that if we had £—wise independence for large enough £, then perhaps we
can get an approximation to relative error ¢ (instead of a factor of 10 or 2). Alas, this does
not work, as you will show in this exercise:

Suppose x1, x3, . . ., x; are mutually independent Bernoulli (0-1) random variables such that
the probability of 1 being 1 is at most (1 — ) /I, so the expected number of z; which are 1
is at most 1 — €. Then what is the probability that at least one of them is 1?

Use this to prove what we want.

3. (20 points) Suppose we have a data stream consisting of symbols from {1,2,...,m} with a
+ sign in front of each symbol and again we define for s € {1,2,...,m}, f; = the number
of occurrences of s in the stream, where, we add or subtract 1 from f, depending on the
sign we see. [Note: f, may be positive, negative or zero.] We are to find the first moment,

namely:
DI

(a) First argue that it won’t suffice to just keep a running total (in 1 unit of space) as we
could do in the case when there was no negative sign.

(b) Consider the real-valued continuous random variable A with probability density func-
tion %1 +11,2. What is the median value of the random variable |A|? (That is, the value
a € R for which Pr[|A| < o] = 1/2.)

(c) Let Z be any real-valued random variable with a continuous density function. Let
k = C'log(1/4)/€* for a large constant C, and let sy, s, . . ., 53 be independent copies
of the random variable Z. Then prove that M/ = median(sy, so, .. ., sy) satisfies

1/2—e<Pr[Z<M]<1/2+¢

with probability 1 — § over the choice of the samples s;. (You can assume k£ is odd so
that the median median(sy, ss, . . ., sx) is well-defined.)

Hint: Chernoff-Hoeffding bounds.



(d) (Extra credit — this part alone; you can use this part for later ones even if you don’t
solve it.)

Recall the random variable A from Part (3b), and let « be its median value. Suppose
t > 0is such that 1/2 — ¢ < Pr[|A] < t] < 1/2 + € for some small enough ¢ > 0.
Prove that o« — 10e <t < o + 10e.

(e) The following is a rather remarkable fact about the above random variable A from
part (3b) (we won’t prove it here): Let X;, Xs, ..., X, be i.1.d samples of the random
variable A. Then for any integers a1, ao, . . . , as, the linear combination a; X7 + as Xs +
-+ 4+ as X, has a distribution identical to (>_;_, |a;|)A.

Using this fact and the previous parts, describe a sub-linear space streaming algorithm
for estimating the first moment ) __|f;| of the data stream within a (1 & €) factor with
probability 1 — J. Briefly justify why your algorithm works, showing how the previous
pieces fit together in the analysis.

(For the sake of this problem, you can ignore issues of precision, and ignore
the space needed to store samples from A.)

4. (10 points) In class we saw that there is a collection C' of n? strings in {0, 1}" which are
4-wise independent, i.e., for any 4 indices 1 < 7; < 15 < i3 < iy < n, for a random string
x € C, the distribution of (x;,, x;,, T, T;,) is uniform over {0, 1}*.
Turns out one can achieve 4-wise independence with an even smaller collection of O(n?)

strings. We won’t see this here, but in this exercise, you will show that quadratic is as good

as it can get, i.e., every 4-wise independent collection of n-bit strings must have size at least
Q(n?).

(a) Let C' C {0, 1}™ be a 4-wise independent set. For each pair of indices 1 < i; < iy < n,
define a vector v(2) € R® indexed by elements of C by v(1:%2)(aq) = (—1)%+%,
Prove that for two distinct pairs (iy,i2) and (j1, j2) (i.e., either iy # j; or iy # jp or
both), the vectors v(1%2) and v("1:%2) are orthogonal, i.e., (v(11:72) ¢(L32)) = (.

(b) Argue that the collection of vectors p(2) for pairs (i1,42), 1 < i3 < is < n, are
linearly independent over reals.

(¢) Deduce that |C| > (3).



