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1. Let B be the indicator variable for the event N > 0, i.e. B =1 when N > 0 and B = 0 when
N = 0. It is easy to check that NB = N. By Cauchy-Schwartz, we have

E[N]? = E[NB)? < E[N?|E[B?],

which implies that

Pr[N > 0] = E[B?] >

2. (a) Fix a set of (24 ¢) logy n vertices, the probability that there is an edge between each two
of them is at most

2—((2+e) log, n)((2+¢€) logy n—1)/2 < 2—(2+e) log3 n

n 2(2+e) log% n
(2+¢€) log, n) =  (2loggyn)!
probability that there exists a clique of size (2 + €) logy n is at most

Since there are ( such set of vertices. By a union bound, the

2+¢) log?
9—(2+¢)login 2zreloa < 1 = p~w@),

(2logyn)! — (2logyn)!

Therefore, with probability (1 —n~®*(), there is no clique of size (2 + ¢€) logy n.

(b) Set k = (2 — €)logy n for notational convenience. Let NN; be the indicator variable for
the event that the i-th subset of size k forms a clique. (1 <i < (})). Let N =Y, N; be
the number of cliques of size k. We also use the notation S; to denote the i-th subset.
By Problem 1, we know that

E[N]?
Pr|N > 0] > .
| I= E[N?]
We are going to lower bound Pr[N > 0] by estimating calculating %

For E[N]?, we have

E[N]? = (Z E[NZ-]> 2 = <<Z> Q—k‘(kf—l)/?)2 — <Z>22—k(k—1)_

For E[N?] we have

k
EW]:ZE[MM]:ZZ > E[NiN.
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Now, let f(t) = Ej:|simsj\:tE[NiNj] so that BE[N?] = (}) Ef:o f(t). We see that
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In all, we have
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(by the fact given in the problem statement, for k < (2 — €)logy n)
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(c) Enumerate over all subsets of size (2 — €) logy n and check whether any of them forms a
clique.

(d) We start with a set S = () and T = [n]. We want to add vertices to S while keeping
S a clique as the algorithm proceeds, and finally output S. T is to be maintained as
the common neighbors of vertices in S. The algorithm repeats the following procedure,
as long as T # (): choose an arbitrary vertex ¢ € T, move it to S, and remove all the
vertices in " that are not connected to 7. When this produce terminates, we see that S
is always a clique.

It is easy to see that the algorithm runs in O(n?) time for any graph. Now we are going
to show that with high probability, S contains Q(logn) vertices.

By a Chernoff bound, we see that for any |T| > /n, and any ¢ € T, the probability
that 4 is connected to |T'|/3 vertices in T is at least 1 — exp(—+/n/100). Therefore, by
a union bound, the probability that the algorithm proceeds for at least logs \/n steps is
at least 1 — (logs /n) exp(—+/n/100) > 1 — exp(—+/n/200). This also lower bounds the
probability that |S| > logs /1.

3. (a) The weak threshold is ©(1/n). The probability that N(n,p) contains an even number is
1—(1—p)™2. We see that when p = o(1/n), this probability becomes 1 — exp(—o(1)) =
o(1); when p = w(1/n), this probability becomes 1 —exp(—w(1)) =1 — o(1).



(b)

Since there are ©(n?) triples (z,v,2) such that x +y = z, while each of these triples
appears in N (n, p) with probability p3, the expected number of these triples that appear
in N(n,p) is ©(n?/p). For this number to be a constant, we need p* = O(1/n?).
Therefore, a reasonable guess for the threshold value would be ©(n=%/3).

Each assignment satisfies a random instance (with m) clauses with probability 27™.
Since there are 2" assignments, the expected number of satisfying assignments is 2"~

By Markov inequality, we have

Pr[C(n, m) satisfiable] = Pr[#satisfying assignment for C(n,m) > 1]
< E[#satisfying assignment for C(n,m)] =2""™ = 27" = o(1).

When the two variables are both from the k variables (where a and b are differ), or
both from the rest n — k variables, the probability that both a and b satisfy the random
clause is 1/2. In other cases, a and b cannot simultaneously satisfy the random clause.
Therefore, the overall probability is

2 (%) 2n(n — 1)
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Let N; be the indicator variable that the i-th assignment satisfies the random assignment
(for 1 <1 < 2™). We have

E[N? =) ) E[N:N]
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1 k=0 j:Assignment j and Assignment ¢ differ at k places
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(Proof sketch.) Given an NAE instance, we construct a corresponding constraint graph
by creating a vertex for each variable, and connecting two vertices by an undirected edge
when the two corresponding variables are involved in a same NAE clause. Now our proof
goes by two steps.

Step 1. We are going to prove that when m = (1 — €)n. the constraint graph has only
O(1) cycles with probability at least 1/2. This can be done by a first moment method.
Step 2. We prove the claim that if the constraint graph has only ¢ cycles, then over the
random choices of clause types (i.e. whether to put negation on the related literals), the
NAE instance is satisfiable with probability 2=°®).

Therefore, with probability 2=°() a random NAE instance is satisfiable (when m =
(1 —e)n).

Consider the process that one starts from v, and each time visits the only next vertex of
the current vertex (since each vertex has out-degree exactly 1), until a vertex is revisited.



r(v) = k if and only if the process above runs for £ — 1 times before a vertex is revisited.
Since all the choices of out-going edges are independent, we have

Prr(v) = k] — kHI (1 - ;) - %

SO D (e (- (2 )

Therefore,
Pr[r(v) < /n/10] =1 — Pr[r(v) > v/n/10 + 1]
L “ﬁ“’ (1 . ) [y %O _ (WA/10)(vR/10 - 1)

1
, n ; 2n 3’
=1 =1

and



