
15-496/859X: Computer Science Theory for the Information Age Spring 2012
Carnegie Mellon University V. Guruswami & R. Kannan

Problem Set 4 Solution
by Yuan Zhou

1. Let B be the indicator variable for the event N > 0, i.e. B = 1 when N > 0 and B = 0 when
N = 0. It is easy to check that NB = N . By Cauchy-Schwartz, we have

E[N ]2 = E[NB]2 ≤ E[N2] E[B2],

which implies that

Pr[N > 0] = E[B2] ≥ E[N ]2

E[N2]
.

2. (a) Fix a set of (2+ ε) log2 n vertices, the probability that there is an edge between each two
of them is at most

2−((2+ε) log2 n)((2+ε) log2 n−1)/2 ≤ 2−(2+ε) log2
2 n.

Since there are
(

n
(2+ε) log2 n

)
≤ 2(2+ε) log2

2 n

(2 log2 n)! such set of vertices. By a union bound, the
probability that there exists a clique of size (2 + ε) log2 n is at most

2−(2+ε) log2
2 n · 2(2+ε) log2

2 n

(2 log2 n)!
≤ 1

(2 log2 n)!
= n−w(1).

Therefore, with probability (1− n−w(1)), there is no clique of size (2 + ε) log2 n.

(b) Set k = (2 − ε) log2 n for notational convenience. Let Ni be the indicator variable for
the event that the i-th subset of size k forms a clique. (1 ≤ i ≤

(
n
k

)
). Let N =

∑
iNi be

the number of cliques of size k. We also use the notation Si to denote the i-th subset.
By Problem 1, we know that

Pr[N > 0] ≥ E[N ]2

E[N2]
.

We are going to lower bound Pr[N > 0] by estimating calculating E[N ]2

E[N2]
.

For E[N ]2, we have

E[N ]2 =

(∑
i

E[Ni]

)2

=
((

n

k

)
2−k(k−1)/2

)2

=
(
n

k

)2

2−k(k−1).

For E[N2] we have

E[N2] =
∑
i,j

E[NiNj ] =
∑
i

k∑
t=0

∑
j:|Si∩Sj |=t

E[NiNj ].



Now, let f(t) =
∑

j:|Si∩Sj |=tE[NiNj ] so that E[N2] =
(
n
k

)∑k
t=0 f(t). We see that

f(t) =
(
k

t

)(
n− k
k − t

)
2−k(k−1)+t(t−1)/2.

In all, we have

E[N ]2

E[N2]
=

(
n
k

)22−k(k−1)(
n
k

)∑k
t=0

(
k
t

)(
n−k
k−t
)
2−k(k−1)+t(t−1)/2

=

(
n
k

)∑k
t=0

(
k
t

)(
n−k
k−t
)
2t(t−1)/2

.

Therefore,

1− E[N ]2

E[N2]

=

∑k
t=2

(
k
t

)(
n−k
k−t
) (

2t(t−1)/2 − 1
)∑k

t=0

(
k
t

)(
n−k
k−t
)
2t(t−1)/2

(since
(
n

k

)
=

k∑
t=0

(
k

t

)(
n− k
k − t

)
)

≤
∑k

t=2

(
k
t

)(
n−k
k−t
)
2t(t−1)/2∑k

t=0

(
k
t

)(
n−k
k−t
)
2t(t−1)/2

≤
∑k

t=2

(
k
t

)(
n−k
k−t
)
2t(t−1)/2(

n
k

) . (again, by
(
n

k

)
=

k∑
t=0

(
k

t

)(
n− k
k − t

)
)

≤k ·
(
k
t

)(
n−k
k−t
)
2t(t−1)/2(
n
k

) ∣∣∣
t=2

(by the fact given in the problem statement, for k < (2− ε) log2 n)

≤k · k
4

n2
= o(1).

(c) Enumerate over all subsets of size (2− ε) log2 n and check whether any of them forms a
clique.

(d) We start with a set S = ∅ and T = [n]. We want to add vertices to S while keeping
S a clique as the algorithm proceeds, and finally output S. T is to be maintained as
the common neighbors of vertices in S. The algorithm repeats the following procedure,
as long as T 6= ∅: choose an arbitrary vertex i ∈ T , move it to S, and remove all the
vertices in T that are not connected to i. When this produce terminates, we see that S
is always a clique.
It is easy to see that the algorithm runs in O(n2) time for any graph. Now we are going
to show that with high probability, S contains Ω(log n) vertices.
By a Chernoff bound, we see that for any |T | ≥

√
n, and any i ∈ T , the probability

that i is connected to |T |/3 vertices in T is at least 1 − exp(−
√
n/100). Therefore, by

a union bound, the probability that the algorithm proceeds for at least log3

√
n steps is

at least 1− (log3

√
n) exp(−

√
n/100) ≥ 1− exp(−

√
n/200). This also lower bounds the

probability that |S| ≥ log3

√
n.

3. (a) The weak threshold is Θ(1/n). The probability that N(n, p) contains an even number is
1− (1− p)n/2. We see that when p = o(1/n), this probability becomes 1− exp(−o(1)) =
o(1); when p = ω(1/n), this probability becomes 1− exp(−ω(1)) = 1− o(1).



(b) Since there are Θ(n2) triples (x, y, z) such that x + y = z, while each of these triples
appears in N(n, p) with probability p3, the expected number of these triples that appear
in N(n, p) is Θ(n2/p3). For this number to be a constant, we need p3 = Θ(1/n2).
Therefore, a reasonable guess for the threshold value would be Θ(n−2/3).

4. (a) Each assignment satisfies a random instance (with m) clauses with probability 2−m.
Since there are 2n assignments, the expected number of satisfying assignments is 2n−m.

(b) By Markov inequality, we have

Pr[C(n,m) satisfiable] = Pr[#satisfying assignment for C(n,m) ≥ 1]
≤E[#satisfying assignment for C(n,m)] = 2n−m = 2−εn = o(1).

(c) When the two variables are both from the k variables (where a and b are differ), or
both from the rest n− k variables, the probability that both a and b satisfy the random
clause is 1/2. In other cases, a and b cannot simultaneously satisfy the random clause.
Therefore, the overall probability is

1
2
·
(
k
2

)
+
(
n−k

2

)(
n
2

) =
k(k − 1) + (n− k)(n− k − 1)

2n(n− 1)
.

(d) Let Ni be the indicator variable that the i-th assignment satisfies the random assignment
(for 1 ≤ i ≤ 2n). We have

E[N2] =
∑
i

∑
j

E[NiNj ]

=
∑
i

n∑
k=0

∑
j:Assignment j and Assignment i differ at k places

(
k(k − 1) + (n− k)(n− k − 1)

2n(n− 1)

)m
=
∑
i

n∑
k=0

(
n

k

)
·
(
k(k − 1) + (n− k)(n− k − 1)

2n(n− 1)

)m
=

n∑
k=0

2n
(
n

k

)
·
(
k(k − 1) + (n− k)(n− k − 1)

2n(n− 1)

)m
.

(e) (Proof sketch.) Given an NAE instance, we construct a corresponding constraint graph
by creating a vertex for each variable, and connecting two vertices by an undirected edge
when the two corresponding variables are involved in a same NAE clause. Now our proof
goes by two steps.
Step 1. We are going to prove that when m = (1 − ε)n. the constraint graph has only
O(1) cycles with probability at least 1/2. This can be done by a first moment method.
Step 2. We prove the claim that if the constraint graph has only t cycles, then over the
random choices of clause types (i.e. whether to put negation on the related literals), the
NAE instance is satisfiable with probability 2−O(t).
Therefore, with probability 2−O(1), a random NAE instance is satisfiable (when m =
(1− ε)n).

5. (a) Consider the process that one starts from v, and each time visits the only next vertex of
the current vertex (since each vertex has out-degree exactly 1), until a vertex is revisited.



r(v) = k if and only if the process above runs for k− 1 times before a vertex is revisited.
Since all the choices of out-going edges are independent, we have

Pr[r(v) = k] =
k−1∏
i=1

(
1− i

n

)
· k
n
.

(b) Note that for any t,

Pr[r(v) ≥ t] =
n∑
k=t

k−1∏
i=1

(
1− i

n

)
· k
n

=

(
t−1∏
i=1

(
1− i

n

))(
t

n
+
(

1− t

n

)(
t+ 1
n

+
(

1− t+ 1
n

)(
t+ 2
n

+ · · ·
)))

=
t−1∏
i=1

(
1− i

n

)
.

Therefore,

Pr[r(v) ≤
√
n/10] = 1− Pr[r(v) ≥

√
n/10 + 1]

=1−

√
n/10∏
i=1

(
1− i

n

)
≤ 1−

1−

√
n/10∑
i=1

i

n

 =
(
√
n/10)(

√
n/10− 1)

2n
≤ 1

3
,

and

Pr[r(v) ≥ 10
√
n] =

10
√
n−1∏

i=1

(
1− i

n

)
≤

10
√
n−1∏

i=
√
n

(
1− i

n

)
≤
(

1−
√
n

n

)9
√
n

≤ 1
3
.


