Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

Exploration and Function Approximation

CMU 10703

Katerina Fragkiadaki

This lecture

Exploration in Large Continuous State Spaces

Exploration-Exploitation

Exploration: trying out new things (new behaviours), with the hope of discovering higher rewards Exploitation: doing what **you know** will yield the highest reward

Intuitively, we explore efficiently once we know what we do not know, and target our exploration efforts to the unknown part of the space.

All non-naive exploration methods consider some form of uncertainty estimation, regarding policies, Q-functions, state (or state-action) I have visited, or transition dynamics..

Recall: Thompson Sampling

Represent a posterior distribution of mean rewards of the bandits, as opposed to mean estimates.

- **1.** Sample from it $\theta_1, \theta_2, \dots, \theta_k \sim \hat{p}(\theta_1, \theta_2 \dots \theta_k)$
- 2. Choose action $a = \arg \max_{a} \mathbb{E}_{\theta}[r(a)]$
- 3. Update the mean reward distribution $\hat{p}(\theta_1, \theta_2 \cdots \theta_k)$

The equivalent of mean expected rewards for general MDPs are Q functions

Represent a posterior distribution of Q functions, instead of a point estimate.

- 1. Sample from $P(Q) \quad Q \sim P(Q)$
- 2. Choose actions according to this Q for one episode $a = \arg \max Q(a, s)$
- 3. Update the Q distribution using the collected experience tuples

Then we do not need \epsilon-greedy for exploration! Better exploration by representing uncertainty over Q.

But how can we learn a distribution of Q functions P(Q) if Q function is a deep neural network?

Representing Uncertainty in Deep Learning

A regression network trained on X

 $\mathbf{w}^{\text{MAP}} = \arg \max_{\mathbf{w}} \log P(\mathbf{w}|\mathcal{D})$ $= \arg \max_{\mathbf{w}} \log P(\mathcal{D}|\mathbf{w}) + \log P(\mathbf{w}).$

 $P(\mathbf{w} \mid \mathcal{D})$

1. **Bayesian neural networks**. Estimate posteriors for the neural weights, as opposed to point estimates. We just saw that..

2. Neural network ensembles. Train multiple Q-function approximations each on using different subset of the data. A reasonable approximation to 1.

3. **Neural network ensembles with shared backbone**. Only the heads are trained with different subset of the data. A reasonable approximation to 2 with less computation.

4. **Ensembling by dropout.** Randomly mask-out (zero out)neural network weights, to create different neural nets, both at train and test time. reasonable approximation to 2.

1. **Bayesian neural networks**. Estimate posteriors for the neural weights, as opposed to point estimates. We just saw that..

2. Neural network ensembles. Train multiple Q-function approximations each on using different subset of the data. A reasonable approximation to 1.

3. Neural network ensembles with shared backbone. Only the heads are trained with different subset of the data. A reasonable approximation to 2 with less computation.

4. Ensembling by dropout. Randomly mask-out (zero out)neural network weights, to create different neural nets, both at train and test time. reasonable approximation to 2. (but authors showed 3. worked better than 4.)

Deep exploration with bootstrapped DQN, Osband et al.

- 1. Sample from $P(Q) \quad Q \sim P(Q)$
- 2. Choose actions according to this Q for one episode $a = \arg \max Q(a, s)$
- 3. Update the Q distribution using the collected experience tuples

- With ensembles we achieve similar things as with Bayesian nets:
- The entropy of predictions of the network (obtained by sampling different heads) is high in the no data regime. Thus, Q function values will have high entropy there and encourage exploration.
- When Q values have low entropy, i exploit, i do not explore.

No need for \epsilon-greedy, no exploration bonuses.

Deep exploration with bootstrapped DQN, Osband et al.

Deep exploration with bootstrapped DQN, Osband et al.

Motivation

- Motivation: "Forces" that energize an organism to act and that direct its activity
- Extrinsic Motivation: being moved to do something because of some external reward (\$\$, a prize, etc.)
- Intrinsic Motivation: being moved to do something because it is inherently enjoyable (curiosity, exploration, novelty, surprise, incongruity, complexity...)
- Intrinsic Necessity: being moved to do something because it is necessary (eat, drink, find shelter from rain...)

Extrinsic Rewards

Intrinsic Rewards

All rewards are intrinsic

Motivation

- Motivation: "Forces" that energize an organism to act and that direct its activity
- Extrinsic Motivation: being moved to do something because of some external reward (\$\$, a prize, etc.)
- Intrinsic Motivation: being moved to do something because it is inherently enjoyable (curiosity, exploration, novelty, surprise, incongruity, complexity...)
- Intrinsic Necessity: being moved to do something because it is necessary (eat,drink, find shelter from rain...)

Motivation

Motivation: "Forces" that energize an organism to act and that direct its activity

- Extrinsic Motivation: being moved to do something because of some external reward (\$\$, a prize, etc.)-Task dependent
- Intrinsic Motivation: being moved to do something because it is inherently enjoyable (curiosity, exploration, novelty, surprise, incongruity, complexity...)-Task independent! A general loss functions that drives learning
- Intrinsic Necessity: being moved to do something because it is necessary (eat,drink, find shelter from rain...)

Curiosity VS Survival

"As knowledge accumulated about the conditions that govern exploratory behavior and about how quickly it appears after birth, it seemed less and *less likely that this behavior could be a derivative of hunger, thirst, sexual appetite, pain, fear of pain, and the like*, or that stimuli sought through exploration are welcomed because they have previously accompanied satisfaction of these drives."

D. E. Berlyne, Curiosity and Exploration, Science, 1966

Why should we care?

- Because curiosity is a general, task independent cost function, that if we successfully incorporate to our learning machines, it may result in agents that (want to) improve with experience, like people do.
- Those intelligent agents would not require supervision by coding up reward functions for every little task, they would learn (almost) autonomously
- Curiosity-driven motivation is beyond satisfaction of hunger, thirst, and other biological activities (which arguably would be harder to code up in artificial agents..)

Curiosity-driven exploration

Seek novelty/surprise (curiosity driven exploration):

- Visit *novel states* s (state visitation counts)
- Observe *novel state transitions* (s,a)->s' (improve transition dynamics)

We would be adding exploration reward bonuses to the extrinsics (task-related) rewards:

Independent of the task in hand!

$$R^{t}(s, a, s') = r(s, a, s') + \mathcal{B}^{t}(s, a, s')$$

$$\underbrace{extrinsic}_{intrinsic}$$
intrinsic

We would then be using rewards $R^{t}(s, a, s')$ in our favorite RL method.

Exploration reward bonuses are non stationary: as the agent interacts with the environment, what is now new and novel, becomes old and known. Many methods consider critic networks that combine Monte Carlo returns with TD.

State Visitation counts in Small MDPs

Book-keep state visitation counts N(s)

Add exploration reward bonuses that encourage policies that visit states with fewer counts.

 $\mathcal{B}(N(\mathbf{s})) = \sqrt{\frac{2 \ln n}{N(\mathbf{s})}}$): $\mathcal{B}(N(\mathbf{s})) = \sqrt{\frac{1}{N(\mathbf{s})}}$

UCB:

MBIE-EB (Strehl & Littman, 2008):

BEB (Kolter & Ng, 2009):

State Visitation Counts in High Dimensions

- We want to come up with something that rewards states that we have not visited often.
- But in high dimensions, we rarely visit a state twice!
- We need to capture a notion of state similarity, and reward states that are most *dissimilar* that what we have seen so far, as opposed to *different* (as they will always be different)

$$R^{t}(s, a, s') = r(s, a, s') + \mathscr{B}(N(s))$$

extrinsic

intrinsic

the rich natural world

Unifying Count-Based Exploration and Intrinsic Motivation

Marc G. Bellemare bellemare@google.com Sriram Srinivasan srsrinivasan@google.com Georg Ostrovski ostrovski@google.com

Tom Schaul schaul@google.com

David Saxton saxton@google.com Rémi Munos munos@google.com

We use parametrized density estimates instead of discrete counts.

- $p_{\theta}(s)$:parametrized visitation density: how much we have visited state s.
- Even if we have not seen exactly the same state s, the probability can be high if we visited similar states.

Exploring with Pseudcounts

fit model p_θ(s) to all states D seen so far take a step i and observe s_i
fit new model p_{θ'}(s) to D ∪ s_i
use p_θ(s_i) and p_{θ'}(s_i) to estimate N̂(s)
set r⁺_i = r_i + B(N̂(s)) ← "pseudo-count"

how to get $\hat{N}(\mathbf{s})$? use the equations

$$p_{\theta}(\mathbf{s}_i) = \frac{\hat{N}(\mathbf{s}_i)}{\hat{n}} \qquad \qquad p_{\theta'}(\mathbf{s}_i) = \frac{\hat{N}(\mathbf{s}_i) + 1}{\hat{n} + 1}$$

two equations and two unknowns!

$$\hat{N}(\mathbf{s}_i) = \hat{n}p_{\theta}(\mathbf{s}_i) \qquad \hat{n} = \frac{1 - p_{\theta'}(\mathbf{s}_i)}{p_{\theta'}(\mathbf{s}_i) - p_{\theta}(\mathbf{s}_i)} p_{\theta}(\mathbf{s}_i)$$

 $\mathcal{B}(N(\mathbf{s})) = \sqrt{rac{1}{N(\mathbf{s})}}$

Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al.

https://www.youtube.com/watch?v=232tOUPKPoQ&feature=youtu.be

Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al.

State visitation density

 $p_{\theta}(s)$ Imagine that states s are images or short image sequences. This assigns to each a probability that it has been seen before.

CTS model: compute density by multiplying factors for each pixel, factors are location specific.

Generative model of images: given an image collection D, estimate a model that assigns a probability to a (new) image of it coming from collection D.

Count-Based Exploration with Neural Density Models

Georg Ostrovski¹ Marc G. Bellemare¹ Aäron van den Oord¹ Rémi Munos¹

What if we use a state-of-the-art generative model of images?

Generated images

Pixel recurrent neural networks , van den Oord et al. ICML 2016

Generative models of Images

	VAE	GAN	Autoregressive Models
Pros.	 Efficient inference with approximate latent variables. 	 generate sharp image. no need for any Markov chain or approx networks during sampling. 	 very simple and stable training process currently gives the best log likelihood. tractable likelihood
Cons.	 generated samples tend to be blurry. 	 difficult to optimize due to unstable training dynamics. 	 relatively inefficient during sampling

(cf. https://openai.com/blog/generative-models/)

We like that! We want it to compute probabilities, not to draw beautiful samples!

Generative models of Images

One shot image generation (usually used in VAEs and GANs):

•

Autoregressive image generation: Generate the image one pixel at a time

Autoregressive Image generation

Intuition

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_{n^2})$$

Bayes Theorem:

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1})$$

A sequential model!

Pixel recurrent neural networks, ICML 2016

Pixel RNN: a neural networks that sequentially predicts the pixels in the image

Spatial LSTM

Adapted from: Generative image modeling using spatial LSTM. Theis & Bethge, 2015

 x_{ij} the pixel i am estimating the value for

 $\mathbf{x} < ij$ the pixel that have already been predicted, and on which our LSTM is conditioning

Spatial LSTM

spatial LSTM. Theis & Bethge, 2015

 x_{ij} the pixel i am estimating the value for

 $\mathbf{x}_{< ij}$ the pixel that have already been predicted, and on which our LSTM is conditioning

Multinomial Distribution for Pixel Value

- Treat pixels as discrete variables:
 - To estimate a pixel value, do classification in every channel (256 classes indicating pixel values 0-255)
 - Implemented with a final softmax layer

Figure: Example softmax outputs in the final layer, representing probability distribution over 256 classes.

Figure from: Oord et al.

Pixel RNN

Row LSTM

First LSTM Layer

Image layer

Row LSTM

Pixel RNN

• To optimize, we skew the feature maps so it can be parallelized

Pixel CNN

- 2D convolution on previous layer
- Apply masks so a pixel does not see future pixels (in sequential order)

Pixel recurrent neural networks, ICML 2016

Comparison

PixelCNN	PixelRNN – Row LSTM	PixelRNN – Diagonal BiLSTM	
Full dependency field	Triangular receptive field	Full dependency field	
Fastest	Slow	Slowest	
Worst log-likelihood	- Best log-likelihood		

Figure from: <u>Oord et al.</u>

Better density estimation usually helps

Better density estimation helps

Frame preprocessing: shrink and convert to grayscale

Original Frame (160x210)

3-bit Greyscale (42x42)

Figure 4. Samples after 25K steps. Left: CTS, right: PixelCNN.

State Counting with DeepHashing

- We still count states (images) but not in pixel space, but in latent compressed space.
- Compress s into a latent code, then count occurrences of the code.
- How do we get the image encoding? E.g, using autoencoders.

 There is no guarantee such reconstruction loss will capture the important things that make two states to be similar or not policy wise..

State Counting with DeepHash

- We still count states (images) but not in pixel space, but in latent compressed space.
- Compress s into a latent code, then count occurrences of the code.
- How do we get the image encoding? E.g, using autoencoders.

#Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.

Mental models

If the organism carries a `small scale model' of external reality and its own possible actions within its head, it is able try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of the past in dealing with present and the future, and in every way react in much fuller, safer and more competent manner to emergencies which face it.

-- Kenneth Craik, 1943, Chapter 5, page 61

This will come when we talk about model-baser RL, but for now we will use models for exploration!

[credit: Jitendra Malik]

Computational Curiosity

 "The direct goal of curiosity and boredom is to improve the **world model**. The indirect goal is to ease the learning of new goal-directed action sequences." "The same complex mechanism which is used for 'normal' goal-directed learning is used for implementing curiosity and boredom. There is no need for devising a separate system which aims at improving the world model." "Curiosity Unit": reward is a function of the mismatch between model's current predictions and actuality. There is positive reinforcement whenever the system fails to correctly predict the environment.

 "Thus the usual credit assignment process ... encourages certain past actions in order to repeat situations similar to the mismatch situation." (planning to make your (internal) world model to fail)

Jurgen Schmidhuber, 1991, 1991, 1997

Reward Prediction Error

Seek novelty/surprise:

• Visit *novel states* s (state visitation counts)

• Observe novel state transitions (s,a)->s' (improve transition dynamics)

Compute state visitation (pseudo)counts N(s)

Add exploration reward bonuses that encourage policies to visit states that will cause the prediction model to fail.

$$R^{t}(s, a, s') = r(s, a, s') + \mathcal{B}^{t}(||T(s, a; \theta) - s'||)$$

extrinsic intrinsic

Exploration reward bonuses are non stationary: as the agent interacts with the environment, what is now new and novel, becomes old and known. Many methods consider critic networks that combine Monte Carlo returns with TD.

Learning Visual Dynamics

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|T(s, a; \theta) - s'\|$

$$\min_{\theta} \quad \|\mathsf{T}(s,a;\theta) - s'\|$$

Here we predict the visual observation!

$$R^{t}(s, a, s') = r(s, a, s') + \mathscr{B}^{t}(s, a, s')$$

$$\underbrace{\mathsf{extrinsic}}_{\text{intrinsic}} \qquad \underbrace{\mathsf{intrinsic}}_{\text{intrinsic}}$$

Action-Conditional Video Prediction using Deep Networks in Atari Games

Junhyuk Oh Xiaoxiao Guo Honglak Lee Richard Lewis Satinder Singh

- Train a neural network that given an image (sequence) and an action, predict the pixels of the next frame
- Unroll it forward in time to predict multiple future frames
- Use this frame prediction to come up with an exploratory behavior in DQN: choose the action that leads to frames that are most dissimilar to a buffer of recent frames

Frame prediction

Progressively increase k (the length of the conditioning history) so that we do not feed garbage predictions as input to the predictive model:

$$\mathcal{L}_{K}(\theta) = \frac{1}{2K} \sum_{i} \sum_{t} \sum_{k=1}^{K} \left\| \hat{\mathbf{x}}_{t+k}^{(i)} - \mathbf{x}_{t+k}^{(i)} \right\|^{2}$$

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

Small objects are missed, e.g., the bullets. It is because they induce a tiny mean pixel prediction loss (despite the fact they may be task-relevant)

Frame prediction for Exploration

Algorithm 1 Deep Q-learning with informed exploration

Allocate capacity of replay memory RAllocate capacity of trajectory memory D Initialize parameters θ of DQN while steps < M do Reset game and observe image x_1 Store image x_1 in DMinimize similarity to a trajectory memory for t=1 to T do Sample c from Bernoulli distribution with parameter ϵ Set $a_t = \begin{cases} \operatorname{argmin}_a n_D\left(x_t^{(a)}\right) & \text{if } c = 1\\ \operatorname{argmax}_a Q\left(\phi\left(s_t\right), a; \theta\right) & \text{otherwise} \end{cases}$ Choose action a_t , observe reward r_t and image x_{t+1} Set $s_{t+1} = x_{t-2:t+1}$ and preprocess images $\phi_{t+1} = \phi(s_{t+1})$ Store image x_{t+1} in D Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in R Sample a mini-batch of transitions $\{\phi_j, a_j, r_j, \phi_{j+1}\}$ from R Update θ based on the mini-batch and Bellman equation steps = steps + 1end for end while

Model	Seaquest	S. Invaders	Freeway	QBert	Ms Pacman
DQN - Random exploration	13119 (538)	698 (20)	30.9 (0.2)	3876 (106)	2281 (53)
DQN - Informed exploration	13265 (577)	681 (23)	32.2 (0.2)	8238 (498)	2522 (57)

Predicting Raw Sensory Input (Pixels)

Should our prediction model be predicting the input observations?

- Observation prediction is difficult especially for high dimensional observations.
- Observation contains a lot of information unnecessary for planning, e.g., dynamically changing backgrounds that the agent cannot control and/or are irrelevant to the reward.

Learning Visual Dynamics

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|T(E(s; \phi), a; \theta) - E(s'; \phi)\|$

What is the problem with this optimization problem?

There is a trivial solution :-(

Learning Visual Dynamics

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|T(E(s; \phi), a; \theta) - E(s'; \phi)\|$

- Let's learn image encoding using autoencoders (to avoid the trivial solution)
- ...and suffer the problems of autoencoding reconstruction loss that has little to do with our task

Incentivizing exploration in RL with deep predictive models, Stadie et al.

Explore guided by Novelty of Transition Dynamics

It uses the autoencoder solution.

Algorithm 1 Reinforcement learning with model prediction exploration bonuses

- 1: Initialize $\max_e = 1$, EpochLength, β , C
- 2: for iteration t in T do
- 3: Observe $(s_t, a_t, s_{t+1}, \mathcal{R}(s_t, a_t))$
- 4: Encode the observations to obtain $\sigma(s_t)$ and $\sigma(s_{t+1})$

5: Compute
$$e(s_t, a_t) = \|\sigma(s_{t+1}) - \mathcal{M}_{\phi}(\sigma(s_t), a_t)\|_2^2$$
 and $\bar{e}(s_t, a_t) = \frac{e(s_t, a_t)}{\max_e}$

6: Compute
$$\mathcal{R}_{Bonus}(s_t, a_t) = \mathcal{R}(s, a) + \beta \left(\frac{\bar{e}_t(s_t, a_t)}{t * C} \right)$$

7: if
$$e(s_t, a_t) > \max_e$$
 then

8:
$$\max_e = e(s_t, a_t)$$

- 9: end if
- 10: Store $(s_t, a_t, \mathcal{R}_{bonus})$ in a memory bank Ω .
- 11: Pass Ω to the reinforcement learning algorithm to update π .
- 12: if $t \mod \text{EpochLength} == 0$ then
- 13: Use Ω to update \mathcal{M} .
 - Optionally, update σ . The autoencoder is trained as data arrives
- 15: end if
- 16: end for

14:

17: **return** optimized policy π

Such reward normalization is very important! Because exploration rewards during training are non-stationary, such scale normalization helps accelerate learning.

Incentivizing exploration in RL with deep predictive models, Stadie et al.

Learning Visual Dynamics

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|T(E(s; \phi), a; \theta) - E(s'; \phi)\|$

- Let's couple forward and inverse models (to avoid the trivial solution)
- ...then we will only predict things that the agent can control

Curiosity driven exploration with self-supervised prediction, Pathak et al.

Learning Visual Dynamics

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|T(E(s; \phi), a; \theta) - E(s'; \phi)\|$

, ψ), σ)

 $\min_{\theta} \| \mathbb{T}(\mathbb{E}(s;\phi),a;\theta) - \mathbb{E}(s';\phi)\| + \| \operatorname{Inv}(\mathbb{E}(s;\phi),\mathbb{E}(s;\phi);\theta) - a\|$

- Let's use random neural networks (networks initialized randomly and frozen thereafter)
- …and be embarassed about how well it works on Atari games

Large-scale study of Curiosity-Driven Learning, Burda et al.

Task Versus Exploration rewards

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|T(E(s; \phi), a; \theta) - E(s'; \phi)\|$

Only task reward:

$$R(s, a, s') = r(s, a, s')$$
extrinsic
Task+curiosity:

$$R^{t}(s, a, s') = r(s, a, s') + \mathcal{B}^{t}(s, a, s')$$
extrinsic

$$Intrinsic$$
Sparse task + curiosity:

$$R^{t}(s, a, s') = r^{T}(s, a, s') + \mathcal{B}^{t}(s, a, s')$$
extrinsic terminal

$$H^{t}(s, a, s') = \mathcal{B}^{t}(s, a, s')$$
intrinsic
Only curiosity:

$$R^{t}(s, a, s') = \mathcal{B}^{t}(s, a, s')$$

Large-scale study of Curiosity-Driven Learning, Burda et al.

No(extrinsic)rewardRL is not new

- Itti, L., Baldi, P.F.: Bayesian surprise attracts human attention. In: NIPS'05. pp. 547–554 (2006)
- Schmidhuber, J.: Curious model-building control systems. In: IJCNN'91. vol. 2, pp. 1458–1463 (1991)
- Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990-2010). Autonomous Mental Development, IEEE Trans. on Autonomous Mental Development 2(3), 230–247 (9 2010)
- Singh, S., Barto, A., Chentanez, N.: Intrinsically motivated reinforcement learning. In: NIPS'04 (2004)
- Storck, J., Hochreiter, S., Schmidhuber, J.: Reinforcement driven information acquisition in non-deterministic environments. In: ICANN'95 (1995)
- Sun, Y., Gomez, F.J., Schmidhuber, J.: Planning to be surprised: Optimal bayesian exploration in dynamic environments (2011), http://arxiv.org/abs/1103.5708

Curiosity helps even more when rewards are sparse

Conclusions

- Using curiosity as a reward results in policies that collect much higher task rewards than policies trained under task reward alone - so curiosity (as prediction error) a good proxy for task rewards
- Random features do as good as learned features

Curiosity driven exploration with self-supervised prediction, Pathak et al.

Policy Transfer

Policies trained with A3C using only curiosity rewards Prediction error using forward/inverse model coupling

Limitation of Prediction Error

Agent will be rewarded even though the model cannot improve. So it will focus on parts of environment that are inherently unpredictable.

If we give the agent a TV and a remote, it becomes a couch potato!

The agent is attracted forever in the most noisy states, with unpredictable outcomes.

Large-scale study of Curiosity-Driven Learning, Burda et al.

How can we fix this?

A deterministic regression network, when faced with multimodal outputs, predicts the mean...this is the least squares solution..This will always cause out network to have high prediction error, high surprise, high norm of the gradient, but no learning progress...

How can we handle stochasticity?

We either need to add stochastic units in our network or stochastic weights (Bayesian deep network)

Learning Stochastic Visual Dynamics

We add a layer with stochastic units z, then combine those units with the rest of the network.

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|\min_{z} T(E(s; \phi), a; \theta, z) - E(s'; \phi)\|$ Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|\mathbb{E}_{z}T(E(s; \phi), a; \theta, z) - E(s'; \phi)\|$

Learning Stochastic Visual Dynamics

We use stochastic weights instead of deterministic. Each weight is sampled from a distribution.

How do we train those models?

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|\mathbb{E}_{\theta} T(\mathbb{E}(s; \phi), a; \theta) - \mathbb{E}(s'; \phi)\|$

Exploration reward bonus $\mathscr{B}^{t}(s, a, s') = \|\min_{a} T(E(s; \phi), a; \theta) - E(s'; \phi)\|$

Training Networks with Stochastic Units

Why such simple gaussian noise suffices to create complex stochastic outputs? The neural net will transform it to an arbitrarily complex distribution!

Tutotial on variational Autoencoders, Doersch

Training Networks with Stochastic Units

Let's forget for now the conditioning part and imagine we want to learn a good generative models of images.

Each sample z should give me a realistic image X once it passes through the neural network

We want to learn a mapping from z to the output X, usually we assume a Gaussian distribution to sample every pixel from:

$$P(X | z; \theta) = \mathcal{N}(X | f(z; \theta), \sigma^2 \cdot I)$$

Let's maximize data likelihood. This requires an intractable integral, too many zs..

$$\max_{\theta} P(X) = \int P(X|z;\theta)P(z)dz$$

What if we forget that it is intractable and approximate it with few samples?

$$\min_{\theta} \sum_{j} -\log P(X_j) = -\sum_{j} \sum_{z_i \sim \mathcal{N}(\mathbf{0}, I)} \log P(X_j | z; \theta) = -\sum_{j} \sum_{z_i \sim \mathcal{N}(\mathbf{0}, I)} \|f(z_i; \theta) - X_j\|^2$$

(we already know how to take gradients here!)

This is a bad approximation, except if we have a very large number of zs. Only few zs would produce after training reasonable X. How will we find the zs that produce good X?

Motion Prediction Under Multimodality with Conditional Stochastic Networks, Google

Deep Variational Inference

Let's consider sampling zs from an alternative distribution Q(z) and try to minimize the KL between this (variational approximation) and the true posterior, P(zIX). And because I can pick any distribution Q I like, I will also condition it on X to help inform the sampling.

$$\begin{aligned} D_{KL}(Q(z|X)||P(z|X)) &= \int Q(z|X)\log\frac{Q(z|X)}{P(z|X)}dz \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log P(z|X) \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log\frac{P(X|z)P(z)}{P(X)} \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log\frac{P(X|z)P(z)}{P(X)} \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log P(X|z) - \mathbb{E}_Q\log P(z) + \log P(X) \\ &= D_{KL}(Q(z|X)|P(z)) - \mathbb{E}_Q\log P(X|z) + \log P(X) \end{aligned}$$

$$\min_{\phi,\theta} \quad D_{KL}(Q(z | X; \phi) | | P(z)) - \mathbb{E}_Q \log P(X | z; \theta)$$

decoder
encoder

Variational Autoencoder

From left to right: re-parametrization trick!

Tutotial on variational Autoencoders, Doersch

Variational Autoencoder

At test time

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

But wait: can i use this now to sample future frames? Shouldn't my sampling be conditioned on the current state and action?

Auto-Encoding Variational Bayes, Kingma and Welling

Conditional VAE

 $\min_{\phi} \quad D_{KL}(Q(z|X,Y)||P(z|\mathscr{D}) = \min_{\phi} \quad D_{KL}(Q(z|X,Y)|P(z)) - \mathbb{E}_Q \log P(\mathscr{D}|z)$

Tutotial on variational Autoencoders, Doersch

Conditional VAE

For future trajectory and frame prediction

Bayesian Deep Networks

 $P(\mathbf{w} | \mathcal{D})$

Bayesian nets for:

- representing uncertainty (I have not seen this datapoint)
- representing multimodal outputs (i have seen this datapoint but it has had multiple different labels)
Variational approximation to the Bayesian posterior distribution of the weights.

$$\begin{split} D_{KL}(Q(\theta | \phi) | | P(\theta | \mathcal{D})) &= \int Q(\theta | \phi) \log \frac{Q(\theta | \phi)}{P(\theta | \mathcal{D})} d\theta \\ &= \mathbb{E}_Q \log Q(\theta | \phi) - \mathbb{E}_Q \log P(\theta | \mathcal{D}) \\ &= \mathbb{E}_Q \log Q(\theta | \phi) - \mathbb{E}_Q \log \frac{P(\mathcal{D} | \theta) P(\theta)}{P(\mathcal{D})} \\ &= \mathbb{E}_Q \log Q(\theta | \phi) - \mathbb{E}_Q \log \frac{P(\mathcal{D} | \theta) P(\theta)}{P(\mathcal{D})} \\ &= \mathbb{E}_Q \log Q(\theta | \phi) - \mathbb{E}_Q \log P(\mathcal{D} | \theta) - \mathbb{E}_Q \log P(\theta) + \log P(\mathcal{D}) \\ &= \mathbb{E}_Q \log Q(\theta | \phi) - \mathbb{E}_Q \log P(\mathcal{D} | \theta) - \mathbb{E}_Q \log P(\theta) + \log P(\mathcal{D}) \end{split}$$

Variational approximation to the Bayesian posterior distribution of the weights.

$$\min_{\phi} \quad D_{KL}(Q(\theta;\phi) | | P(\theta|\mathscr{D})) = \min_{\phi} \quad D_{KL}(Q(\theta|\phi) | | P(\theta)) - \mathbb{E}_Q \log P(\mathscr{D}|\theta)$$

weight complexity data likelihood

We will consider Q to be a diagonal gaussian distribution: $\phi = (\mu, \sigma)$

We will consider prior P(\theta) to be a mixture of 0 mean gaussians:

$$P(\theta) = \prod_{k} \pi \mathcal{N}(\theta_{k} | 0, \sigma_{1}^{2}) + (1 - \pi) \mathcal{N}(\theta_{k} | 0, \sigma^{2}), \quad \pi, \sigma_{1}, \sigma_{2} \text{ are chosen and fixed}$$

Let's try to take gradients:

$$\begin{split} \nabla_{\phi} \Big(D_{KL}(Q(\theta \,|\, \phi) \,|\, |\, P(\theta)) - \mathbb{E}_{Q} \log P(\mathcal{D} \,|\, \theta) \Big) &= \nabla_{\phi} \Big(\mathbb{E}_{Q(\theta \,|\, \phi)} \log \frac{Q(\theta \,|\, \phi)}{P(\theta)} - \mathbb{E}_{Q(\theta \,|\, \phi)} \log P(\mathcal{D} \,|\, \theta) \Big) \\ &= \nabla_{\phi} \mathbb{E}_{Q(\theta \,|\, \phi)} \left(\log \frac{Q(\theta \,|\, \phi)}{P(\theta)} - \log P(\mathcal{D} \,|\, \theta) \right) \end{split}$$

The parameter is in the distribution! Reparametrization to the rescue:

$$\theta = t(\phi, \epsilon) = \mu \epsilon + \sigma, \quad \epsilon \sim \mathcal{N}(0, I)$$

Weight Uncertainty in Neural Networks, Blundell et al.

We will consider Q to be a diagonal gaussian distribution: $\phi = (\mu, \sigma)$

We will consider prior P(\theta) to be a mixture of 0 mean gaussians:

$$P(\theta) = \prod_{k} \pi \mathcal{N}(\theta_{k} | 0, \sigma_{1}^{2}) + (1 - \pi) \mathcal{N}(\theta_{k} | 0, \sigma^{2}), \quad \pi, \sigma_{1}, \sigma_{2} \text{ are chosen and fixed}$$

Let's try to take gradients:

$$\begin{split} \nabla_{\phi} \Big(D_{KL}(Q(\theta \,|\, \phi) \,|\, |\, P(\theta)) - \mathbb{E}_{Q} \log P(\mathcal{D} \,|\, \theta) \Big) &= \nabla_{\phi} \bigg(\mathbb{E}_{Q(\theta \,|\, \phi)} \log \frac{Q(\theta \,|\, \phi)}{P(\theta)} - \mathbb{E}_{Q(\theta \,|\, \phi)} \log P(\mathcal{D} \,|\, \theta) \bigg) \\ &= \nabla_{\phi} \mathbb{E}_{Q(\theta \,|\, \phi)} \left(\log \frac{Q(\theta \,|\, \phi)}{P(\theta)} - \log P(\mathcal{D} \,|\, \theta) \right) \end{split}$$

The parameter is in the distribution! Reparametrization to the rescue:

$$\theta = t(\phi, \epsilon) = \mu \epsilon + \sigma, \quad \epsilon \sim \mathcal{N}(0, I)$$

Sample \epsilon
 Form \theta
 Take gradients w.r.t. \phi
 Update \phi

We will consider Q to be a diagonal gaussian distribution: $\phi = (\mu, \sigma)$

We will consider prior P(\theta) to be a mixture of 0 mean gaussians:

$$P(\theta) = \prod_{k} \pi \mathcal{N}(\theta_{k} | 0, \sigma_{1}^{2}) + (1 - \pi) \mathcal{N}(\theta_{k} | 0, \sigma^{2}), \quad \pi, \sigma_{1}, \sigma_{2} \text{ are chosen and fixed}$$

Let's try to take gradients:

$$\begin{split} \nabla_{\phi} \Big(D_{KL}(Q(\theta \,|\, \phi) \,|\, |\, P(\theta)) - \mathbb{E}_{Q} \log P(\mathcal{D} \,|\, \theta) \Big) &= \nabla_{\phi} \bigg(\mathbb{E}_{Q(\theta \mid \phi)} \log \frac{Q(\theta \mid \phi)}{P(\theta)} - \mathbb{E}_{Q(\theta \mid \phi)} \log P(\mathcal{D} \mid \theta) \bigg) \\ &= \nabla_{\phi} \mathbb{E}_{Q(\theta \mid \phi)} \left(\log \frac{Q(\theta \mid \phi)}{P(\theta)} - \log P(\mathcal{D} \mid \theta) \right) \end{split}$$

The parameter is in the distribution! Reparametrization to the rescue:

$$\theta = t(\phi, \epsilon) = \mu \epsilon + \sigma, \quad \epsilon \sim \mathcal{N}(0, I)$$

Sample \epsilon
 Form \theta
 Take gradients w.r.t. \phi
 Update \phi

Weight Uncertainty in Neural Networks, Blundell et al.

Reward Learning Progress

- Instead of rewarding prediction errors, reward prediction improvements.
- "My adaptive explorer continually wants ... to focus on those novel things that seem easy to learn, given current knowledge. It wants to ignore (1) previously learned, predictable things, (2) inherently unpredictable ones (such as details of white noise on the screen), and (3) things that are unexpected but not expected to be easily learned (such as the contents of an advanced math textbook beyond the explorer's current level)."

Learning Progress

Straightforward implementation of learning progress:

- Keep a buffer of experience tuples,
- update your model with the new transitions,
- evaluate the reduction of your prediction error in the buffer
- Assign reward based on such reduction

Learning progress using Bayesian Neural dynamics

- Environment dynamics modeled as $p(s_{t+1}|s_t, a_t; \theta)$
- Taking actions that maximize the reduction in uncertainty about the dynamics

$$\sum_{t} \left[H(\Theta|\xi_t, a_t) - H(\Theta|s_{t+1}, \xi_t, a_t) \right]$$

where $\xi_t = \{s_1, a_1, \ldots, s_t\}$ corresponds to the history up to time t

• Interpretation using mutual information between s_{t+1} and Θ

$$I(s_{t+1}; \Theta | \xi_t, a_t) = \mathbb{E}_{s_{t+1} \sim \mathcal{P}(\cdot | \xi_t, a_t)} \{\underbrace{D_{KL} \left[p(\theta | \xi_t, a_t, s_{t+1}) || p(\theta | \xi_t) \right]}_{Information \ Gain} \}$$

How much the weight distribution changes based on the newly observed transition

VIME: Variational Information Maximizing Exploration, Houthooft et al.

Variational Approximation for the Posterior of the Weights

- Approximating $p(\theta|D)$ with $q(\theta;\phi)$
- The total reward is then approximated as

$$r'(s_t, a_t, s_{t+1}) = r(s_t, a_t) + \eta D_{KL} \left[q(\theta | \phi_{t+1}) || q(\theta | \phi_t) \right]$$

• The weight distribution parameterized by ϕ

$$q(\theta;\phi) = \prod_{i=1}^{|\Theta|} \mathcal{N}(\theta_i | \mu_i, \sigma_i^2)$$

- Feedforward network structure and ReLU nonlinearity between hidden layers
- Trained by maximizing the variational lower bound using Backprop

$$L[q(\theta;\phi),D] = \mathcal{E}_{\theta \sim q(\cdot;\phi)}[\log p(D|\theta)] - D_{KL}[q(\theta;\phi)||p(\theta)]$$

VIME: Variational Information Maximizing Exploration, Houthooft et al.

Experiments

Curiosity only learning on real robots

Intrinsically motivated model learning for developing curious robots

Todd Hester *,1, Peter Stone

Department of Computer Science, The University of Texas at Austin, United States

- 1. Learn a transition function (random forest)
- Learn a reward function based on curiosity: a) state density
 entropy of the tree predictions.
- 3. Online planning (similar to MCTS) using the learned model! to pick actions that generate large rewards
- 4. Update the model with the collected experience

Curiosity-guided model learning

Algorithm 1 MODEL.

 \triangleright *n* is the number of state variables 1: **procedure** INIT-MODEL(*n*) for $i = 1 \rightarrow n$ do 2: $featModel_i \Rightarrow INIT()$ Init random forest to predict feature i 3: end for 4: for $i = 1 \rightarrow nactions$ do 5: $X_i \leftarrow \emptyset$ \triangleright Init visited state set for action *i* 6: end for 7: 8: end procedure ▷ Update model with *list* of experiences 9: procedure UPDATE-MODEL(list) for all $(s, a, s') \in list$ do 10: $s^{rel} \leftarrow s' - s$ ▷ Calculate relative effect 11: for all $s_i^{rel} \in s^{rel}$ do 12: $featModel_i \Rightarrow UPDATE(\langle s, a \rangle, s_i^{rel})$ This is a random forest ▷ Train feature model 13: end for 14: $X_a \leftarrow X_a \cup s$ \triangleright Add s to visited set for action a 15: end for 16: 17: end procedure \triangleright Get prediction of $\langle s', r \rangle$ for s, a18: **procedure** QUERY-MODEL(s, a, v, n) for $i = 1 \rightarrow \text{LENGTH}(s)$ do 19: $s_i^{rel} \leftarrow featModel_i \Rightarrow QUERY(\langle s, a \rangle)$ ▷ Sample prediction for feat i 20: end for Transition novelty 21: $s' \leftarrow s + \left\langle s_1^{rel}, \ldots, s_n^{rel} \right\rangle$ 22: ▷ Get absolute next state $D(s, a) \leftarrow \sum_{i=1}^{n} featModel_i \Rightarrow VARIANCE(\langle s, a \rangle)$ ▷ Calculate variance. 23: ▷ Each forest returns $\sum_{j=1}^{m} \sum_{k=1}^{m} D_{KL}(P_j(x_i|s, a)||P_k(x_i|s, a))$ ▷ Calculate model novelty 24: $\delta(s, a) \leftarrow \min_{s_x \in X_a} ||s - s_x||_1$ 25: State novelty $r_{var} \leftarrow v D(s, a)$ Calculate variance reward 26: $r_{nov} \leftarrow n\delta(s, a)$ 27: Calculate novelty reward $r \leftarrow r_{var} + r_{nov}$ 28: **return** $\langle s', r \rangle$ Return sampled next state and reward 29: 30: end procedure

$$D(s, a) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{m} D_{KL}(P_j(x_i|s, a)||P_k(x_i|s, a)),$$

Curiosity only learning on real robots

- Actions: The agent controls the robot's two right shoulder joints. It can increase the angle of either joint by 8 degrees, decrease the angle of either joint by 8 degrees, or do nothing.
- State: the angle of both shoulder joints, the 3-dimensional location of the robot's hand in mm relative to its chest, how many pink pixels the robot can see in its camera image, whether its right foot button is pressed, and the amount of energy it hears on its microphone

Intrinsically motivated model learning for developing curious robots, Hester and Stone

Curiosity-guided model learning

- After the exploration stage, we have built a model and now we use it trying to maximize specific extrinsic rewards! (as opposed to curiosity rewards) using the same online planning.
- And yes, the model we built with exploration is better than what we built by trying out random actions, in that, it allows us to succeed to such new extrinsic tasks.

Intrinsically motivated model learning for developing curious robots, Hester and Stone

More on model-based RL on Wednesday