9/7/18

10703 Deep Reinforcement Learning

Tom Mitchell
September 5, 2018

Solving known MDPs

Many slides borrowed from
Katerina Fragkiadaki
Russ Salakhutdinov

Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S, 4, T, r,7)
* S is afinite set of states
* A is a finite set of actions
* T is a state transition probability function

T(s'|s,a) = P[Ss1 = §'|S;: = s, A, = q]
* 7 is a reward function

r(s,a) = E[Ryy1|S; = s, Ay = a]
* 7y is a discount factor « € [0, 1]

9/7/18

Solving MDPs

* Prediction: Given an MDP(S, A, T,r,v) and a policy
m(a|s) = P[A; = a|S; =]
predict the state and action value functions.

* Optimal control: given an MDP(S, A, T,r,v) , find the optimal
policy (aka the planning/control problem).

* Compare this to the learning problem with missing information
about rewards/dynamics.

* Today we still consider finite MDPs (finite S and .A) with known
dynamics 7 and r.

* Policy evaluation
* Policy iteration
* Value iteration

* Asynchronous DP

9/7/18

First, a simple deterministic world...

Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

o0
* Learn control policy mr: S>A that maximizes Y v*E[r¢] from every
states €S t=0

Example: Robot grid world, deterministic actions, policy, reward r(s,a)

I 4

0

HH=

0

o

0

r(s,a) (immediate reward)

9/7/18

Value Function — what are the V¥(s) values?
V(s) = ELY 7'

t=0
SUVVOSt A[)/ls slﬂowm \07 Clwf_}fj qc%ow qC

VWM FqCL

jup?osf ?{: 07 state

@f S
BT L

0 0

r(s,a) (immediate reward)

Value Function — what are the V*(s) values?
VT(s) = E[Y_ v'ri]

t=0
SUVVOSC AH/té SL\OVJV\ \O/ C}JCLJ GKC‘F/DM Ap

Ve FqCL

Suppose ¥ = 0.9 state

0
V3 TEE %1100 O@
0 ° 0\ @
é')* |(%/ 10

0
7= = L= =l
0

0

r(s,a) (immediate reward)

9/7/18

Value Function — what are the V*(s) values?

VT(s) = B[S Atr
t=0

V*(s) is the value function for the optimal policy m*

y=0.9
1

Sl et
H*Q
B

0 0

N

r(s,a) (immediate reward)

- - G 90 :: 100 _>0 GO
A A A| A
[Iy Iy |
- - 81 :: 90 :: 100
One optimal policy V*(s) values

State values V*(s) for optimal policy

9/7/18

How can agent who doesn’t know r(s,a), V*(s) or 1t*(s) learn them while
randomly roaming and observing (and getting reborn after reaching G)?
[deterministic actions, rewards, policy. A single non-negative reward state]

S
OHO . 0 OHO i 100:<>
T ¥

How can agent who doesn’t know r(s,a), V*(s) or 1t*(s) learn them while
randomly roaming and observing (and getting reborn after reaching G)?
[deterministic actions, rewards, policy. A single non-negative reward state]

o
bty {O

100
> i
0 0

Hint: initialize estimate V(s)=0 for all s. After each transition, update:

How can agent who doesn’t know r(s,a), V*(s) or 1t*(s) learn them while
randomly roaming and observing (and getting reborn after reaching G)?
[deterministic actions, rewards, policy. A single non-negative reward state]

o cO
OHO OHO 100*

I L

0 0

Hint: initialize estimate V(s)=0 for all s. After each transition, update:

Vacw(s) ¢ maz(Vaa(s), 7(5,) +7Voua()

EI
Ao | Ajo | A
ol ¥ ol ¥ [roof

i
o

0] 2}
-— -

Algorithm: initialize estimate V(s)=0 for all s.
After each (s, a, r, 8’) transition, update:
U (o) e ~1 Y
View(8) < max([Vya(s), r(s,a) +yVa(s")]
True or false:

» V(s) estimate will always be non-negative for all s?
» V(s) estimate will always be less than or equal to 100 for all s?

9/7/18

9/7/18

Q

T
Ao | Ajo | A
ol ¥ ol ¥ [roof

i
o

o] el
- -

Algorithm: initialize estimate V(s)=0 for all s.
After each (s, a, r, 8’) transition, update:
7 1 N\ e ~17 J
View(8) <= max([Vya(s), r(s,a) + vVya(s')]
True or false:

+ V(s) estimate will always be non-negative for all s?
» V(s) estimate will always be less than or equal to 100 for all s?

* As number of random actions and rebirths grows, V(s) will
converge from below to V*(s) for optimal policy 1t*(s)?

Now, consider probabilistic
actions, rewards, policies

9/7/18

Policy Evaluation

Policy evaluation: for a given policy 7 compute the state value
function

va(s) =Er [Rt+1 +YRy2 + 72Rt+3 +...|8: = S]

where v, (s) is implicitly given by the Bellman equation

vr(s) = Z 7(als) (r(s,a) +v Z T(s’|s,a)v,r(s')>

acA s'eS

a system of |S| simultaneous equations.

MDPs to MRPs

MDP under a fixed policy becomes Markov Reward Process (MRP)

ve(s) = Z m(als) (r(s,a) + Z T(s'|s,a)vw(s'))

acA s’eS
= w(als)r(s,a) +v Y _ w(als) D T(s'|s,a)v(s")
a€A acA s’eS
- r + Z s’sVW(S
s'eS

where rT =% 7w(als)r(s,a)

T35 = Xacam(als)T(s']s,a)

Back Up Diagram

MDP

MDP

ve(s)=rT +'st'es T7 vre(s)

vo(s) < ¢

9/7/18

10

The Bellman expectation equation can be written concisely using the
induced form:

Vo =77 +4T" v,
with direct solution
Ve =T —~T™) " 1r™

of complexity O(N?) I

here T'* is an ISIXISI matrix, whose (j,k) entry gives P(s, | s, a=T1(s)))
7™ is an ISI-dim vector whose j'" entry gives E[r | s;, a=Ti(s))]
v, is an ISI-dim vector whose j'" entry gives V(s))

where ISl is the number of distinct states

lterative Methods: Recall the Bellman Equation

vr(s) = Z 7(als) (r(s,a) +7 Z T(s'|s,a)vw(s’))

a€A s'eS

9/7/18

11

lterative Methods: Backup Operation

Given an expected value function at iteration k, we back up the
expected value function at iteration k+17:

Vier(s) = 3 m(als) ((@)+ 3 T(s'ls, a)v[ms'))

a€A s'eS

Vikt1](8) < s
,

V(K] (s') + &

lterative Methods: Sweep

A sweep consists of applying the backup operation v — v/ for all the
statesin S

Applying the back up operator iteratively
Viop = V[1] 7 V[g] 7 ---Vx

9/7/18

12

A Small-Grid World

£
o
(o2}
~

actions

12 13 [14

* An undiscounted episodic task
* Nonterminal states: 1, 2, ..., 14

Terminal states: two, shown in shaded squares

* Reward is -1 until the terminal state is reached

R =1

on all transitions

Actions that would take the agent off the grid leave the state unchanged

lterative Policy Evaluation

k=0
Policy 7T, an equiprobable random action
k=1
1 2 3
T 4 |5 6 |7 k=2
¢ 8 9 10 |11
actions 2 ha e
’ - k=3
* An undiscounted episodic task
* Nonterminal states: 1, 2, ..., 14
* Terminal states: two, shown in shaded squares
k=10
* Actions that would take the agent off the grid leave the state unchanged
* Reward is -1 until the terminal state is reached
k=00

VIk] for the
random policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0}

-1.0

-1.0

-1.0

-1.0}

-1.0]

-1.0

-1.0

-1.0}

-1.0]

-1.0

-1.0

-1.0]

0.0

9/7/18

13

lterative Policy Evaluation

Policy 7T, an equiprobable random action

1 2 3

T 4 |5 |6 |7

¢ 8 |9 |10 |11
actions 2 hs e

* An undiscounted episodic task

* Nonterminal states: 1, 2, ..., 14

* Terminal states: two, shown in shaded squares

* Actions that would take the agent off the grid leave the state unchanged

* Reward is -1 until the terminal state is reached

VK] for the
random policy

0.0

0.0 0.0

0.0

0.0

0.
| 0.0]
0.
0.

0.0

-1.0

-1.0}

-1.0]

-1.0

-1.0

-1.0}

-1.0]

-1.0

-1.0]

-1.0}

-1.0]

-1.0

-1.0

-1.0]

0.0

0.0

-1.7]

-2.0]

-2.0]

-1.7

-2.0

-2.0]

-2.0]

2.0

-2.0

-2.0]

-1.7]

2.0

-2.0]

-1.7

0.0

0.0

2.4

-2.9|

-3.0]

2.4

-2.9]

-3.0]

-2.9]

2.9

-3.0

-2.9]

24

-3.0

-2.9

2.4

0.0

lterative Policy Evaluation

Policy 7T, an equiprobable random action

1 l2 |3

T 4 |5 |6 |7

¢ 8 9 10 |11
actions 2 ha e

* An undiscounted episodic task

* Nonterminal states: 1, 2, ..., 14

* Terminal states: two, shown in shaded squares

* Actions that would take the agent off the grid leave the state unchanged

* Reward is -1 until the terminal state is reached

VIk] for the
random policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0}

-1.0

-1.0

-1.0

-1.0}

-1.0]

-1.0

-1.0

-1.0}

-1.0]

-1.0

-1.0

-1.0]

0.0

0.0

-1.7

-2.0}

-2.0]

-1.7

-2.0

-2.0]

-2.0]

-2.0]

-2.0

-2.0|

-1.7]

2.0

-2.0

-1.7

0.0

0.0

2.4

-2.9

-3.0

2.4

-2.9

-3.0|-

2.9

-3.0]

-2.9]-

-3.0)

-2.9]

-2.4]

0.0

-6.1

-8.4|-

-8.4|-

-7.7]-6.

-6.1

9/7/18

14

