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Non-stationary data problem for Deep RL

• Stability of training neural networks requires the gradient updates to be de-
correlated

• This is not the case if data arrives sequentially

• Gradient updates computed from some part of the space can cause the value 
(Q) function approximator to oscillate 

• Our solution so far has been: Experience buffers where experience tuples are 
mixed and sampled from. Resulting sampled batches are more stationary that 
the ones encountered online (without buffer)

• This limits deep RL to off-policy methods, since data from an older policy are 
used to update the weights of the value approximator.



Asynchronous Deep RL

• Alternative: parallelize the collection of experience and stabilize training 
without experience buffers!

• Multiple threads of experience, one per agent, each exploring in different 
part of the environment contributing experience tuples

• Different exploration strategies (e.g., various \epsilon values) in different 
threads increase diversity

• It can be applied to both on policy and off policy methods, applied it to 
SARSA, DQN, and advantage actor-critic



Distributed RL



Distributed Asynchronous RL

The actor critic trained in such asynchronous way is knows as A3C

Each worker may 
have slightly 
modified version of 
the policy/critic

No locking



Distributed Synchronous RL

The actor critic trained in such synchronous way is knows as A2C

5. Gradients of all 
workers are averaged and 
the central neural net 
weights are updated 

All worker may have 
the same actor/critic 
weights



• Training stabilization without Experience Buffer

• Use of on policy methods, e.g., SARSA and policy gradients

• Reduction is training time linear to the number of threads

A3C

What is the approximation used for the advantage?
R(n)

t =
n−1

∑
k=0

γ(k)
t Rt+k+1

r1, r2, r3

R3 = r3 + γV(s4, θ′�v)
R2 = r2 + γr3 + γ2V(s4, θ′�v)

s1, s2, s3, s4

A3 = R3 − V(s3; θ′�v)
A2 = R2 − V(s2; θ′�v)



Advantages of Asynchronous (multi-threaded) RL
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Policy Optimization
max

θ
J(θ) = max

θ
𝔼 [R(τ) |πθ, μ0(s0)]

:a trajectoryτ
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Policy Optimization and RL
max

θ
J(θ) = max

θ
𝔼 [R(τ) |πθ, μ0(s0)] = max

θ
𝔼 [

T

∑
t=0

R(st) |πθ, μ0(s)]Reinforcement	Learning

[Figure	source:	Sutton	&	Barto,	 1998]



max
θ

J(θ) = max
θ

𝔼 [R(τ) |πθ, μ0(s0)] = max
θ

𝔼 [
T

∑
t=0

R(st) |πθ, μ0(s)]Policy	Optimization	in	the	RL	Landscape

max
✓

U(✓) = max
✓

E[
HX

t=0

R(st)|⇡✓]



Policy	Optimization	in	the	RL	Landscape

max
✓

U(✓) = max
✓

E[
HX

t=0

R(st)|⇡✓]

Evolutionary methods

max
θ

J(θ) = max
θ

𝔼 [R(τ) |πθ, μ0(s0)]



Black-box Policy Optimization
max

θ
J(θ) = max

θ
𝔼 [R(τ) |πθ, μ0(s0)]

θ 𝔼 [R(τ)]

No information regarding the structure of the reward



General algorithm:
Initialize a population of parameter vectors (genotypes) 
1.Make random perturbations (mutations) to each parameter 

vector
2.Evaluate the perturbed parameter vector (fitness)
3.Keep the perturbed vector if the result improves (selection)
4.GOTO 1

max
θ

J(θ) = max
θ

𝔼 [R(τ) |πθ, μ0(s0)]

Evolutionary methods

Biologically plausible…



Cross-Entropy	Method

CEM:
Initialize			
for iteration	=	1,	2,	…
Sample	n	parameters
For	each					,	perform	one	rollout	to	get	return	
Select	the	top	k%	of				,	and	fit	a	new	diagonal	Gaussian	

to	those	samples.	Update
endfor

✓i ⇠ N(µ, diag(�2))

µ 2 Rd,� 2 Rd
>0

✓i R(⌧i)
✓

µ,�

Cross-entropy method
Let’s consider our parameters to be sampled from a multivariate isotropic  Gaussian
We will evolve this Gaussian towards sampled that have highest fitness



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖, 𝐶𝑖 

Covariance Matrix Adaptation 

μi, Ci

Let’s consider our parameters to be sampled from a multivariate  Gaussian
We will evolve this Gaussian towards sampled that have highest fitness
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Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖+1, 𝐶𝑖+1 

Covariance Matrix Adaptation 

μi+1, Ci+1



n Can	work	embarrassingly	well

Cross-Entropy	Method

[NIPS	2013]

µ 2 R22

CMA-ES, CEM
Work embarrassingly well in low-dimensions



• Evolutionary methods work well on relatively low-dim 
problems

• Can they be used to optimize deep network policies?

Question



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

PG VS ES

We are sampling in both cases…



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Policy Gradients Review
max

θ
. J(θ) = 𝔼τ∼Pθ(τ) [R(τ)]
∇θ J(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]

= ∇θ ∑
τ

Pθ(τ)R(τ)

= ∑
τ

∇θPθ(τ)R(τ)

= ∑
τ

Pθ(τ)
∇μPθ(τ)

Pθ(τ)
R(τ)

= ∑
τ

Pθ(τ)∇θlog Pθ(τ)R(τ)

= 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

∇θ J(θ) ≈
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i))

Sample estimate:



∇μ𝔼θ∼Pμ(θ) [F(θ)] = ∇μ ∫ Pμ(θ)F(θ)dθ

= ∫ ∇μPμ(θ)F(θ)dθ

= ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
F(θ)dθ

= ∫ Pμ(θ)∇μlogPμ(θ)F(θ)dθ

= 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)F(θ)]
= 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)F(θ)]

∇μU(μ) = ∇μ𝔼θ∼Pμ(θ) [F(θ)]
= ∇μ ∫ Pμ(θ)F(θ)dθ

= ∫ ∇μPμ(θ)F(θ)dθ

= ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
F(θ)dθ

= ∫ Pμ(θ)∇μlog Pμ(θ)F(θ)dθ

= 𝔼θ∼Pμ(θ) [∇μlog Pμ(θ)F(θ)]

max
μ

. U(μ) = 𝔼θ∼Pμ(θ) [F(θ)]

ES

Considers distribution over policy parameters
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∇θ Pθ(τ)R(τ)
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PG ES

Considers distribution over actions Considers distribution over policy parameters

Sample estimate: Sample estimate:



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
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From trajectories to actions

∇θ log P(τ(i); θ) = ∇θ log
T

∏
t=0

P(s(i)
t+1 |s(i)

t , a(i)
t )

dynamics

⋅ πθ(a(i)
t |s(i)

t )

policy

= ∇θ

T

∑
t=0

log P(s(i)
t+1 |s(i)

t , a(i)
t )

dynamics

+ log πθ(a(i)
t |s(i)

t )

policy

= ∇θ

T

∑
t=0

log πθ(a(i)
t |s(i)

t )

policy

=
T

∑
t=0

∇θ log πθ(a(i)
t |s(i)

t )

∇θ J(θ) ≈
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) ∇θ J(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(s(i)
t , a(i)

t )



∇μ𝔼θ∼Pμ(θ) [F(θ)] = ∇μ ∫ Pμ(θ)F(θ)dθ

= ∫ ∇μPμ(θ)F(θ)dθ

= ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
F(θ)dθ

= ∫ Pμ(θ)∇μlogPμ(θ)F(θ)dθ

= 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)F(θ)]
= 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)F(θ)]

∇μU(μ) = ∇μ𝔼θ∼Pμ(θ) [F(θ)]
= ∇μ ∫ Pμ(θ)F(θ)dθ

= ∫ ∇μPμ(θ)F(θ)dθ

= ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
F(θ)dθ

= ∫ Pμ(θ)∇μlog Pμ(θ)F(θ)dθ

= 𝔼θ∼Pμ(θ) [∇μlog Pμ(θ)F(θ)]

max
μ

. U(μ) = 𝔼θ∼Pμ(θ) [F(θ)]

∇μU(μ) ≈
1
N

N

∑
i=1

∇μlog Pμ(θ(i))F(θ(i))

max
θ

. J(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θ J(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= ∇θ ∑

τ

Pθ(τ)R(τ)

= ∑
τ

∇θ Pθ(τ)R(τ)

= ∑
τ

Pθ(τ)
∇μPθ(τ)

Pθ(τ)
R(τ)

= ∑
τ

Pθ(τ)∇θ log Pθ(τ)R(τ)

= 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

PG ES

Considers distribution over actions Considers distribution over policy parameters

Sample estimate: Sample estimate:

∇θ J(θ) ≈
1
N

N

∑
i=1

T

∑
t=1
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n Suppose																				is	a	Gaussian	distribution	with	mean					,	
and	covariance	matrix

n If	we	draw	two	parameter	samples											,	and	obtain	two	
trajectories										:

A	Concrete	Example
✓ ⇠ Pµ(✓) µ

logPµ(✓) = � ||✓ � µ||2

2�2
+ const

�2I

rµ logPµ(✓) =
✓ � µ

�2

✓1, ✓2
⌧1, ⌧2

E✓⇠Pµ(✓),⌧⇠⇡✓
[rµ logPµ(✓)R(⌧)] ⇡ 1

2


R(⌧1)

✓1 � µ

�2
+R(⌧2)

✓2 � µ

�2

�

A concrete example
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A concrete example

𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

≈
1
2σ [R(τ1)ϵ1 + R(τ2)ϵ2]

≈
1
2 [R(τ1)

θ1 − μ
σ2

+ R(τ2)
θ2 − μ

σ2 ]
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Sampling parameter vectors

θ1 = μ + σ * ϵ1, ϵ1 ∼ 𝒩(0,I)

θ2 = μ + σ * ϵ2, ϵ2 ∼ 𝒩(0,I)

Imagine we have access to random vectors ϵ ∼ 𝒩(0,I)

The theta samples have the desired mean and variance
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Natural Evolutionary Strategies



n Antithetic	sampling
n Sample	a	pair	of	policies	with	mirror	noise

n Get	a	pair	of	rollouts	from	environment

n SPSA:	Finite	Difference	with	random	direction

Connection	to	Finite	Difference

(⌧+, ⌧�)

rµE [R(⌧)] ⇡ 1

2


R(⌧+)

✓+ � µ

�2
+R(⌧�)

✓� � µ

�2

�

=
1

2


R(⌧+)

�✏

�2
+R(⌧�)

��✏

�2

�

=
✏

2�
[R(⌧+)�R(⌧�)]

(✓+ = µ+ �✏, ✓� = µ� �✏)

vs

Finite Difference

Connection to Finite Differences
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Black	Box	Gradient	Computation
Finite Differences



Evolution methods VS Policy Gradients

We add noise \epsilon in our actions (\epsilon-greedy)!

We add noise \ksi in our policy (neural) parameters!

n Full	episode	evaluation,	parameter	perturbation

n More	structured	exploration

n Not	biased	by	discount	 factor

n Easy	to	scale

n Open	Question:	Policy	Gradient	at	action	level	or	parameter	level?

n Important	to	remember	both	are	doing	 finite	difference	/	random	search

n When	episode	 is	very	long,	maybe	finite	difference	 in	parameter	space	is	more	
efficient?

n Maybe	there	is	a	better	space	to	be	discovered

Cross-Entropy	/	Evolutionary	Methods

∇μU(μ) ≈
1
N

N

∑
i=1

∇μlog Pμ(θ(i))F(θ(i))

Sample estimate: Sample estimate:

∇θ J(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(s(i)
t , a(i)

t )



Neural net architectures that work well with (stochastic) gradient descent 
optimization do not work will with ES. Contributions:
• Virtual batch norm
• Discretization of continuous actions - better exploration during mutation!
• Parallelization with a need for tiny only cross-worker communication!!
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Distributed	Deep	Learning

Worker 6

Worker 1 Worker 2
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Worker 5 Worker 4

Distributed SGD

Used in Asynchronous RL!
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ALL
REDUCE

Each	worker	sends	
big	gradient	vectors

Distributed SGD
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Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3
θ and R(τ)?

θ is big!

✓ = µ+ �✏but

Same for all workers

Only need seed of random number generator!

Distributed Evolution
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[Salimans,	Ho,	Chen,	Sutskever,	2017]

Pro:	Scalability
Distributed Evolution Scales Very Well :-)



[Salimans,	Ho,	Chen,	Sutskever,	2017]

Con:	Sample	Efficiency
Distributed Evolution Requires More Samples :-(
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Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Monte Carlo Policy Gradients (REINFORCE), gradient direction:What Loss to Optimize?

I Policy gradients
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How would we implement this in TF or Pytorch

Equivalently:
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J(θ) = 𝔼τ∼Pθ(τ) [R(τ)]
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How would we implement this in TF or Pytorch

Equivalently:

LIS
θold

(θ) = 𝔼τ∼θold [ πθ(at |st)
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Next: Instead of leaving the stepwise to some schedule of the learning rate (heuristically 
chosen), make it part of the algorithm!



Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Hard to choose stepsizes

• Step too big
 Bad policy->data collected under bad policy-> we cannot recover
(in SL, data does not depend on neural network weights)

• Step too small
Not efficient use of experience
(in SL, data can be trivially re-used)
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ĝ = Êt
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SGD:



Natural Gradient Descent

Take a step in direction d where d stays within a a ball of radius epsilon.



Gradient Descent in Parameter Space
Take a step in direction d where d stays within a a ball of radius epsilon.

Imagine we are trying to minimize -loglik, 
and want to update the parameters of the 
distribution.
Same distance in parameter space 
results in very different distances in 
distribution space
Ideally, we want to take steps based on 
distance in distribution space. Way 
more robust, less tweaking of the step.
What metric shall we use?

Euclidean distance in parameter space
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The natural gradient:

Natural Gradient Descent
Newton’s method


