10703 Deep Reinforcement Learning

Policy Gradient Methods - Part 2

Tom Mitchell

October 3, 2018

Reading: Barto & Sutton, Chapter 13

Used Materials

• Much of the material and slides for this lecture were taken from Chapter 13 of Barto & Sutton textbook.

 Some slides are borrowed from Ruslan Salakhutdinov, who in turn borrowed from Rich Sutton's RL class and David Silver's Deep RL tutorial

Value-Based and Policy-Based RL

- Value Based
 - Learn a Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based
 - Learn a Policy directly

- Actor-Critic
 - Learn a Value Function, and
 - Learn a Policy

REINFORCE algorithm

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ (e.g., to **0**) Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \dots, T - 1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ $\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi(A_t|S_t, \theta)$ (G **Typical Parameterized Differentiable Policy**

Softmax.

$$\pi(a|s,\boldsymbol{\theta}) \doteq \frac{e^{h(s,a,\boldsymbol{\theta})}}{\sum_{b} e^{h(s,b,\boldsymbol{\theta})}},$$

where $h(s, a, \theta)$ is any function of s, a with params θ e.g., linear function of features $\mathbf{x}(s, a)$ you make up $h(s, a, \theta) = \theta^{\top} \mathbf{x}(s, a)$ $\mathbf{x}(s, a) \in \mathbb{R}^d$

e.g., $h(s,a,\theta)$ is output of trained neural net

Good news:

- REINFORCE converges to local optimum under usual SGD assumptions
- because $E_{\pi}[G_t] = Q(S_t, A_t)$

- But variance is high
- recall high variance of Monte Carlo sampling

Two remedies:

- add a baseline (learn diff from baseline)
- Actor-Critic model (learn both Q and π)

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to $\mathbf{0}$)

Loop forever (for each episode):
Generate an episode
$$S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$$
, following $\pi(\cdot|\cdot, \theta)$
Loop for each step of the episode $t = 0, 1, \ldots, T - 1$:
 $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$
 $\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$
 $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t \delta \nabla \ln \pi(A_t | S_t, \boldsymbol{\theta})$$

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, a

Good news:

- REINFORCE converges to local optimum under usual SGD assumptions
- because $E_{\pi}[G_t] = Q(S_t, A_t)$

- But variance is high
- recall high variance of Monte Carlo sampling

Two remedies:

- add a baseline (learn diff from baseline)
- Actor-Critic model (learn both Q and π)

Actor-Critic Model

- learn both Q and π
- use Q to generate target values, instead of G

One step actor-critic model:

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &\doteq \boldsymbol{\theta}_t + \alpha \Big(\underline{G_{t:t+1}} - \hat{v}(S_t, \mathbf{w}) \Big) \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)} \\ &= \boldsymbol{\theta}_t + \alpha \Big(\underline{R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})} - \hat{v}(S_t, \mathbf{w}) \Big) \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)} \\ &= \boldsymbol{\theta}_t + \alpha \delta_t \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)}. \end{aligned}$$

One-step Actor-Critic (episodic), for estimating $\pi_{\theta} \approx \pi_*$

```
Input: a differentiable policy parameterization \pi(a|s, \theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \ \alpha^{\mathbf{w}} > 0
Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    I \leftarrow 1
    Loop while S is not terminal (for each time step):
          A \sim \pi(\cdot | S, \theta)
          Take action A, observe S', R
          \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
          \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})
          \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \, \delta \nabla \ln \pi (A|S, \boldsymbol{\theta})
          I \leftarrow \gamma I
          S \leftarrow S'
```

Summary:

Monte Carlo Policy Gradient:

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha G_t \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)}$$

Monte-Carlo Policy Gradient with baseline:

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \Big(G_t - b(S_t) \Big) \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)}$$

Actor-Critic Policy Gradient

$$\theta_{t+1} = \theta_t + \alpha (R_t + \gamma \hat{v}(S_{t+1}) - \hat{v}(S_t)) \frac{\nabla \pi (A_t | S_t, \theta_t)}{\pi (A_t | S_t, \theta_t)}$$