15-496/859X: Computer Science Theory for the Information Age Spring 2012 Carnegie Mellon University V. Guruswami & R. Kannan

PROBLEM SET 6 SOLUTION by Yuan Zhou

1. Let w^* be the vector such that $\|w^*\| = 1$ and $\forall i, (\mathbf{w}^* \cdot \mathbf{a}_i)l_i \geq \gamma$. As the algorithm runs, we keep track of the value $w \cdot w^*$ and $||w||$. At each iteration, when we update the vector w by $w' = w + l_i a_i$, we have

$$
\boldsymbol{w}'\cdot \boldsymbol{w}^* = \boldsymbol{w}\cdot \boldsymbol{w}^* + l_i(\boldsymbol{a}_i\cdot \boldsymbol{w}^*) \geq \boldsymbol{w}\cdot \boldsymbol{w}^* + \gamma,
$$

and

$$
\|\bm{w}'\| = \|\bm{w} + l_i \bm{a}_i\| = \sqrt{\|\bm{w}\|^2 + \|\bm{a}_i\|^2 + 2l_i(\bm{w} \cdot \bm{a}_i)} \leq \sqrt{\|\bm{w}\|^2 + 1 + \gamma \|\bm{w}\|}.
$$

We now show by induction that at step t, we have $\|\boldsymbol{w}^{(t)}\| \leq \frac{3}{\gamma} + \frac{2\gamma}{3}$ $\frac{2\gamma}{3}\cdot t$.

- When $t = 0$, we have $\|\boldsymbol{w}^{(0)}\| = 0 \leq \frac{3}{\infty}$ $\frac{3}{\gamma}.$
- For $t > 0$, we have

$$
\|w^{(t)}\| \leq \sqrt{\|w^{(t-1)}\|^2 + 1 + \gamma \|w^{(t-1)}\|}
$$

\$\leq \sqrt{\left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot (t-1)\right)^2 + 1 + \gamma \left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot (t-1)\right)\$} \qquad (*)\$.

Note that since

$$
\left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot t\right)^2 - \left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot (t-1)\right)^2 - 1 - \gamma \left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot (t-1)\right)
$$

\n
$$
= \frac{2\gamma}{3} \left(\frac{6}{\gamma} + \frac{2\gamma}{3} \cdot (2t-1)\right) - 1 - \gamma \left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot (t-1)\right)
$$

\n
$$
= \frac{4\gamma^2}{9} \cdot (2t-1) - \gamma \cdot \frac{2\gamma}{3} \cdot (t-1)
$$

\n
$$
= \left(\frac{8}{9} - \frac{2}{3}\right) \gamma^2 t + \left(\frac{2}{3} - \frac{4}{9}\right) \gamma^2 \ge 0,
$$

we have

$$
(*) \leq \sqrt{\left(\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot t\right)^2} = \frac{3}{\gamma} + \frac{2\gamma}{3} \cdot t.
$$

This completes the induction.

Therefore, at step t , we have

$$
\frac{\boldsymbol{w} \cdot \boldsymbol{w}^*}{\|\boldsymbol{w}\|} \ge \frac{t \cdot \gamma}{\frac{3}{\gamma} + \frac{2\gamma}{3} \cdot t} = \frac{1}{\frac{3}{t \cdot \gamma^2} + \frac{2}{3}}.
$$

When $t > 9/\gamma^2$, this value is greater than 1. On the other hand, since $\frac{\mathbf{w} \cdot \mathbf{w}^*}{\|\mathbf{w}\|}$ is the cosine value of the angle between w and w^* and cannot be greater than 1, we know that the algorithm terminates within $9/\gamma^2$ steps.

- 2. 7. (Proof omitted).
- 3. Let $A \subseteq U$ be a set that is shattered such that $|A| = d$. Suppose that $A = \{a_1, a_2, \ldots, a_d\}$ and $\epsilon < 1/2$.

Consider the following probability distribution

$$
p(a_i) = \begin{cases} \frac{4\epsilon}{d} & \text{for } i \le d/2\\ 0 & \text{for } d/2 < i \le d-1\\ 1-2\epsilon & \text{for } i = d \end{cases}.
$$

Note that for every $S \subseteq \{a_1, a_2, \ldots, a_{d/2}\}\$ such that $|S| \ge d/4$, we have that $p(S) \ge \epsilon$. Therefore, there exists $S' \subseteq \mathcal{F}$ such that $S' \cap A = S$ (therefore $p(S') = p(S) \geq \epsilon$ by the definition of p).

Since we need to hit all the sets which intersect $\{a_1, a_2, \ldots, a_{d/2}\}$ with at least $d/4$ elements, we need to choose at least $d/4$ elements from $\{a_1, a_2, \ldots, a_{d/2}\}$. It is easy to see that $\Omega(d/\epsilon)$ samples are needed.

- 4. (a) $n.$ (Proof omitted.)
	- (b) Suppose q is the unknown conjunction function being learned. For any conjunction function f, if the algorithm sees a sample x such that $f(x) \neq g(x)$, f cannot be the final output of the algorithm. Therefore, if f is ϵ -far from g, at each sample, with probability ϵ , f is "killed". In total, if f is ϵ -far from g, f survives with probability at most $(1 - \epsilon)^m$ where m is the number of samples the algorithm uses.

Since there are at most 3^n possible conjunction functions (therefore this is also an upper bound for the number of conjunction functions that are ϵ -far from g), by a union bound, the probability at a function ϵ -far from g survives is at most $(1 - \epsilon)^m \cdot 3^n$. By making $m = c \cdot \frac{1}{\epsilon}$ $\frac{1}{\epsilon}(n + \log(1/\delta))$ for some large enough c, we are able to make the probability at most δ .

- 5. (a) Since the dimension of v_F is $|\mathcal{S}_d|$, the number of independent vectors $|\{v_F : F \in \mathcal{F}\}| = |\mathcal{F}|$ is at most $|\mathcal{S}_d| = \sum_{i=0}^d \binom{n}{i}$ $\binom{n}{i}$.
	- (b) Note that we have $\sum_{F \in \mathcal{F}} \alpha_F v_F = 0$. At coordinate X, we have $\sum_{F \in \mathcal{F}} \alpha_F v_F(X) = 0$. Since $v_F(X) = 1$ when $\overline{X} \subseteq F$ and $v_F(X) = 0$ otherwise, we get

$$
\mu(X) = \sum_{F \in \mathcal{F}: X \subseteq F} \alpha_F = 0.
$$

(c) Since α is not a 0 vector, let T be the maximum-sized set in F such that $\alpha_T \neq 0$. Observe that

$$
\mu(T) = \sum_{F \in \mathcal{F}: T \subseteq F} \alpha_F = \alpha_T \neq 0.
$$

(d) Observe that

$$
\sum_{W:Z\subseteq W\subseteq Y}(-1)^{|W\setminus Z|}\mu(W)
$$
\n
$$
=\sum_{W:Z\subseteq W\subseteq Y}(-1)^{|W\setminus Z|}\sum_{F\in\mathcal{F}:W\subseteq F}\alpha_F
$$
\n
$$
=\sum_{F\in\mathcal{F}:Z\subseteq F}\alpha_F\sum_{W:Z\subseteq W\subseteq Y,W\subseteq F}(-1)^{|W\setminus Z|}
$$
\n
$$
=\sum_{F\in\mathcal{F}:Z\subseteq F}\alpha_F\sum_{W:Z\subseteq W\subseteq Y\cap F}(-1)^{|W\setminus Z|},
$$

where for $Z \subseteq Y \cap F$, $\sum_{W:Z \subseteq W \subseteq Y \cap F} (-1)^{|W \setminus Z|} = 1$ only when $Z = Y \cap F$ and it equals 0 otherwise. Therefore, we have

$$
\sum_{W:Z\subseteq W\subseteq Y}(-1)^{|W\backslash Z|}\mu(W)=\sum_{F\in\mathcal{F}:Z\subseteq F}\alpha_F\sum_{W:Z\subseteq W\subseteq Y\cap F}(-1)^{|W\backslash Z|}=\sum_{F\in\mathcal{F}:Y\cap F=Z}\alpha_F.
$$

(e) Since Y is the set with smallest cardinality such that $\mu(Y) \neq 0$, we have $\mu(W) = 0$ for all $W \subsetneq Y$. Thus,

$$
\sum_{W:Z\subseteq W\subseteq Y} (-1)^{|W\setminus Z|} \mu(W) = (-1)^{|Y\setminus Z|} \mu(Y) \neq 0.
$$

Therefore, by part (d), we have

$$
\sum_{F \in \mathcal{F}: Y \cap F = Z} \alpha_F \neq 0.
$$

Therefore, there exists at least one $F \in \mathcal{F}$ such that $Y \cap F = Z$.

(f) By part (e), Y is shattered by \mathcal{F} . By part (b), we have that $|Y| > d$. Therefore, the VC dimension of $\mathcal F$ is at least $d+1$ – a contradiction.