Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Asynchronous RL

CMU 10703

Katerina Fragkiadaki

Non-stationary data problem for Deep RL

 Stability of training neural networks requires the gradient updates to be de-
correlated

* This is not the case if data arrives sequentially

» Gradient updates computed from some part of the space can cause the value
(Q) function approximator to oscillate

» Qur solution so far has been: Experience buffers where experience tuples are
mixed and sampled from. Resulting sampled batches are more stationary that
the ones encountered online (without buffer)

» This limits deep RL to off-policy methods, since data from an older policy are
used to update the weights of the value approximator.

Asynchronous Deep RL

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih'! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia'! ADRIAP @ GOOGLE.COM
Mehdi Mirza' 2 MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap’ COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

! Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

« Alternative: parallelize the collection of experience and stabilize training
without experience buffers!

* Multiple threads of experience, one per agent, each exploring in different
part of the environment contributing experience tuples

- Different exploration strategies (e.g., various \epsilon values) in different
threads increase diversity

It can be applied to both on policy and off policy methods, applied it to
SARSA, DQN, and advantage actor-critic

2

Worker 1

!

ﬁ‘

Distributed RL

Global Network

Policy i(s) | Vis)

Network

I

L Input (s) u

.

Worker 2 Worker 3

! !

S

Worker n

!

Environment 1 ‘ Environment 2 ‘ Environment3 ... @ Environmentn

Distributed Asynchronous RL

5. Worker q
updates global 1. Worker reset
network with to global
gradients network

4. Worker 2. Worker
gets interacts
gradients with
from losses environment
3. Worker
' calculates
value and
policy loss

The actor critic trained in such asynchronous way is knows as A3C

Distributed Synchronous RL

5. Gradients of all
workers are averaged and
the central neural net
weights are updated

1. Worker reset
to global
network

4. Worker 2. Worker
gets interacts
gradients with
from losses environment
_ 3. Worker
’ calculates
value and
policy loss

The actor critic trained in such synchronous way is knows as A2C

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0., and global shared counter T’ = 0
// Assume thread-specific parameter vectors 0’ and 0,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df <— 0 and df, < 0.
Synchronize thread-specific parameters ' = 0 and 0, = 0,

tstart =1
Get state s;
repeat

Perform a; according to policy 7(a¢|s:; 60")
Receive reward r; and new state s;1

t+—t+1
T+ T+1
until terminal s; or ¢t — tstart == tmax
R = 0 for terminal s;
o V (st, H,f,) for non-terminal s:// Bootstrap from last state
for 1 - {t — 1, “ e ,tstart} do
R+—r;+vR

Accumulate gradients wrt 0": df < df + Vg: log w(ai|si; 0') (R — V (s;;6y,))
Accumulate gradients wrt 0',: df, < db, + 8 (R — V (s;;0.,))* /80,
end for
Perform asynchronous update of 6 using df and of 6,, using df,,.
until 7' > T’

A3C

515925 53594

Fis¥r, I3

What is the approximation used for the advantage?
Ry =ry+yV(sy, 0) Ay =Ry — V(s3;0))
Ry =ry+yrs +7°V(s;, 0) Ay =R, — V(sy;6)

Score

Score

Score

Advantages of Asynchronous (multi-threaded

9000 Beamrider
— 1-step Q, 1 threads
8000 — 1-step Q, 2 threads
—— 1-step Q, 4 threads
—— 1-step Q, 8 threads
7000 1-step Q, 16 threads
6000
5000
4000
3000
2000
1000
0
0 2 4 6 8 10
Training time (hours)
12000 Beamrider
— n-step Q, 1 threads
— n-step Q, 2 threads
—— n-step Q, 4 threads
10000 —— n-step Q, 8 threads
n-step Q, 16 threads
8000
6000
4000
2000
0
0 2 4 6 8 10
Training time (hours)
16000 Beamrider
— A3C, 1 threads
—— A3C, 2 threads
14000 __ A3C, 4 threads
A3C, 8 threads
12000 A3C, 16 threads
10000
8000
6000
4000
2000
0=
0 2 4 6 8 10

TraininA tima (hAnre)

12

12

12

14

14

14

Score

Score

Score

300

250

200

100

50

350

300

250

200

100

50

600

500

400

300

200

100

Breakout 20 Pong
— 1-step Q, 1 threads — 1-step Q, 1 threads
—— 1-step Q, 2 threads 15 — 1-step Q, 2 threads
—— 1-step Q, 4 threads —— 1-step Q, 4 threads
—— 1-step Q, 8 threads 10 —— 1-step Q, 8 threads
1-step Q, 16 threads 1-step Q, 16 threads
5
[0} 0
o
o
O
v -5
-10
-15
-20
=25
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours)
Breakout 20 Pong
—— n-step Q, 1 threads =
—— n-step Q, 2 threads 15
—— n-step Q, 4 threads
—— n-step Q, 8 threads
n-step Q, 16 threads 10
5
8 0
o
O
v -5
-10
—15 — n-gtep Q, 1 threads
-step Q, 2 threads
—— n-step Q, 4 threads
-20 —— n-step Q, 8 threads
n-step Q, 16 threads
=25
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours)
Breakout 30 Pong
— A3C, 1 threads — A3C, 1 threads
—— A3C, 2 threads —— A3C, 2 threads
—— A3C, 4 threads 20 A3C, 4 threads e L
A3C, 8 threads A3C, 8 threads .
A3C, 16 threads A3C, 16 threads
10
o
e 0
0
-10
-20
- -30
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Trainina tima (hanre) Trainina tima (hanire)

Score

Score

Score

Q*bert

4000 800
— 1-step Q, 1 threads
— 1-step Q, 2 threads
3500 __ 1-step Q, 4 threads 700
—— 1-step Q, 8 threads
3000 1-step Q, 16 threads
600
2500
o 500
2000 §
400
1500 -
300
1000
500 200

L

0 100

0 2 4 6 8 10 12 14
Training time (hours)
k|
4500 Q*bert 800
— n-step Q, 1 threads
4 —— n-step Q, 2 threads
000 — n-step Q, 4 threads 700
—— n-step Q, 8 threads
3500 n-step Q, 16 threads
600
3000
2500 o 200
o
1%
2000 0 400
1500
300
1000
200
500
0 100
0 2 4 6 8 10 12 14
Training time (hours)
k|
12000 Q*bert 1600
— A3C, 1 threads
— A3C, 2 threads 1400
— A3C, 4 threads
10000 A3C, 8 threads
A3C, 16 threads 1200
8000
1000
<
6000 S 800
n
600
4000
400
2000
200
0 0
0 2 4 6 8 10 12 14

TraininAa tima (hAanre)

Space Invaders

1-step Q, 1 threads
1-step Q, 2 threads
1-step Q, 4 threads
1-step Q, 8 threads
1-step Q, 16 threads

0 2 4 6 8 10
Training time (hours)
Space Invaders
—— n-step Q, 1 threads
— n-step Q, 2 threads
—— n-step Q, 4 threads
—— n-step Q, 8 threads
n-step Q, 16 threads
0 2 4 6 8 10
Training time (hours)
Space Invaders
— A3C, 1 threads
— A3C, 2 threads
—— A3C, 4 threads
A3C, 8 threads
A3C, 16 threads
=
0 2 4 6 8 10

Trainina tima (hanre)

12

12

12

14

14

14

Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Evolutionary Methods

CMU 10703

Katerina Fragkiadaki

Part of the slides borrowed by Xi Chen, Pieter Abbeel, John Schulman

»

Policy Optimization

m@ax J(0) = Inng = [R(T) | 75, /40(50)]

T :a trajectory

Policy Optimization

m@ax J(0) = Inng = [R(T) | 75, /40(50)]

T :a trajectory

Policy Optimization and RL

T
max J(0) = max E [R(2) | . uo(sp)| = max E | Y R(s,) | 7y, p(s)
0 0 0 —0)

action

state
s, a,

T
max J(0) = max [[R(T) | 7y, ,uo(so)] = max E 2 R(s,) | my, po(s)
0 0 0

Policy Optimization Dynamic Programming
Policy Gradlents Pollcy lteration Value lteration
/ Q-Learning
Actor-Critic

Methods

max J(6) = max E [R(T) | 75, /40(50)]

0 0
Policy Optimization Dynamic Programming
Evolutionary methods \ / \
Policy Gradlents Policy lteration Value lteration
Q-Learning
Actor-Critic

Methods

Black-box Policy Optimization

meax J(0) = InHaX = [R(T) | 75, /40(50)]

No information regarding the structure of the reward

Evolutionary methods

mglx J(0) = InHaX = [R(T) | 75, ﬂo(So)]

General algorithm:
Initialize a population of parameter vectors (genotypes)

1. Make random perturbations (mutations) to each parameter

vector
2. Evaluate the perturbed parameter vector (fitness)

3. Keep the perturbed vector if the result improves (selection)
4.GOTO 1

Biologically plausible...

Cross-entropy method

Let’s consider our parameters to be sampled from a multivariate isotropic Gaussian
We will evolve this Gaussian towards sampled that have highest fithess

CEM:
Initialize y € R%, o € Rio
foriteration=1, 2, ...
Sample n parameters@;, ~ N (u, diag(aQ))
For each ¢,, performonerolloutto get return R(7;)

Select thetop k% of 6, and fit a new diagonal Gaussian
to those samples. Update i, 0

endfor

Covariance Matrix Adaptation

Let’s consider our parameters to be sampled from a multivariate Gaussian
We will evolve this Gaussian towards sampled that have highest fitness

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

0
o
0 © °
ox ©
o
0
0

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

 Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample
e Select elites

L » Update mean
» Update covariance

e |terate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

CMA-ES, CEM

Work embarrassingly well in low-dimensions

Method Mean Score Reference
Nonreinforcement learning

Hand-coded 631,167 Dellacherie (Fahey, 2003)

Genetic algorithm 586,103 (Bohm et al., 2004) Istvdn Szita and Andrds Lorincz. “Learning
Reinforcement learning Tetris using the noisy cross-entropy method".

Relational reinforcement ~50 Ramon and Driessens (2004) In: Neural computation 18.12 (2006) ,

learning+kernel-based regression op. 2936-2941
Policy iteration 3183 Bertsekas and Tsitsiklis (1996) '
Least squares policy iteration <3000 Lagoudakis, Parr, and
Littman (2002)

Linear programming + Bootstrap 4274 Farias and van Roy (2006)

Natural policy gradient ~6800 Kakade (2001)

CE+RL 21,252

CE+RL, constant noise 72,705 22

CE+RL, decreasing noise 348,895 ,U/ E R

Approximate Dynamic Programming Finally

Performs Well in the Game of Tetris [NIPS 2013]
Victor Gabillon Mohammad Ghavamzadeh* Bruno Scherrer
INRIA Lille - Nord Europe, INRIA Lille - Team SequeL. INRIA Nancy - Grand Est,
Team SequeL, FRANCE & Adobe Research Team Maia, FRANCE

victor.gabillon@inria.fr mohammad.ghavamzadeh@inria.fr ~ bruno.scherrer@inria.fr

* Evolutionary methods work well on relatively low-dim
problems

* Can they be used to optimize deep network policies?

We are sampling in both cases...

Policy Gradients Review

max . J(0) = E,_p o |R(D)|

0
VoJ(0) = V4E, p o |[RO)]

= VQZ P,(7)R(7)

=) VyPyR(1)

= Z P,(7) V, log P,(7)R(7)
=E,.po | Volog Py(DR(7)|
Sample estimate:

1 & | |
Vol0) & — ; V, log Py(z™)R(z®)

ES

Considers distribution over policy parameters

max. U(u) = Eg.p g |F(O),
U

V,Uw) = V,Eoop o) [F (8)]

= VM[Pﬂ(e)F(e)de

= v, P 0F@)0

_[p 9) Vulil®) F(0)do
T PO

= | PV, 102 PO)FO)d0

= Epp 0 [Vﬂlog Pﬂ(G)F(Q)]

ES

Considers distribution over policy parameters

max. U(u) = Eg.p g |F(O),
U

V,Uw) = V,Eoop o) [F (8)]

= VM[Pﬂ(e)F(e)de

= v, P 0F@)0

_[p 9) Vulil®) F(0)do
T PO

= | PV, 102 PO)FO)d0

= Epp 0 [Vﬂlog Pﬂ(G)F(Q)]
Sample estimate:

] & . .
VUG~ — YV log P(0D)F(OD)
i=1

PG ES

Considers distribution over actions Considers distribution over policy parameters
max. J(0) = E,.p,q [R@) max . U(u) = Eg.p) |F(O),
U
VoJ(0) = V4E, p o |ROD)] V, U = V,Eqp g [FO)
= V4 2, PAOR(® = VM[Pﬂ(H)F(Q)dQ
= Y V4P, (7)R "
2 0 49(1') (7) — | Vﬂpﬂ(Q)F(Q)de
V,Py(7) " V,.P,(0)
= R _ KoM
Z Pin)—p RO | PuO)r—p G- F)8
— ZPQ(T) Vlog Py(7)R(7) _ ppﬂ(@) Vﬂlog PM(Q)F(@)dQ

= E,.p | Volog Py(0)R(7)| = Egp,0) [Vﬂlog P ﬂ(H)F(Q)]

Sample estimate Sample estimate

V,J(0) ~ Z V,log Py(t)R(zV) vV, Up) ~ 2 V log P (0)F(6Y)
=1 =1

From trajectories to actions

T
Volog zy(a” | sS)R(s, al”)
I

N
VoJ(0) ~ Z Vglog Py(z")R(z") > Vol(0) »]1, 2

zl =1 t=

+1

Vylog P(z;0) = Vylog HP(S(’) s at(i)) : Jre(at(i)lst(i))

dynamics policy

=V, Zlog P(s? |52, a®) + log my(a® | s)

dynamics policy

T
— VQ Z 10g ﬂ@(at(l) | St(l))

=0 _
policy

T
= 2 Vlog ﬂe(at(l) | st(’))

PG

Considers distribution over actions

max. J(0) = E._p, R(7)|

VoJ(0) = V4E, p o |ROD)]
= Vy) PADR()

= 2 Vo P(0)R(z)

Vv, Py(7)

- 2 Py(7) Py(0) R(7)

— 2 Py(7) Vylog Py(7)R(7)

= E,.p | Volog Py(0)R(7)|

Sample estimate:

T

V,J(0) =~ Z Y Vilog zy(a® [sHR(s?, a

lltl

ES

Considers distribution over policy parameters

max. U(u) = Eg.p g |F(O),
U

V,Uw) = V,Eoop o) [F (6)]

v, [Pﬂ(H)F(Q)dé’

= v, P 0F@)0

_[p 9) Vulil®) F(0)do
T PO

= | PV, 102 PO)FO)d0

= Epp 0 [Vﬂlog Pﬂ(G)F(Q)]
Sample estimate

) vV, Uu) ~ 2 v log P,(0)F(6®)
i=1

A concrete example

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o271

6 — pl]*)
20_2 — COINS

0 — 1
0-2

log P,(0) = — ‘

V,logP,(0) =

A concrete example

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o271

16— pl*
log P,(0) = — SPCE const
0 _
Vv, log P,(0) = 02“

= If we draw two parameter samples 6,0, , and obtain two
trajectories 7, m»:

7 m

0, —
R(Tz) >

1| 0, —
R(z)) > .

Eo- (0 [VﬂlogPﬂ(Q)R(T)] >3 -

Sampling parameter vectors

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o1

Imagine we have access to random vectors € /V (O,I)

91=ﬂ+6*€1, 61 N,/V(O,])
O, =pu+o*e, ¢, ~ N(O,I)

The theta samples have the desired mean and variance

A concrete example

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o271

16— pl*
log P,(0) = — SPCE const
0 _
Vv, log P,(0) = 02“

= If we draw two parameter samples 6,0, , and obtain two
trajectories 7, m»:

1| 0 —u 0, —p
ooy | V,dogP(OR@)| = |RE)——= + Rz
1
0, =u+o%e, e ~ N0, ~ L [R(Tl)el T R(Tz)ez]

92:ﬂ+6*€2, €2N./V(O,I)

Natural Evolutionary Strategies

Algorithm 1 Evolution Strategies

l:
2:
3:

4.
5:
b

Input: Learning rate «, noise standard deviation o, initial policy parameters

fort=0,1,2,... do
Sample €1, ..., ~ N(0,1)
Compute returns F; = F(0; +o¢;)fori =1,...,n
Set 0t+l — 0t + O’n—lo,' Z?:l Fifi

end for

Connection to Finite Differences

= Antitheticsampling

= Sample a pair of policies with mirror noise (0. = u+ oe€,0_ =y — oe)

Connection to Finite Differences

= Antitheticsampling
= Sample a pair of policies with mirror noise (0. = u+ oe€,0_ =y — oe)

= Geta pairofrolloutsfromenvironment (7,,7_)

Connection to Finite Differences

= Antitheticsampling
= Sample a pair of policies with mirror noise (0. = u+ oe,0_ =y — oe)
= Geta pairofrolloutsfromenvironment (74,7_)

s SPSA: Finite Difference with random direction

VLERD) ~ g | R T 4 RS
— % :R(u)g +R(r.) _;1

[R(74) — R(7-)]

€
20

Connection to Finite Differences

= Antitheticsampling
= Sample a pair of policies with mirror noise (0. = u+ oe,0_ =y — oe)
= Geta pairofrolloutsfromenvironment (74,7_)

s SPSA: Finite Difference with random direction

L[, 0y —p 0 —n
V,.E[R(T)] ~ 5 R(7y) +02 - R(1_) 52]
1 i O€E —0€
~ 5 _R(T+)§ + R(7-) 52 } Finite Difference
€ oU . U(0+ee;) —U(0 — eey)
=5 R =R v GO =——— 5

FiNnite Differences

We can compute the gradient g using standard finite difference methods, as

follows:
oU (0) = U+ ee;) — U0 — ee;)
8_0j - 2€
Where:)
(0
e; = 0
7 1 | < j4'th entry
0
\ 0/

Evolution methods VS Policy Gradients

Sample estimate: Sample estimate:

VA 0] sR(sD. g vV, Up) ~ liv log P,(6)F(O"")
VyJ(0) ~ szvglogﬂe(at |5 IRGs, ™, a,7) ' NS
i=1 =1

= Open Question: Policy Gradient at action level or parameter level?

We add noise \epsilon in our actions (\epsilon-greedy)!

VoFpc(0) =Ec{R(a(e.f))Vglogp(a(e,0);0)}

We add noise \ksi in our policy (neural) parameters!

VoFEs(0) = Ee {R(a(€~ 0))Velog p(A(&. 0); 9)}

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Neural net architectures that work well with (stochastic) gradient descent
optimization do not work will with ES. Contributions:

* Virtual batch norm

- Discretization of continuous actions - better exploration during mutation!
- Parallelization with a need for tiny only cross-worker communication!!

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Neural net architectures that work well with (stochastic) gradient descent
optimization do not work will with ES. Contributions:

* Virtual batch norm
» Discretization of continuous actions - better exploration during mutation!
- Parallelization with a need for tiny only cross-worker communication!!

Algorithm 1 Evolution Strategies

1: Input: Learning rate o, noise standard deviation o, initial policy parameters 6
2: fort=0,1,2,... do

3: Sample €1,...en ~ N(0,1)

4: Compute returns F; = F(0; + o¢;) fori =1,...,n

5: Set 9(.*_1 “— 9(, + 0% Z:l:l Fie'i.

b: end for

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Neural net architectures that work well with (stochastic) gradient descent
optimization do not work will with ES. Contributions:

* Virtual batch norm

- Discretization of continuous actions - better exploration during mutation!
- Parallelization with a need for tiny only cross-worker communication!!

Algorithm 1 Evolution Strategies

1: Input: Learning rate o, noise standard deviation o, initial policy parameters 6
2: fort=0,1,2,... do

3: Sample €1,...en ~ N(0,1)

4: Compute returns F; = F(0; + o¢;) fori =1,...,n

5: Set 9(.*_1 «— 91, -+ On—lop Z?:l Fifi

b: end for

Distributed SGD

Used in Asynchronous RL!

Distributed SGD

I?aCh W(.)rker sends Worker 1 Worker 2
big gradient vectors

Distributed Evolution

What need to be sent??

Distributed Evolution

Algorithm 1 Evolution Strategies

1: Input: Learning rate «, noise standard deviation o, initial policy parameters 6
2: fort =0,1,2,... do

3: Sample €1,...e, ~ N(0,1)

4: Compute returns F; = F(0; + o¢;) fori =1,...,n

5: Set Ht-l-l — 9t + O’n% Z?:l Fi.ei

b: end for

Distributed Evolution

MHHH
Worker 6 Worker 3
0 is big!

but 0 = u+ oe

/'

Same for all workers

Only need seed of random number generator!

Distributed Evolution

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate «, noise standard deviation o,
initial policy parameters 6

2: Initialize: n workers with known random seeds, and
initial parameters 6
3: fort=0,1,2,... do
4. for each workeri =1,...,n do
5: Sample ¢; ~ N(0,)
6: Compute returns F; = F(6; + o¢;)
7: end for
8: Send all scalar returns F; from each worker to every
other worker
9. foreach worker: =1,...,ndo
10: Reconstruct all perturbations €; forj =1,...,n
11: Set Ht_|_1 <—0t—|—a% Z?:l FjGj
12: end for
13: end for

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate «, noise standard deviation o,
initial policy parameters 6

2: Initialize: n workers with ' known random seeds, and
initial parameters 6
3: fort=0,1,2,... do
4. for each workeri =1,...,n do
5: Sample ¢; ~ N(0,)
6: Compute returns F; = F(6; + o¢;)
7. end for
8: Send all scalar returns F; from each worker to every
other worker
9. foreach worker: =1,...,ndo
10: Reconstruct all perturbations €; forj =1,...,n
11: Set Ht_|_1 <—9t—|—a% Z?:l FjGj
12: end for
13: end for

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution

Each worker
broadcasts

tiny scalars

Worker 6 : ' L Worker 3

Worker 5

Distributed Evolution

Each worker
broadcasts Worker 1 Worker 2
tiny scalars
¢ - - = - :.;4 ~
- . .|) \

.- /
o’ °
-
.
-
.
-

Worker 6 aEill : \ Worker 3

Worker 4

Distributed Evolution

Each worker
broadcasts Worker 1 Worker 2
tiny scalars

-. _ \

1/

Worker 6 [it o Worker 3

.
P4 .

Worker 4

Distributed Evolution Scales Very Well :-)

«— 18 cores, 657 minutes

)

=

=

E}

()

>

S 102

S

Q

E

o

(av]

.S

(D)

= .

10} 1440 cores, 10 minutes ——
102 103
Number of CPU cores

Figure 1. Time to reach a score of 6000 on 3D Humanoid with
different number of CPU cores. Experiments are repeated 7 times
and median time is reported.

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution Requires More Samples :-(

HalfCheetah Hopper Walker
5000] —— TRPO 40001 —— TRPO 700071 __ 1rpo
ES 3500 - ES 6000 A ES

6000 A 3000 1 5000 A
2500 -

c 4000 -
S 4000 - 2000 1

4 3000 -
1500 -

2000 - 2000 -
1000 A

1000 A
5 .

0 00
0 0
10° 10° 107 108 104 10° 10° 107 104 10° 10° 107 108
Timesteps Timesteps Timesteps

[Salimans, Ho, Chen, Sutskever, 2017]

Alternative derivations

Monte Carlo Policy Gradients (REINFORCE), gradient direction:

g = I/Et [Ve log 7T@(c?t | St)AAt

How would we implement this in TF or Pytorch

LFG(8) = B [log my(a: | s A

Equivalently:

L[S (9) ﬂ@(at ‘ Sr) A
I 7y (4 | 5,)

TNHOld A

Derivation of likelihood ratio derivative from importance

sampling

J(0) = Eqpge [RO)]
— Z P(z| O)R(7)

P(z|0)
= P(t
Z @10 gy RO

b0 L (7]6,10)

I (CILIR > ma,|s,)
T Tl - ~6,
P(z]6,,) Fold ﬂgold(at | s,)

S

VyoP(z|0)], .

VJ(6 =E —R(t
Do, = Eetu P(z|6,,) o

=E,.q,Volog P(z]0)], R(z)

Alternative derivations

Monte Carlo Policy Gradients (REINFORCE), gradient direction:

g = I/Et [Ve log 7T@(c?t | St)AAt

How would we implement this in TF or Pytorch

LFG(8) = B [log my(a: | s A

Equivalently:

my(a,|s,) o

A,
7y (4 | 5,)

L @) =E__,

eold old

Next: Instead of leaving the stepwise to some schedule of the learning rate (heuristically
chosen), make it part of the algorithm!

Hard to choose stepsizes

» Policy gradients

g = I/Et |:V9 IOg W@(at ’ St)A\ti|

» Can differentiate the following loss

LPE(0) = B |log mo(ac | s)Ad|.

» Input data is nonstationary due to changing policy: observation and reward

distributions change
» Bad step is more damaging than in supervised learning, since it affects

visitation distribution

- Step too big
Bad policy->data collected under bad policy-> we cannot recover

(in SL, data does not depend on neural network weights)

- Step too small |
Not efficient use of experience SGD:
0

(in SL, data can be trivially re-used) hew = Opg +€- 8

Natural Gradient Descent

—VoL(6) 1

= lim — arg min £(0 + d)
|VoL(O)|| €20 € 45t |d<e

Take a step in direction d where d stays within a a ball of radius epsilon.

Gradient Descent in Parameter Space

Take a step in direction d where d stays within a a ball of radius epsilon.
—VoL(0) . 1 .
= lim — arg min £(0 + d)
|VoL(0)|] €20 €45t ||d|<e

Euclidean distance in parameter space

Imagine we are trying to minimize -loglik,
and want to update the parameters of the
distribution.

Same distance in parameter space
results in very different distances in
distribution space

|deally, we want to take steps based on
distance in distribution space. Way
more robust, less tweaking of the step.
What metric shall we use?

Gradient Descent in Distribution Space

We will use the Kullback-Leibler divergence (KL) to measure distances between distributions
before and after the update.

—VoL(0 1
oL (9) = lim — arg min £(6 + d)
|VoL(0)|| €20 €4t d|l<e

Instead:

d*= argmin L(6+ d)
d s.t. KL[pprg.+.d]:C

Gradient Descent in Distribution Space

We will use the Kullback-Leibler divergence (KL) to measure distances between distribution:
before and after the update.

—VoL(0
oL (9) :limlargmin L(6+ d)
|VoL(0)|] €0 € gst. |d|<e

Instead: d*

= argmin L£(0+ d)
d s.t. KL[p9||p9+d]=C

Unconstrained penalized objective:

d* = arg min £(6 + d) + A (KL|py||pg+a] — ¢)
d

First order Taylor expansion for the loss and_second order for the KL.:

1
~ arg min £(0) + VoL(0) d + > d'Fd — Ac
d

Gradient Descent in Distribution Space

We will use the Kullback-Leibler divergence (KL) to measure distances between distribution:
before and after the update.

—VoL(0
oL (9) :limlargmin L(6+ d)
|VoL(0)|] €0 € gst. |d|<e

Instead: d*

= argmin L£(0+ d)
d s.t. KL[p9||p9+d]=C

Unconstrained penalized objective:

d* = arg min £(6 + d) + A (KL|py||pg+a] — ¢)
d

First order Taylor expansion for the loss and_second order for the KL.:

1
~ arg min £(0) + VoL(0) d + > d'Fd — Ac
d

Natural Gradient Descent

Newton’s method

0 1

T T
— Fd —
0 ad[,(B) VoL(6)"d 2>\d d— X
= VoL(0) + \Fd
AFd = —VyL(0)
d = —éF—lvoﬁ(o)

The natural gradient:

695(9) =F! VoL(0)

