
Natural Policy Gradients, TRPO, PPO

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

 CMU 10703

Part of the slides adapted from John Shulman and Joshua Achiam

Stochastic policies
continuous actions

discrete actions

usually multivariate
Gaussian

almost always
categorical

a ⇠ N (µ✓(s),�
2
✓(s))

a ∼ Cat(pθ(s))

µ✓(s)

�✓(s)

pθ(s)

θ

θ

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Policy Gradients
Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ
This lecture is all about the stepwise

\What is the underlying objective function?
̂g ≈

1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)A(s(i)
t , a(i)

t), τi ∼ πθPolicy gradients:

What is our objective? Result from differentiating the objective function:

JPG(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α(i)
t |s(i)

t)A(s(i)
t , a(i)

t) τi ∼ πθ

Is this our objective? We cannot both maximize over a variable and sample from it.

Compare to supervised learning and maximum likelihood estimation (MLE). Imagine we
have access to expert actions, then the loss function we want to optimize is:

JSL(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α̃(i)
t |s(i)

t), τi ∼ π*

which maximizes the probability of expert actions in the training set.
Is this our SL objective?

Well, we cannot optimize it too far, our advantage estimates are from samples of
\pi_theta_{old}. However, this constraint of “cannot optimize too far from \theta_{old}”
does not appear anywhere in the objective.

Well, as a matter of fact, we care about test error, but this is a long story, the short
answer is yes, this is good enough for us to optimize if we regularize.

+regularization

Policy Gradients
Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ
This lecture is all about the stepwise

It is also about writing down an objective that we can
optimize with PG, and the procedure 1,2,3,4,5 will be the
result of this objective maximization

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

Policy Gradients
Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

Two problems with the vanilla formulation:
1. Hard to choose stepwise
2. Sample inefficient: we cannot use data

collected with policies of previous
iterations

ϵ

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Hard to choose stepsizes

• Step too big
 Bad policy->data collected under bad
policy-> we cannot recover
(in Supervised Learning, data does not
depend on neural network weights)

• Step too small
Not efficient use of experience
(in Supervised Learning, data can be
trivially re-used)

θnew = θold + α ⋅ ̂g

Gradient descent in parameter space
does not take into account the
resulting distance in the (output) policy
space between andπθold

(s) πθnew
(s)

Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Hard to choose stepsizes

θnew = θold + α ⋅ ̂g

Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Notation

θnew = θold + α ⋅ ̂g

We will use the following to denote values of parameters and corresponding policies before
and after an update:

θold → θnew
πold → πnew

θ → θ′�

π → π′�

Gradient Descent in Parameter Space
The stepwise in gradient descent results from solving the following optimization problem, e.g.,
using line search:

Euclidean distance in parameter space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

θnew = θold + d *SGD:

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg max
∥d∥≤ϵ

J(θ + d)

It is hard to predict the result on the parameterized distribution..

µ✓(s)

�✓(s)θ

Gradient Descent in Distribution Space
The stepwise in gradient descent results from solving the following optimization problem, e.g.,
using line search:

d * = arg max
d, s.t. KL(πθ∥πθ+d)≤ϵ

J(θ + d)

Euclidean distance in parameter space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

θnew = θold + d *SGD:
d * = arg min

∥α ̂g∥≤ϵ
JPG(θ + α ̂g)

d * = arg max
∥d∥≤ϵ

J(θ + d)

KL divergence in distribution space

It is hard to predict the result on the parameterized distribution.. hard to pick the threshold
epsilon

Natural gradient descent: the stepwise in parameter space is determined by
considering the KL divergence in the distributions before and after the update:

Easier to pick the distance threshold!!!

Solving the KL Constrained Problem

First order Taylor expansion for the loss and second order for the KL:

d * = arg max
d

J(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

Taylor expansion of KL
DKL(pθold

|pθ) ≈ DKL(pθold
|pθold

) + d⊤ ∇θDKL(pθold
|pθ) |θ=θold

+
1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

= −𝔼x∼pθold
∇θlog Pθ(x) |θ=θold

= −𝔼x∼pθold

1
Pθold

(x)
∇θPθ(x) |θ=θold

= ∫x
Pθold

(x)
1

Pθold
(x)

∇θPθ(x) |θ=θold

= ∫x
∇θPθ(x) |θ=θold

= ∇θ ∫x
Pθ(x) |θ=θold

.

= 0
KL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

Taylor expansion of KL
DKL(pθold

|pθ) ≈ DKL(pθold
|pθold

) + d⊤ ∇θKL(pθold
|pθ) |θ=θold

+
1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)

∇2
θDKL(pθold

|pθ) |θ=θold
= −𝔼x∼pθold

∇2
θlog Pθ(x) |θ=θold

= −𝔼x∼pθold
∇θ(∇θPθ(x)

Pθ(x)) |θ=θold

= −𝔼x∼pθold (∇2
θPθ(x)Pθ(x) − ∇θPθ(x)∇θPθ(x)⊤

Pθ(x)2) |θ=θold

= −𝔼x∼pθold

∇2
θPθ(x) |θ=θold

Pθold
(x)

+ 𝔼x∼pθold
∇θlog Pθ(x)∇θlog Pθ(x)⊤ |θ=θold

= 𝔼x∼pθold
∇θlog Pθ(x)∇θlog Pθ(x)⊤ |θ=θold

DKL(pθold
|pθ) = 𝔼x∼pθold

log (
Pθold

(x)
Pθ(x))

Fisher Information Matrix

∇2
θ′�(− ∫ p(x |θ)log(p(x |θ′�))

F(θ) = 𝔼θ [∇θlog pθ(x)∇θlog pθ(x)⊤]

Exactly equivalent to the Hessian of KL divergence!

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

=
1
2

d⊤F(θold)d

=
1
2

(θ − θold)⊤F(θold)(θ − θold)

Since KL divergence is roughly analogous to a distance measure between
distributions, Fisher information serves as a local distance metric between
distributions: how much you change the distribution if you move the parameters a
little bit in a given direction.

F(θold) = ∇2
θDKL(pθold

|pθ) |θ=θold

First order Taylor expansion for the loss and second order for the KL:

d * = arg max
d

J(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

= arg max
d

∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤F(θold)d)

= arg min
d

− ∇θ J(θ) |θ=θold
⋅ d +

1
2

λ(d⊤F(θold)d)

Substitute for the information matrix:

Solving the KL Constrained Problem

The natural gradient:

Natural Gradient Descent
Setting the gradient to zero:

0 =
∂
∂d (−∇θ J(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θ J(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θ J(θ) |θ=θold

∇̃J(θ) = F−1(θold)∇θ J(θ)

θnew = θold + α ⋅ F−1(θold) ̂g

DKL(πθold
|πθ) ≈

1
2

(θ − θold)⊤F(θold)(θ − θold)

1
2

(αgN)⊤F(αgN) = ϵ

α =
2ϵ

(g⊤
NFgN)

Natural Gradient Descent

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation

ϵ

Both use samples from the current policy \pi_k

Natural Gradient Descent

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation

ϵ

very expensive to compute for a large number of parameters!

Policy Gradients
Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

θold

θnew

μθold
(s)

σθold
(s)

σθnew
(s)

μθnew
(s)

θnew = θold + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθold

Policy Gradients
Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

θold

θnew

μθold
(s)

σθold
(s)

σθnew
(s)

μθnew
(s)

θnew = θold + ϵ ⋅ ̂g

1. Collect trajectories for policy
2. Estimate advantages
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθold

• On policy learning can be extremely
inefficient

• The policy changes only a little bit with
each gradient step

• I want to be able to use earlier data..how
to do that?

J(θ) = 𝔼τ∼πθ(τ) [R(τ)]
= ∑

τ

πθ(τ)R(τ)

= ∑
τ

πθold
(τ)

πθ(τ)
πθold

(τ)
R(τ)

= ∑
τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

= 𝔼τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

∇θ J(θ) = 𝔼τ∼πθold

∇θπθ(τ)
πθold

(τ)
R(τ)

Off policy learning with Importance Sampling

<-Gradient evaluated at theta_old is unchanged∇θ J(θ) |θ=θold
= 𝔼τ∼πθold

∇θ log πθ(τ) |θ=θold
R(τ)

J(θ) = 𝔼τ∼πθ(τ) [R(τ)]
= ∑

τ

πθ(τ)R(τ)

= ∑
τ

πθold
(τ)

πθ(τ)
πθold

(τ)
R(τ)

= ∑
τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

= 𝔼τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

Off policy learning with Importance Sampling

J(θ) = 𝔼τ∼πθold

T

∑
t=1

t

∏
t′�=1

πθ(a′ �t |s′�t)
πθold

(a′ �t |s′�t)
̂At

πθ(τ)
πθold

(τ)
=

T

∏
i=1

πθ(at |st)
πθold

(at |st)

Now we can use data from the old
policy, but the variance has
increased by a lot! Those
multiplications can explode or
vanish!

∇θ J(θ) |θ=θold
= 𝔼τ∼πθold

∇θ log πθ(τ) |θ=θold
R(τ)

∇θ J(θ) = 𝔼τ∼πθold

∇θπθ(τ)
πθold

(τ)
R(τ)

Trust Region Policy Optimization

I Define the following trust region update:

maximize
✓

Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�

subject to Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]] �.

I Also worth considering using a penalty instead of a constraint

maximize
✓

Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
� �Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]

I Method of Lagrange multipliers: optimality point of �-constrained problem
is also an optimality point of �-penalized problem for some �.

I In practice, � is easier to tune, and fixed � is better than fixed �

Trust region Policy Optimization

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Again the KL penalized problem!

Solving KL Penalized Problem

I maximize✓ L⇡✓old
(⇡✓)� � ·KL⇡✓old

(⇡✓)

I Make linear approximation to L⇡✓old
and quadratic approximation to KL term:

maximize
✓

g · (✓ � ✓old)� �
2 (✓ � ✓old)

TF (✓ � ✓old)

where g =
@

@✓
L⇡✓old

(⇡✓)
��
✓=✓old

, F =
@2

@2✓
KL⇡✓old

(⇡✓)
��
✓=✓old

I Quadratic part of L is negligible compared to KL term
I F is positive semidefinite, but not if we include Hessian of L

I Solution: ✓ � ✓old = 1
�F

�1g , where F is Fisher Information matrix, g is

policy gradient. This is called the natural policy gradient3.

3S. Kakade. “A Natural Policy Gradient.” NIPS. 2001.

Solving KL penalized problem

Exactly what we saw with natural policy gradient!
One important detail!

Trust region Policy Optimization

Trust Region Policy Optimization

Small problems with NPG update:
Might not be robust to trust region size �; at some iterations � may be too large and
performance can degrade
Because of quadratic approximation, KL-divergence constraint may be violated

Solution:
Require improvement in surrogate (make sure that L✓k (✓k+1) � 0)
Enforce KL-constraint

How? Backtracking line search with exponential decay (decay coe↵ ↵ 2 (0, 1), budget L)

Algorithm 2 Line Search for TRPO

Compute proposed policy step �k =
q

2�

ĝT
k
Ĥ
�1
k

ĝk

Ĥ
�1
k

ĝk

for j = 0, 1, 2, ..., L do

Compute proposed update ✓ = ✓k + ↵j�k

if L✓k (✓) � 0 and D̄KL(✓||✓k) � then

accept the update and set ✓k+1 = ✓k + ↵j�k

break
end if

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 32 / 41

Trust region Policy Optimization
Due to the quadratic approximation, the KL constraint may be violated! What if we just do a
line search to find the best stepsize, making sure:
• I am improving my objective J(\theta)
• The KL constraint is not violated!

Trust Region Policy Optimization

I Define the following trust region update:

maximize
✓

Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�

subject to Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]] �.

I Also worth considering using a penalty instead of a constraint

maximize
✓

Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
� �Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]

I Method of Lagrange multipliers: optimality point of �-constrained problem
is also an optimality point of �-penalized problem for some �.

I In practice, � is easier to tune, and fixed � is better than fixed �

Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 33 / 41

Trust region Policy Optimization
TRPO= NPG +Linesearch

Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 33 / 41

Trust region Policy Optimization
TRPO= NPG +Linesearch+monotonic improvement theorem!

Relating objectives of two policies

Policy objective:

Policy objective can be written in terms of old one:

J(πθ) = 𝔼τ∼πθ

∞

∑
t=0

γtrt

J(πθ′�) − J(πθ) = 𝔼τ∼π′�θ

∞

∑
t=0

γtAπθ(st, at)

J(π′�) − J(π) = 𝔼τ∼π′�

∞

∑
t=0

γtAπ(st, at)

Equivalently for succinctness:

Proof of Relative Policy Performance Identity

J(⇡0)� J(⇡) = E
⌧⇠⇡0

" 1X

t=0

�t
A

⇡(st , at)

#

= E
⌧⇠⇡0

" 1X

t=0

�t (R(st , at , st+1) + �V ⇡(st+1)� V
⇡(st))

#

= J(⇡0) + E
⌧⇠⇡0

" 1X

t=0

�t+1
V

⇡(st+1)�
1X

t=0

�t
V

⇡(st)

#

= J(⇡0) + E
⌧⇠⇡0

" 1X

t=1

�t
V

⇡(st)�
1X

t=0

�t
V

⇡(st)

#

= J(⇡0)� E
⌧⇠⇡0

[V ⇡(s0)]

= J(⇡0)� J(⇡)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 12 / 41Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford 2002

Relating objectives of two policies

The initial state distribution is the same for both!

Relating objectives of two policies
Discounted state visitation distribution:

J(π′�) − J(π) = 𝔼τ∼π′�

∞

∑
t=0

γtAπ(st, at)

= 𝔼s∼dπ′�,a∼π′�A
π(s, a)

= 𝔼s∼dπ′�,a∼π [π′�(a |s)
π(a |s)

Aπ(s, a)]
But how are we supposed to sample states from the policy we are trying to optimize for…
Let’s use the previous policy to sample them.

J(π′�) − J(π) ≈ 𝔼s∼dπ,a∼π
π′�(a |s)
π(a |s)

Aπ(s, a)

= ℒπ(π′�)

It turns out we can bound this approximation error:

A Useful Approximation

What if we just said d
⇡0

⇡ d
⇡ and didn’t worry about it?

J(⇡0)� J(⇡) ⇡
1

1� �
E

s⇠d
⇡

a⇠⇡

⇡0(a|s)
⇡(a|s)

A
⇡(s, a)

�

.
= L⇡(⇡

0)

Turns out: this approximation is pretty good when ⇡0 and ⇡ are close! But why, and how
close do they have to be?

Relative policy performance bounds: 2

��J(⇡0)�
�
J(⇡) + L⇡(⇡

0)
��� C

q
E

s⇠d
⇡
[DKL(⇡0||⇡)[s]] (2)

If policies are close in KL-divergence—the approximation is good!

2Achiam, Held, Tamar, Abbeel, 2017
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 15 / 41

Constrained Policy Optimization, Achiam et al. 2017

dπ(s) = (1 − γ)
∞

∑
t=0

γtP(st = s |π)

Relating objectives of two policies
ℒπ′�

π = 𝔼s∼dπ,a∼π [π′�(a |s)
π(a |s)

Aπ(s, a)]
= 𝔼τ∼π [

∞

∑
t=0

π′�(at |st)
π(at |st)

Aπ(st, at)]
This is something we can optimize using trajectories from the old policy!

Now we do not have the product! So, the gradient will have much smaller variance! (Yes, but
we have approximated, that’s why!) What is the gradient?

∇θℒθ
θk

|θ=θk
= 𝔼τ∼πθk [

∞

∑
t=0

γt
∇θπθ(at |st) |θ=θk

πθk
(at |st)

Aπθk(st, at)]
= 𝔼τ∼πθk [

∞

∑
t=0

γt ∇θ log πθ(at |st) |θ=θk
Aπθk(st, at)]

J(θ) = 𝔼τ∼πθold

T

∑
t=1

t

∏
t′�=1

πθ(a′�t |s′�t)
πθold

(a′�t |s′�t)
̂At

Compare to Importance Sampling:

⇒ J(π′�) − J(π) ≥ ℒπ(π′�) − C 𝔼s∼dπ [KL(π′�|π)[s]]

|J(π′�) − (J(π) + ℒπ(π′�)) | ≤ C 𝔼s∼dπ [KL(π′�|π)[s]]

Given policy , we want to optimize over policy to maximize .π π′�

• If we maximize the RHS we are guaranteed to maximize the LHS.
• We know how to maximize the RHS. I can estimate both quantities of \pi’ with

sampled from \pi

• But will i have a better policy \pi’? (knowing that the distance of the objectives is
maximized is not enough, there needs to be positive or equal to zero)

Monotonic Improvement Theorem

Monotonic Improvement Theory

Proof of improvement guarantee: Suppose ⇡k+1 and ⇡k are related by

⇡k+1 = argmax
⇡0

L⇡k
(⇡0)� C

q
E

s⇠d
⇡
k

[DKL(⇡0||⇡k)[s]].

⇡k is a feasible point, and the objective at ⇡k is equal to 0.
L⇡k

(⇡k) / E
s,a⇠d

⇡
k ,⇡k

[A⇡k (s, a)] = 0

DKL(⇡k ||⇡k)[s] = 0

=) optimal value � 0

=) by the performance bound, J(⇡k+1)� J(⇡k) � 0

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 21 / 41

Monotonic Improvement Theorem

• Theory is very conservative (high value of C) and we will use KL distance of pi’ and
pi as a constraint (trust region) as opposed to a penalty:

Approximate Monotonic Improvement

Approximate Monotonic Improvement

⇡k+1 = argmax
⇡0

L⇡k
(⇡0)� C

q
E

s⇠d
⇡
k

[DKL(⇡0||⇡k)[s]]. (3)

Problem:

C provided by theory is quite high when � is near 1

=) steps from (3) are too small.

Solution:

Instead of KL penalty, use KL constraint (called trust region).

Can control worst-case error through constraint upper limit!

⇡k+1 = argmax
⇡0

L⇡k
(⇡0)

s.t. E
s⇠d

⇡
k

⇥
DKL(⇡

0
||⇡k)[s]

⇤
 �

(4)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 22 / 41

Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 33 / 41

Trust region Policy Optimization
TRPO= NPG +Linesearch+monotonic improvement theorem!

Proximal Policy Optimization
Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k)

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP

✓k
(✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t
, clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t
)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 35 / 41

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Proximal Policy Optimization with Adaptive KL Penalty

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters ✓0, initial KL penalty �0, target KL-divergence �
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L✓k (✓)� �kD̄KL(✓||✓k)

by taking K steps of minibatch SGD (via Adam)
if D̄KL(✓k+1||✓k) � 1.5� then

�k+1 = 2�k

else if D̄KL(✓k+1||✓k) �/1.5 then

�k+1 = �k/2
end if

end for

Initial KL penalty not that important—it adapts quickly
Some iterations may violate KL constraint, but most don’t

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 36 / 41

PPO: Adaptive KL Penalty

Don’t use second order approximation for Kl which is
expensive, use standard gradient descent

Proximal Policy Optimization: Clipping Objective

I Recall the surrogate objective

LIS(✓) = Êt

⇡✓(at | st)
⇡✓old(at | st)

Ât

�
= Êt

h
rt(✓)Ât

i
. (1)

I Form a lower bound via clipped importance ratios

LCLIP(✓) = Êt

h
min(rt(✓)Ât , clip(rt(✓), 1� ✏, 1 + ✏)Ât)

i
(2)

I Forms pessimistic bound on objective, can be optimized using SGD

PPO: Clipped Objective

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Proximal Policy Optimization with Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible
about performance far away from ✓k :

Figure: Various objectives as a function of interpolation factor ↵ between ✓k+1 and ✓k after one
update of PPO-Clip 9

9Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 38 / 41

Proximal Policy OptimizationPPO: Clipped Objective

Proximal Policy Optimization with Clipped Objective

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters ✓0, clipping threshold ✏
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L
CLIP

✓k (✓)

by taking K steps of minibatch SGD (via Adam), where

L
CLIP

✓k (✓) = E
⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t)
i#

end for

Clipping prevents policy from having incentive to go far away from ✓k+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
implement

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 37 / 41

PPO: Clipped Objective

Empirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

10Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 39 / 41

PPO: Clipped Objective

Summary
• Gradient Descent in Parameter VS distribution space
• Natural gradients: we need to keep track of how the KL changes

from iteration to iteration
• Natural policy gradients
• Clipped objective works well

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Related Readings

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releasesJ. Achiam, D. Held, A. Tamar, P. Abeel “Constrained Policy Optimization”. (2017)

