
Hindsight Experience Replay
Practice Environment
Siddharth Ancha, Nicholay Topin

MLD, Carnegie Mellon University
(10-703 Recitation Slides)

1

Environment (states)

2

Goal
(random initial location within boundary)
(does not move during episode)

Box
(fixed initial position)
(can be pushed by pusher)

Pusher
(fixed initial position)
(directly controlled by agent)

Each state is of form:

(Xpusher, Ypusher, Xbox, Ybox, Xgoal, Ygoal)

Environment (transitions)

3

• Each action is of form:

(Xmovement, Ymovement)

• Moves pusher proportional to values

• Box moves if pusher collides with it

Environment (rewards)

4

• Uniform reward for non-terminal step
(living penalty of -1)

• Terminates if out of bounds
(prorated negative reward)

• Terminates if box touches goal
(0 reward)

• Also terminates after “max steps”
(same -1 living penalty)

HER Motivation
• 2D Pusher environment has sparse reward

• Random actions rarely push box into goal

• As a result, most tuples have -1 reward (few “informative” tuples)

• Even though agent is not getting to goal, it is getting somewhere

• Could learn how to reach desired state of world from arbitrary reached states

• Main idea: Create new trajectory with new goal which is reached in trajectory

5

HER Intuition

6

HER Pseudocode (1)

7

Standard DRL

HER Pseudocode (2)

8

Core HER procedure

Implementation (provided code)

9

#returns list of new states and list of new rewards for use with HER
def apply_hindsight(self, states, actions, goal_state):
 goal = goal_state[2:4] #get new goal location (last location of box)
 states.append(goal_state)
 num_tuples = len(actions)
 her_states, her_rewards = [], []
 states[0][-2:] = goal.copy()
 her_states.append(states[0])
 #for each state, adjust goal and calculate reward obtained
 for i in range(1, num_tuples + 1):

 state = states[i]
 state[-2:] = goal.copy()
 reward = self._HER_calc_reward(state)
 her_states.append(state)
 her_rewards.append(reward)

 return her_states, her_rewards

Implementation (standard loop)

10

 action, q = agent.pi(obs, apply_noise=True, compute_Q=True)
 assert action.shape == env.action_space.shape

 new_obs, r, done, info = env.step(max_action * action)
t += 1

 episode_reward += r
 episode_step += 1
 agent.store_transition(obs, action, r, new_obs, done)

 # storing info for hindsight
 if kwargs["her"]:
 states.append(obs.copy())
 actions.append(action.copy())

 obs = new_obs

 if done:
[...]

Implementation (HER change)

11

 [...]
if done:

 if kwargs["her"]:
 # create hindsight experience replay
 her_states, her_rewards =

env.env.apply_hindsight(states, actions, new_obs.copy())

 # store her transitions: her_states: n+1, her_rewards: n
 for her_i in range(len(her_states)-1):
 agent.store_transition(her_states[her_i], actions[her_i],

her_rewards[her_i], her_states[her_i+1],
her_rewards[her_i] == 0)

[perform memory replay]

Parameters

12

• We used OpenAI Baselines DDPG

• Batch size = 128

• Gamma = 0.98

• Learning rate (actor) = 1e-4

• Learning rate (critic) = 1e-3

• Noise = epsilon normal action noise (0.01, 0.2)

• Architecture (actor and critic) = 3 hidden layers each, 64 nodes each

• Num actors = 8

• Max rollout steps = 320

Comparison Plots

13

