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A Markov Decision Process is a tuple

•     is a finite set of states

•     is a finite set of actions

•     is a state transition probability function  

•    is a reward function  

•    is a discount factor

Markov Decision Process (MDP)!
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Solving MDPs!

•  Prediction: Given an MDP                       and a policy 
 
 
predict the state and action value functions.

•  Optimal control: given an MDP                      ,  find the optimal 
policy (aka the planning/control problem). 

•  Compare this to the learning problem with missing information 
about rewards/dynamics.

•  Today we still consider finite MDPs (finite    and    ) with known 
dynamics T and r.

Outline!

•  Policy evaluation

•  Policy iteration

•  Value iteration 

•  Asynchronous DP
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First, a simple deterministic world…!

Reinforcement Learning Task for Autonomous Agent!

Execute actions in environment, observe results, and

•  Learn control policy π: SàA that maximizes                     from every 
state s ∈ S

Example: Robot grid world, deterministic actions, policy, reward r(s,a) 
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Value Function – what are the Vπ(s) values?!

Value Function – what are the Vπ(s) values?!



9/7/18	

5	

Value Function – what are the V*(s) values?!

V*(s) is the value function for the optimal policy π*

 γ = 0.9

State values V*(s) for optimal policy
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Question!
How can agent who doesn’t know r(s,a), V*(s) or π*(s) learn them while 

randomly roaming and observing (and getting reborn after reaching G)?  
[deterministic actions, rewards, policy.  A single non-negative reward state]

Question!
How can agent who doesn’t know r(s,a), V*(s) or π*(s) learn them while 

randomly roaming and observing (and getting reborn after reaching G)?  
[deterministic actions, rewards, policy.  A single non-negative reward state]

Hint: initialize estimate V(s)=0 for all s.  After each transition, update:
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Question!

Algorithm: initialize estimate V(s)=0 for all s.  
 After each (s, a, r, s’)  transition, update:

True or false:
•  V(s) estimate will always be non-negative for all s?
•  V(s) estimate will always be less than or equal to 100 for all s?
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Question!

Algorithm: initialize estimate V(s)=0 for all s.  
 After each (s, a, r, s’)  transition, update:

True or false:
•  V(s) estimate will always be non-negative for all s?
•  V(s) estimate will always be less than or equal to 100 for all s?

•  As number of random actions and rebirths grows, V(s) will 
converge from below to V*(s) for optimal policy π*(s)?

Now,	consider	probabilistic	
actions,	rewards,	policies	



9/7/18	

9	

Policy Evaluation!

Policy evaluation: for a given policy   , compute the state value 
function  
 
 
where          is implicitly given by the Bellman equation

a system of      simultaneous equations.

MDPs to MRPs!

MDP under a fixed policy becomes Markov Reward Process (MRP)

where                                   

explain T is a matrix, r a vector and r_s applies to one state
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Back Up Diagram!

    MDP

   

Back Up Diagram!

    MDP

    



9/7/18	

11	

Matrix Form!

The Bellman expectation equation can be written concisely using the 
induced form:

with direct solution

of complexity 

here T π  is an |S|x|S| matrix, whose (j,k) entry gives P(sk | sj, a=π(sj))
         r π  is an |S|-dim vector whose jth entry gives E[r | sj, a=π(sj) ]
         vπ  is an |S|-dim vector whose jth entry gives Vπ(sj)

where |S| is the number of distinct states

Iterative Methods: Recall the Bellman Equation!
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Iterative Methods: Backup Operation!

Given an expected value function at iteration k, we back up the 
expected value function at iteration k+1: 

A sweep consists of applying the backup operation               for all the 
states in 

 

Applying the back up operator iteratively 

Iterative Methods: Sweep!
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A Small-Grid World!

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

R

γ = 1

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation!
           for the
random policy
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