
9/7/18	

1	

10703	Deep	Reinforcement	Learning	

Tom	Mitchell	

September	5,	2018	

 Solving known MDPs

Many	slides	borrowed	from		
Katerina	Fragkiadaki	
Russ	Salakhutdinov	

A Markov Decision Process is a tuple

•  is a finite set of states

•  is a finite set of actions

•  is a state transition probability function  

•  is a reward function  

•  is a discount factor

Markov Decision Process (MDP)!

9/7/18	

2	

Solving MDPs!

•  Prediction: Given an MDP and a policy 
 
 
predict the state and action value functions.

•  Optimal control: given an MDP , find the optimal
policy (aka the planning/control problem).

•  Compare this to the learning problem with missing information
about rewards/dynamics.

•  Today we still consider finite MDPs (finite and) with known
dynamics T and r.

Outline!

•  Policy evaluation

•  Policy iteration

•  Value iteration

•  Asynchronous DP

9/7/18	

3	

First, a simple deterministic world…!

Reinforcement Learning Task for Autonomous Agent!

Execute actions in environment, observe results, and

•  Learn control policy π: SàA that maximizes from every
state s ∈ S

Example: Robot grid world, deterministic actions, policy, reward r(s,a)

9/7/18	

4	

Value Function – what are the Vπ(s) values?!

Value Function – what are the Vπ(s) values?!

9/7/18	

5	

Value Function – what are the V*(s) values?!

V*(s) is the value function for the optimal policy π*

 γ = 0.9

State values V*(s) for optimal policy

9/7/18	

6	

Question!
How can agent who doesn’t know r(s,a), V*(s) or π*(s) learn them while

randomly roaming and observing (and getting reborn after reaching G)?  
[deterministic actions, rewards, policy. A single non-negative reward state]

Question!
How can agent who doesn’t know r(s,a), V*(s) or π*(s) learn them while

randomly roaming and observing (and getting reborn after reaching G)?  
[deterministic actions, rewards, policy. A single non-negative reward state]

Hint: initialize estimate V(s)=0 for all s. After each transition, update:

9/7/18	

7	

Question!
How can agent who doesn’t know r(s,a), V*(s) or π*(s) learn them while

randomly roaming and observing (and getting reborn after reaching G)?  
[deterministic actions, rewards, policy. A single non-negative reward state]

Hint: initialize estimate V(s)=0 for all s. After each transition, update:

Question!

Algorithm: initialize estimate V(s)=0 for all s.
 After each (s, a, r, s’) transition, update:

True or false:
•  V(s) estimate will always be non-negative for all s?
•  V(s) estimate will always be less than or equal to 100 for all s?

9/7/18	

8	

Question!

Algorithm: initialize estimate V(s)=0 for all s.
 After each (s, a, r, s’) transition, update:

True or false:
•  V(s) estimate will always be non-negative for all s?
•  V(s) estimate will always be less than or equal to 100 for all s?

•  As number of random actions and rebirths grows, V(s) will
converge from below to V*(s) for optimal policy π*(s)?

Now,	consider	probabilistic	
actions,	rewards,	policies	

9/7/18	

9	

Policy Evaluation!

Policy evaluation: for a given policy , compute the state value
function  
 
 
where is implicitly given by the Bellman equation

a system of simultaneous equations.

MDPs to MRPs!

MDP under a fixed policy becomes Markov Reward Process (MRP)

where

explain T is a matrix, r a vector and r_s applies to one state

9/7/18	

10	

Back Up Diagram!

 MDP

Back Up Diagram!

 MDP

9/7/18	

11	

Matrix Form!

The Bellman expectation equation can be written concisely using the
induced form:

with direct solution

of complexity

here T π is an |S|x|S| matrix, whose (j,k) entry gives P(sk | sj, a=π(sj))
 r π is an |S|-dim vector whose jth entry gives E[r | sj, a=π(sj)]
 vπ is an |S|-dim vector whose jth entry gives Vπ(sj)

where |S| is the number of distinct states

Iterative Methods: Recall the Bellman Equation!

9/7/18	

12	

Iterative Methods: Backup Operation!

Given an expected value function at iteration k, we back up the
expected value function at iteration k+1:

A sweep consists of applying the backup operation for all the
states in

Applying the back up operator iteratively

Iterative Methods: Sweep!

9/7/18	

13	

A Small-Grid World!

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

R

γ = 1

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Policy , an equiprobable random action

Iterative Policy Evaluation!
 for the
random policy

9/7/18	

14	

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Policy , an equiprobable random action

Iterative Policy Evaluation!
 for the
random policy

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Policy , an equiprobable random action

Iterative Policy Evaluation!
 for the
random policy

