
Transactions and Consistency
in Distributed Database Systems

IRVING L. TRAIGER, JIM GRAY, CESARE A. GALTIERI,
and BRUCE G. LINDSAY

IBM Research Laboratory

The concepts of transaction and of data consistency are defined for a distributed system. The cases
of partitioned data, where fragments of a file are stored at multiple nodes, and replicated data, where
a file is replicated at several nodes, are discussed. It is argued that the distribution and replication of
data should be transparent to the programs which use the data. That is, the programming interface
should provide location transparency, replica transparency, concurrency transparency, and failure
transparency. Techniques for providing such transparencies are abstracted and discussed.

By extending the notions of system schedule and system clock to handle multiple nodes, it is shown
that a distributed system can be modeled as a single sequential execution sequence. This model is
then used to discuss simple techniques for implementing the various forms of transparency.

Categories and Subject Descriptors: H. 2.4 [Database Management]: Systems-distributed systems;
transaction processing

General Terms:

Additional Key Words and Phrases: Data replication, data partitioning, concurrency control, recovery

1. INTRODUCTION

To our knowledge, no general-purpose distributed system provides the notion of
a “network job,” a coordinated unit of work which operates at several nodes.
Rather, a task that operates at several nodes must be carefully programmed to
be sensitive to data location in the network and to node and network failures. It
is our thesis that the difficulty of constructing such programs is a principal cause
of the dearth of systems which do distributed processing.

We conjecture that the notion of transaction as used in most data management
systems generalizes to the network environment. This paper suggests that net-
work systems should provide the notion of a transaction as an abstraction which
eases the construction of programs in a distributed system. Transactions would
provide the programmer with the following types of transparencies.

(1) Location Transparency. Although data are geographically distributed and

Authors’ present addresses: J. Gray, Tandem Computers Incorporated, 19333 Valico Parkway,
Cupertino, CA 95014; I. L. Traiger, C. A. Galtieri, and B. G. Lindsay, IBM Research Laboratory, San
Jose, CA 95193.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1982 ACM 0362-5915/82/0900-0323 $00.75

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982, Pages 323-342.

324 * I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

may move from place to place, the programmer can act as if all the data were
in one node.

(2) Replication Transparency. Although the same data item may be replicated
at several nodes of the network, the programmer may treat the item as if it
were stored as a single item at a single node.

(3) Concurrency Transparency. Although the system runs many transactions
concurrently, to each transaction it appears as if it were the only activity in
the system. Alternatively, it appears as if there were no concurrency in the
system.

(4) Failure Transparency. Either all the actions of a transaction occur or none
of them occur. Once a transaction occurs, its effects survive hardware and
software failures.

Certainly a system that provides transparency is as easy to use as a centralized
system. If one writes a program to do something, the program will continue to
work even though the data manipulated by the program are moved or replicated.
The program may suffer a performance penalty if the data are remote, but if this
is unacceptable, the program or data may be moved together. These performance
issues can be separated from the program logic.

The transaction notion is not a panacea. Rather, it is a convenience for a
general class of applications. There are probably many applications which will be
developed only when the application programmer can be relieved of concerns
about failures, concurrency, location, and replication. Efficiency may dictate that
some implementations be done in an application-specific way instead of by using
a general-purpose transaction manager.

This paper is primarily concerned with transactions as an ideal or model of the
highest levels of transparency and programmer convenience and is not necessarily
a proposal for implementation techniques.

1 .l Prior Art

At present some systems provide some forms of transparency.

(1) The SDD-1 system [l] provides both location and replica transparency,
allowing the user to think in terms of entities (files) rather than objects
(fragments of files). In SDD-1 a single DATA-LANGUAGE statement is a
transaction. In general, an application requires several DATA-LANGUAGE
statements to perform an operation such as “funds transfer” or “parts order.”
Hence, SDD-1 does not have a general’notion of transaction, so it does not
provide failure or concurrency transparency.

(2) The distributed INGRES system [1 l] provides location and replica transpar-
ency although, like SDD-1, it does not provide a notion of transaction. In
INGRES, a single QUEL statement is a transaction. This implies that it does
not provide either failure or concurrency transparency for transactions which
are groups of QUEL statements.

(3) IMS [6] requires that all data accessed by a transaction reside at a single
node: hence it is a centralized database system. However, the Multiple
Systems Coupling feature of IMS (MSC) provides location transparency for
message handling among multiple IMS systems. IMS also provides the

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 325

transaction notion and failure transparency. The program isolation feature of
IMS comes very close to providing concurrency transparency for transactions
within a single node. IMS has no notion of replicated or partitioned data and
so does not provide replica or location transparency. It is shown below that
most of the techniques IMS uses seem to generalize to distributed systems.

(4) CICS 1.4 [2] provides the transaction notion, location transparency, and
failure transparency. Unfortunately, CICS does not provide a lock manager,
so it does not provide concurrency transparency. Responsibility for concur-
rency control is delegated to the individual subsystems, such as DL/l,
TOTAL, System 2000, ADABAS, or VSAM. However, it seems fairly clear
that the lock manager of IMS or some other data management system could
be generalized to operate in a CICS 1.4 network. Similarly, CICS has no
notion of replicated data.

(5) Similar comments apply to Tandem’s Encompass system, which supports
location transparency, concurrency transparency, and failure transparency
but not replica transparency [12].

In summary, currently available distributed systems provide very limited forms
of transparency.

There have been many formal studies of these issues. The development
presented here is closest to the work of Eswaran, Gray, Lorie, and Traiger [3] and
to Rosenkrantz, Stearns, and Lewis [9, lo]. This paper differs from its predecessors
in that it

(1) explicitly proves the existence of a global serial schedule (given the assump-
tion that each transaction executes sequentially);

(2) introduces the terms location transparency, replica transparency, concurrency
transparency, and failure transparency;

(3) develops a two-level model of entity + objects and request + actions which
allows a clearer presentation of techniques for discussing the forms of
transparency.

2. MODEL OF TRANSACTIONS IN A DISTRIBUTED SYSTEM

We assume that the system consists of a geographically dispersed collection of
computers called nodes which are identified by unique node identifiers. We
assume that nodes may be unavailable for a while but that they eventually return
to service.

All the nodes are connected together via a common network. This network
carries messages from node to node. We assume that messages may be arbitrarily
delayed but that each message is eventually delivered.

The system supports a set of entities which are uniquely named. Each entity
is represented within the system by one or more objects which are identified by
(name, node) pairs, where name is the entity name and node is the “place” at
which the object is located. At any instant, a value is associated with each object,
although this value may change with time. (See Figure 1.) We have chosen the
simple mapping E + (E, N) for readability. We believe that the results that
follow generalize to more complex entity to object mappings. For example, several

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

326 * I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

WRITE

I ENTITIES AND REQUESTS

/L El I E2
‘ /

WRITE: OBJ

/
\

WRITE, OBJ

Nl N2 N3

OBJECTS AND ACTIONS

Fig. 1. Two levels of abstraction: The top level provides requests on entities (named El
and I&). Entities are represented by one or more low-level objects ((El, N,) and (El, Nz)
are objects representing El at nodes N, and Nz). Requests on entities are translated to

one or more actions on the representative objects.

objects at a node might represent the same entity or an object might represent
part of an entity.

Files, records, message queues, and terminals are examples of entities. All
entities are assumed to be indivisible in the sense that if a file is an entity, its
composite records are not considered entities, and, conversely, if records are
considered entities, then the containing file is not considered an entity. Further,
objects representing the same entity at different nodes are considered to be
independent of one another in the sense that they may have different values.

If an entity is represented by multiple objects, then the entity is said to be
replicated. An entity named E which is replicated at nodes N1, . . ., N, is
represented by the objects (E, NL), . . ., (E, N,) . A system without replicas is
called partitioned because each entity is at exactly one node (partition). If all
objects reside at the same node, the system is called centralized.

Considering only fully replicated entities is another simplification of the model.
We believe the following discussion generalizes to situations in which parts of an
entity are represented by individual objects.

A particular application associates a meaning with each entity (e.g., “entity E1
represents bank account number 34532,” “ entity ES represents the assets of
branch 39,” . . .). The collection of entities is presumed to satisfy some global
constraint called the system consistency constraint. A fragment of such a con-
straint might be: “The assets of branch 39 is equal to the sum of the accounts at
branch 39.” We represent the constraint by the predicate C on entities and their
values. The predicate C is generally not known to the system but is embodied in
the structure of the transactions.

A transaction issues requests to manipulate entities. These requests against

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems 327

REQUEST

Fig. 2. The translation of requests to action.

entities are translated by the system into one or more actions on objects. Actions
are the primitives supported by the individual nodes of the network. Requests
allow a transparent view of objects. (See Figure 2.)

For example, the user issues READ and WRITE requests against entities, and
the system translates these requests into a corresponding group of actions on
objects. In particular, the translator keeps an entity-object directory which gives
the node addresses of the objects representing each entity.

Each node provides a repertoire of actions which manipulate objects at that
node: read or write a record at that node, send or receive a message, etc. However,
we recognize only two generic actions.

(1) READ-OBJ: examines but does not alter an object value. The occurrence
of a read by transaction T of object (E, N) which has value Val is represented

by

(T, READ-OBJ, (E, N), Val).

(2) WRITE -0BJ: alters the value of an object independent of its prior value.
The occurrence of a write by transaction T of object (E, N) to new value Val
is represented by

(T, WRITE-OBJ, (E, N), Val).

In addition, the COMMIT-.OBJ action is introduced to indicate the successful
completion of the transaction at a node. It is the last action of the transaction at
a node and acts on no particular object. The COMMIT-OBJ action of transac-
tion Tat node N is represented by

(T, COMMIT-OBJ, (-, N), -).

Each action operates only on one object and hence only at one node. There
may be concurrency of execution in the network, but the actions at a node appear
to “happen” in some order. In particular, if two actions at a node are executed on
the same object one will appear to “happen” after the other.

Reading or writing records or files fits this model nicely. Record entities are

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

-- --

328 * I. L. Traiger, J. Gray, C. A. Galtieri, and 6. G. Lindsay

represented by record objects. All record objects are assumed to preexist with
initially null values. Insertion of a record is modeled by writing a nonnull value
to a previously null object, and deletion is modeled by writing a null value to an
object. More complex operations, such as searching for records which satisfy
some predicate or sending and receiving messages, can be modeled as collections
of actions.

One might generalize the request model to support more elaborate requests,
for example, associative (indexed or hashed) naming of entities or the support of
entities which are fragmented among several nodes.

In general, single requests (actions) are too primitive. Rather, requests (actions)
are combined together (as a program) to form a transaction. When executed, such
a program produces a transaction execution, which is a sequence of requests
(actions) that must be viewed as a single logical unit of work. We assume that the
transaction executes serially, completing one action before beginning the next.
We use the term transaction ambiguously for the program and for a transaction
execution considered as a request sequence or the corresponding action sequence.
Where the distinction is important, we use the terms program, request sequence,
and action sequence.

One may think of transactions as complex operations on the system state. We
assume that transactions preserve the system consistency constraint. In particu-
lar, we assume that if the transaction T runs alone (i.e., without any other
concurrent transactions), it transforms the system state from one consistent
version to a new consistent version (the consistency constraint C is a precondition
and a postcondition of the program 2’). During the transaction, the state may
become inconsistent (e.g., in a funds transfer application one bank account may
be debited but another one not yet credited), but when a transaction commits,
the system state is again consistent.

Sample transactions from a banking application are: open accounts, transfer
funds, pay interest, or mark an account “held.” These transactions present the
abstractions of account, money, and client. For example, the FundsTransfer
transaction might have the form:

FundsTransfer
READ (input message, A, B, DELTA) ;
READ ACCOUNTEALANCE A; /* debit*/
WRITE ACCOUNT-BALANCE A;
READ ACCOUNT-BALANCE B; /* credit*/
WRITE ACCOUNT-BALANCE B;
WRITE (response message) ;
COMMIT;

The actual transaction would be a (COBOL) program with computations
interspersed with system requests. It would have symbolic (variable) names
rather than entity names. We abstract this program by the sequence of requests
(actions) it issues in a particular execution.

All actions on objects are performed at the node of the object. Whenever a
node participates in a transaction execution, the node allocates an agent for that
transaction. The agent keeps track of the local transaction state and performs
read and write actions for the transaction at that node. Whenever a nonlocal

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 329

action is requested by a transaction at a node, the source node

(1) requests that the node owning the object perform the action for the requesting
transaction,

(2) waits for a response from the node owning the object,
(3) reflects the response to the requesting transaction as though it were a local

request.

The node owning the object

(1) receives the request for the action on the object,
(2) eventually schedules the transaction’s agent to perform the action on the

object for the transaction,
(3) reflects the response to the requesting node.

Thus the transaction is executed synchronously, completing one action (re-
quest) before issuing the next, and ultimately issuing a commit action to each
node visited. This model does not preclude an implementation in which the locus
of control for a transaction execution migrates from node to node as the focus of
activity changes. We simply find it convenient to imagine that all actions of a
transaction are issued by one node.

3. LOCATION TRANSPARENCY AND REPLICA TRANSPARENCY

Data are partitioned among nodes to distribute work, minimize message traffic,
and minimize response time. For example, the telephone book is partitioned by
area code.

Centralized systems may replicate entities for reliability, availability, or per-
formance reasons. Some computer systems replicate selected files so that no
single media error causes data unavailability. Other systems keep the same data
organized in different ways so that access to the data is inexpensive (e.g., hashing
records on customer name in one case and by invoice number in another case).

In distributed systems both availability and performance arguments for repli-
cated data are even more compelling. If the availability of an entity is required
for certain applications, then the entity may be replicated at several nodes.
Replication can also improve performance if the cost of storing and maintaining
(updating) the replica is less than the cost of accessing it remotely. A frequently
read file might be replicated at each node to minimize message traffic and time
delay in answering queries against the file. Telephone books, price lists, and other
frequently used files are often replicated in this way.

Partitioning and replication may complicate programming. Programs that are
sensitive to the location of objects they manipulate are quite complex. To give a
simple example, suppose that the FundsTransfer program had different logic
depending on whether the debited and credited accounts were local or not. There
would be four cases (both local, one local, the other local, both remote). Either
the program would have to handle these four cases separately, or the system
would have to provide location transparency. The complexity of locating each
record and issuing the appropriate call to the appropriate node would dwarf the
logic of the FundsTransfer program. Location transparency also allows the
movement of objects without invalidating application programs that reference

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

330 * I. L. Traiger, J. Gray, C. A. Galtieri, and 6. G. Lindsay

the corresponding entities. These are the arguments for location transparency. A
system that supports location transparency would accept the FundsTransfer
program in the form presented above and would translate the requests into
actions at the appropriate nodes.

The argument for replica transparency is similar. We would like the freedom
of moving and replicating entities without affecting program logic. Having the
application program explicitly locate and update each replica of an entity would
greatly complicate the program. It should be as if the program were dealing with
a single copy of all entities at a single node.

A system providing location transparency and replica transparency allows the
programmer to think in terms of entities. It hides issues of locating the objects
which represent the entity and of maintaining consistency among the replicas of
a single entity. It gives the impression of a single-node, single-copy system.

Location and replica transparency may be provided by a translator which
transforms requests on entities into actions on objects. Perhaps the simplest
translator operates as follows:

Suppose the entity named E has representative objects at nodes N1, Nz, . . . ,
N,. Then the request

(T, READ, E, Val)

could translate to the action

(T, READ-mOBJ, (E, Ni), Val)

for some Ni E {N,, . . . , N,,}, and the request

(T, WRITE, E, Val)

could translate to the actions

(T, WRITE-OBJ, (E, N,), Val)
(T, WRITE emOBJ, (E, Nz), Val)

(T, WRITE.-OBJ, (E, Nn), Val).

That is, a read request of an entity causes a READ--0BJ of any representative
object and a write request of an entity causes a WRITE-OBJ to every repre-
sentative object.

Further, the request

(T, COMMIT, -, -)

could translate to the actions

(T, COMMIT -OBJ, (-, N), -)

for each node N at which transaction T performed an action. (Other actions (e.g.,
unlocks) will be added to the commit request when we discuss deferred update
and concurrency transparency.)

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 331

A system providing this function or an equivalent function makes reading or
writing nonlocal or replicated data transparent to the program. From the per-
spective of a transaction making requests, the fact that objects representing an
entity are remote or are replicated is transparent.

The translations described above are very simple. Many variations are possible.
For example, some actions on remote data may be deferred. In particular, it may
be desirable to defer writes to remote objects and then batch the writes at some
time prior to the commit action. Such a strategy might reduce message traffic.

The following is a request translator which gives transparency but tends to
defer writes (presumably in order to “batch” them). Each transaction carries a
set of per-node lists of deferred writes. The request translator maintains the list
of writes transparently to the program and programmer. Whenever a transaction
requests a write, the writes to remote replicas of the entity are added to the
transaction’s list of deferred actions. Subsequent deferred writes on the same
object supersede earlier ones, so the list carries at most one write per object.
Reads of objects are done as before, subject to the restriction that the transaction
must apply any deferred write actions to an object before reading the object.
After deferred writes are done, they may be removed from the list. As part of the
commit request, the transaction must apply all its deferred write actions.

In this paper we assume that all other actions of a transaction must be applied
prior to commit (e.g., all replicas must be updated). Hence, general rules for
deferring actions are

(1) reads cannot be deferred because the read must return the current value of
the named object;

(2) a write action by transaction T may be deferred subject to the constraints: it
should precede subsequent actions by T on the object, and it must precede
the COMMIT-OBJ action of Tat that node.

A later section shows that deferring writes does not create inconsistency for
other transactions so long as all updated records are locked in exclusive mode
and such locks are maintained until the writer commits.

The requirement that all replicas of an updated entity be accessible while the
transaction is active may be unacceptable. If there are many replicas, it may
make it impossible to ever update the entity because some replica is always
unavailable. Techniques to allow updates when only some replicas are accessible
are beyond the scope of this paper (i.e., we assume all actions are installed prior
to transaction commit). Gifford [4], using a model much like the one presented
here, gives an update algorithm which tolerates the unavailability of a minority
of the representatives of an entity.

4. TRANSACTION CONSISTENCY

Transaction execution is not instantaneous; it may involve reading slow (second-
ary) storage or conversing with remote nodes via slow communication lines.
Hence several transactions are usually executed in parallel as an economy which
improves resource utilization (hardware and information). If concurrency intro-
duces inconsistencies or makes the design of transactions substantially more
complex, then it is probably a false economy.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

332 l 1. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

As an example of the anomalies that may arise from parallel execution of
transactions, consider the concurrent execution of two FundsTransfer transac-
tions acting on the same bank account. Suppose the account has 100 dollars, and
that one transaction wants to credit 10 dollars and the other wants to debit 40
dollars. If the transactions run one after the other, the final balance will be 70
dollars (100 + 10 - 40). Yet if the transactions run concurrently, they may both
update the 100 dollar balance to give a balance of 60 or 110 dollars. This is called
the lost update problem. Another form of inconsistency arises from reading
records while they are in flux. For example, if someone else read account A and
account B during the execution of the FundsTransfer transaction, then the reader
might see a situation in which money had “disappeared” (A debited but B not
yet credited). Such situations would be impossible if there were no concurrency.

These concurrency anomalies are very difficult to understand and guard against
and therefore most transaction management systems hide concurrency by imple-
menting a lock protocol which precludes such anomalies. They automatically
generate lock actions as part of the translation of requests into actions.

Three new actions are introduced.

(1) LOCK S: requests the designated object in share mode. The request is only
granted (action completed) when no other transaction is granted the object
in exclusive mode. A LOCK-- S action by transaction T on object (E, N) is
represented as

(T, LOCK-.& (E, N), -).

(2) LOCK X: requests the designated object in exclusive mode. The request is
only granted (action completed) when no other transaction is granted the
object (in any mode). A LOCK ~~ X action by transaction T on object (E, N)
is represented as

(T, LOCK-X, (E, N), -).

(3) UNLOCK: releases the lock on a designated object. An UNLOCK action by
transaction Ton object (E, N) is represented as

(T, UNLOCK, (E, N), -).

A transaction may lock the same object many times and in different modes.
Once an entity is locked in exclusive mode, it remains locked in exclusive mode
until it is unlocked. The unlock action releases all prior lock requests by the
transaction for the object.

Requesting a lock which is unavailable may cause the lock action to wait and
not be granted until the lock is available. Hence each lock action runs the risk of
deadlock: one transaction waiting for another which in turn waits (perhaps
indirectly) for the first. One cannot in general avoid deadlock. It seems best to
detect deadlock (either algorithmically or via time-out) and to treat deadlocks as
failures which cause some of the deadlocked transactions to be undone and
preempted. In this paper we treat deadlocks like other errors: the transaction’s
actions are undone and the transaction is restarted.

In order to describe the lock protocols which preclude inconsistency, we
ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 333

introduce some terminology:

(1) A lock action on entity E is said to cover all subsequent actions by that
transaction on entity E up to the next unlock of entity E by that transaction.

(2) A transaction execution is well formed if
READ-OBJ actions are always covered by a LOCK-S for the object;
WRITE-OBJ actions are always covered by a LOCK-X for the object.

(3) A transaction execution is two-phase if after a transaction issues an UNLOCK
action, it never issues a lock action.

A precursor to this paper [3] proved that if all transactions are well formed and
two-phase, then there are no concurrency anomalies. In particular, such a lock
protocol prevents one transaction from reading or updating uncommitted writes
of another transaction. (We state a variant of this result more formally below.)

In this paper we use a stronger form of two-phase: all locks will be held to the
very end of the transaction execution (instead of some unlocks occurring prior to
the commit request). In particular, when we discuss concurrency transparency,
the application program will never issue lock or unlock requests. Rather, READ
and WRITE requests are translated to READ-OBJ and WRITE-OBJ actions
preceded by LOCK-S or LOCK-X actions, respectively, and the COMMIT
request is translated to the appropriate UNLOCK actions followed by
COMMIT-OBJ actions. To motivate this, observe that locks are set and held
for several reasons:

(1) to stabilize objects which are read;
(2) to hide from other transactions uncommitted object values because they may

be inconsistent;
(3) to hide from other transactions uncommitted object values because they may

later be undone (this prevents transaction undo from cascading to other
transactions).

Issue (3) was not discussed in [3]. In that paper it was shown that two-phase
and well formed were necessary and sufficient conditions to prevent concurrency
anomalies. By our adoption of the stronger definition of two-phase (locks held to
commit request), the necessity property has been sacrificed. However, the recov-
ery issues justify the stronger definition of two-phase.

To summarize, a transaction execution is represented as a sequence of
(transaction-name, action, object, value) 4-tuples, each such item being one
action of the transaction (READ-OBJ, WRITE-OBJ, LOCK-S, LOCK-X,
UNLOCK, or COMMIT-OBJ).

((T,Ai, Oi, Vi)li= 1, n).

The execution of a centralized (single-node) system may be described by a
schedule which tells the order in which the actions of the various transactions
were executed. So a schedule for the set of transaction executions, T,, T2, . . . ,
T,, is any sequence S = (. . . , (Ti, A,y, OG, Vij), . . .) such that each Ti is a
subsequence of S, and the length of S is the sum of the lengths of the Ti. This
means that S is some merging of the transaction executions which preserves the
order within each transaction and which does not leave out any actions.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

334 * I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

Two kinds of schedules are particularly interesting: serial schedules and legal
schedules.

A serial schedule completes all actions of one transaction before beginning the
next transaction. A serial schedule has no concurrency.

A legal schedule is one in which conflicting lock requests are not simultaneously
granted. Schedule S is legal if for any transactions Tl and Tz, and any object 0
if

s= (..., (Tl, LOCK-X, 0, -), . . ., (Tz,LOCK-X, 0, -), . . .)

or

s= (..., (T,, LOCK-X, 0, -), . . . , (Tz, LOCK-S, 0, -), . . .)

or

s= (..., (Tl,LOCK-.S, 0, -), . . ., (Z’z,LOCK-_X, 0, -), . . .)

and if TI does not UNLOCK 0 in the middle ellipsis then TI = Tz. (That is, no
two transactions can concurrently have the same object locked in conflicting
modes.)

The essential ordering of actions in a particular schedule may be abstracted by
a relation which shows “who told what to whom.” This relation is called the
dependency relation of a schedule and captures the essence of the schedule; other
aspects of the schedule are arbitrary orderings of unrelated actions.

The dependency relation of schedule S, DEP(S) is the ternary relation such
that for any distinct transactions TI and TZ and any object 0 with value V, then
(TI, (0, V), Tz) E DEP(S) if .

s= (..., (Tl , WRITE-OBJ, 0, V), . . . , (Tz , WRITE-OBJ, 0, VI), - . .)

or

S= (..., (Tl, WRITE-OBJ, 0, V), . . . , (Tz, READ-OBJ, 0, V), . . .)

or

s= (..., (Tl, READ-OBJ, 0, V), . . . , (Tz, WRITE-OBJ, 0, v,), . . .).

It is further required that for all T3 no (Tz, WRITE-OBJ, 0, VZ) actions occur
in the middle ellipsis. In addition, DEP(S) is augmented by two transactions
INITIAL and FINAL so that if

s= (..., (T, READ-OBJ, 0, V), ,. .)

or

s= (..., (T, WRITE-OBJ, 0, V), . . .)

then

(INITIAL, (0, V), T) E DEP(S)

if the prior actions do not include the action (Ti, READ-OBJ, 0, vi)

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 335

and

(T, (0, V), FINAL) E DEP(S)

if the later actions do not include the action (Z’i, WRITE-OBJ, 0, vi).

If two schedules have the same dependency relation, then they both give each
transaction the same inputs and outputs. The “inputs” to the transaction Tare

((0, V) I (T’, (0, W, T) E DJ-WS))

and its “outputs” are

((0, V) I (T, (0, V), T’) E DEW)).

In a serial system each transaction inputs and outputs a unique value for each
object it accesses. If a transaction inputs or outputs several different values for
the same object the system is executing in a perceptibly nonserial order.

Since the dependency relation describes the “inputs” and “outputs” of each
transaction in a schedule, we define two schedules to be equivalent if they both
have the same dependency relation.

Serial schedules have no concurrency and so have no anomalies due to concur-
rency. The concurrency anomalies described above (lost updates and inconsistent
reads) occur only in nonserial schedules. Hence we define serial schedules and all
schedules equivalent to serial schedules as consistent schedules.

We can now state and prove the following result.

ASSERTION 1 [3, Assertion 8a; 9, Theorem 11. If {T1, Tz, . . . , T,} is a set of
well-formed and two-phase transactions, then any legal schedule for them is
equivalent to a serial (one transaction at a time) execution.

PROOF. We must prove that any legal schedule S for well-formed and two-
phase transactions is equivalent to a serial schedule. For each transaction T,
define HAPPEN(T) to be the index in S of the first UNLOCK action of Tin S.
(If the first UNLOCK of T is the ith action in schedule S, then HAPPEN(T) =
i.) This defines a “happening” sequence among Tl , Tz, . . . , T,,. Assume without
loss of generality that

HAPPEN(T1) < HAPPEN(T2) < . . . < HAPPEN(

We will prove that the original schedule S is equivalent to a permuted schedule
S1 in which all actions of transaction TI occur first:

S1 = TI& where Sz is S with all TI actions removed.

Consider any subsequence of S.

s= (..., (Tt, Ai, Oi, vi), (TI, AI, 01, VI), -. *).

If Ti # TI, then we argue that the two actions commute to produce a new legal
schedule with the same dependency relation of S.

S’= (..., (TI, -41, 01, VI), (Ti,A, Oi, vi), * * *).

If A1 or Ai is a COMMIT-OBJ action, then S’ is legal and DEP(S) = DEP(S’)
by inspection.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

336 * I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

If Oi # 01, then S’ is legal and by inspection of the dependency relation,
DEP(S) = DEP(S’), so S and S’ are equivalent and S’ is legal.

If Oi = 01, then we observe that neither A1 nor Ai is a WRITE-OBJ or
LOCK-X action because that would imply that both 2’1 and Z’i have concurrently
locked 0, and each has locked it in exclusive mode (because both are well
formed). This would violate the assumption that S is a legal schedule. So if Oi =
01, then Ai and Al are either LOCK--S, UNLOCK, or READ-OBJ actions.
Suppose Oi = 01 and Ai # UNLOCK. Then again by inspection of the definition
of the dependency relation, Ai and Al commute in this case.

NOW consider the case Oi = 01 and Ai = UNLOCK. Then DEP(S) = DEP(S’)
because lock actions do not enter into the definition of the dependency relation.
But it is not clear that S’ is legal. If A1 is UNLOCK or READ-OBJ, then S’ is
obviously legal if S is legal. The difficult case is Al = LOCK-S (it was pointed
out above that LOCK-S, UNLOCK, and READ-OBJ are the only possibili-
ties). Let Ai be thejth action of S. If Ai = UNLOCK, then since Ti is two-phase,
HAPPEN ZG j. Similarly if Ai = LOCK-S, then since Tl is two-phase, j <
HAPPEN(SO if Ai = UNLOCK, HAPPEN < HAPPEN(But we
assumed HAPPEN < HAPPEN(This contradiction shows that S’ is
legal if Ai = UNLOCK.

This exhausts all the cases and shows that if Ti # Tl, the two actions commute
and, incidentally, the resulting schedule is legal. Thus all Tl’s actions commute
with any actions by other transactions Ti, which precede Tl’s actions. This allows
all Tl actions to be factored to the beginning of the schedule.

By induction, this same transformation may be applied to the rest of the
schedule. Inductively one obtains a schedule of the form Tl, Tz, . . . , T,, , which is
equivalent to the original schedule S. 0

This proves that if a system execution produces a legal schedule, then the well-
formed and two-phase lock protocol provides concurrency transparency. The fact
that the actions of a centralized system do indeed form a schedule (one action
completes at a time) is reasonably obvious. The next sections show that if
transactions execute operations sequentially, the execution of a distributed system
also produces a schedule and hence (by Assertion 1) locking guarantees consis-
tency in a distributed system.

5. CONSISTENCY IN DISTRIBUTED SYSTEMS

We now generalize the previous concurrency result to a system consisting of
several nodes connected by a communications network.

Recall that each object (E, N) resides entirely at the node named N. In order
for a transaction to execute, it may have to act on objects at several nodes. The
execution of a particular transaction is as follows. It begins at some node and
then issues successive actions. If the object is local, the action is performed
locally. If the object is remote, the transaction requests the remote node to
perform the action on the object. The transaction waits for the success-
ful completion of the remote action to be signaled before beginning the next
action. Thus, the execution of a transaction, T, in a distributed system may be
modeled as

((T,Ai,Oi, vi)(i=l,...,n).

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 337

The perception of each node is that at any instant it has several actions on
local objects to be executed. It executes these actions in some serial order; hence
it executes some sequence of actions called a node schedule:

Sj= (..., (Ti, Aj, O*j, Vu), * - *)a

The execution of the system might be described by these node schedules.
However, to understand the execution of the system, it is necessary to have a
single schedule rather than a vector of several uncorrelated schedules. Given such
a merger one could apply the work of the previous sections to discuss consistency
and transparency.

Since each node is running autonomously, it it not obvious that these node
schedules can always be merged into a single system schedule which includes
each node schedule as a subsequence. In particular, the time ordering implicit in
the definition of HAPPEN and its use in the proof of Assertion 1 does not
immediately generalize to a distributed system without a global clock. Indeed, if
one allows concurrency within a transaction execution, then there may not be
such a global schedule. On the other hand, we show below that if transactions
execute one step at a time, then one may merge the local schedules to form a
global schedule.

ASSERTION 2. The execution of a distributed system of n independent nodes,
each of which executes actions on local objects at the request of a set of
sequentially executing transactions, may be modeled as the execution of a single
node executing actions in some sequential order.

More formally, if S,, . . . , S, are node schedules for transactions Tl, . . . , T,,,,
then there is a global schedule S such that

(a) the Ti and Si are subsequences of S, and
(b) if each Si is legal, S is legal.

PROOF. The proof of 2(a) proceeds in two steps:

(1) First, we show that each node can maintain a clock that is consistent with
the clock of each transaction that does work at the node.

(2) Second, we use these clocks to construct a global schedule for the transaction
which preserves the ordering of the transaction and system clocks.

The argument begins by assuming that each node, N, has a clock, CLOCK(N),
which is initialized arbitrarily. Each transaction, T, also has a clock CLOCK(T).
When the transaction begins, the clock of the transaction’s home node is incre-
mented and the transaction’s clock is set to this node clock. The clocks are
defined in the style of Lamport [7]. (Note that these clocks are used as a proof
mechanism. They are not needed in an implementation.)

The manipulation of the clocks is controlled as follows: When transaction Tat
node N performs an action on a local object, then

CLOCK(N): = CLOCK(N) + 1

CLOCK(T): = CLOCK(N)

and the action is said to happen at new CLOCK(T).

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

338 l I. L. Traiger, J. Gray, C. A. Galtieri, and 6. G. Lindsay

When a transaction T at node N requests an action on a remote object at node
N1, then the following sequence takes place: A message is sent from N to N1 of
the form

(“DO”, CLOCK(N), T, A, 0, Val).

Node N1, on receiving the message from node N, sets its clock to

CLOCK(NJ:= MAX(CLOCK(NJ, CLOCK(N)) + 1.

When node N1 executes action A on object 0 for transaction T, then

CLOCK(N,):= CLOCK(NJ + 1;

the action is said to happen at new CLOCK(NI). After node N1 executes the
action, it responds to node N with the message:

(“DONE”, CLOCK(Nl), T, A, 0, Val).

When N receives such a message, it sets

CLOCK(N) := MAX(CLOCK(N), CLOCK(N1)) + 1

CLOCK(T) := CLOCK(N).

Clearly,

(1) each successive action of a transaction happens at a later time (by the
transaction clock);

(2) if two actions occur at the same node, then their times correspond to the
order in which they are executed at the node.

Consider any execution of the distributed system. The execution defines a
particular happening time (node clock) for each action and also defines a unique
set of node schedules S1, Sz, . . . , S,. Sort all the actions from all node schedules
ascending on happening time as the major order and node index as a minor order
to get a sequence S. By (1) above, each transaction execution T is a subsequence
of S and S contains all actions, so S is a schedule for the set of transaction
executions (in the sense of the previous section). Similarly, by (2) above, each Si
is a subsequence of S. Hence, S is a linear order which is global to all nodes of the
distributed system.

This establishes Assertion 2(a).
To establish Assertion 2(b), consider any object 0 at node N acted upon by

schedule S. Let Si be the node schedule of S at node N. All lock and unlock
actions on 0 in S appear in the subsequence Si which is legal. Hence, S is legal
with respect to every object 0.

This establishes 2(b). Cl

The above construction is quite terse. Note that much of the ordering is
arbitrary. Any schedule for the same set of transactions which has each node
schedule and each transaction as a subsequence would be equally good. So, for
example, if all transaction executions are completely local, any merging of the
node schedules is an acceptable schedule.
ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems - 339

Having shown that the behavior of a distributed system can be modeled by a
single node schedule, one can apply previous results to show that:

ASSERTION 3. If all transaction executions are well formed and two-phase,
then any legal execution of the transactions by a distributed system will be
equivalent to some serial execution of the transactions by a system consisting of
a single node.

PROOF. The argument is identical to the argument for Assertion 1. By Assertion
2, any legal system execution corresponds to some legal schedule. Any such
schedule will be legal since locks on object (E, N) are granted at node N and
thus conflicting locks will not be granted concurrently. If the transaction execu-
tions are two-phase and well formed, then the argument of Assertion 1 applies
(note that the schedule gives each transaction a happening time). The schedule
may therefore be permuted into an equivalent serial schedule. q

In a real system one might imagine that the activity of a transaction migrates
from node to node as the transaction progresses. We have assumed that a single
node controls the sequencing of the transaction execution. This assumption was
purely for exposition, and the results of the model generalize so long as the
execution of the transaction remains serial (i.e., no parallelism within the trans-
action).

Assertions 1 and 3 are surprisingly powerful although they may seem rather
innocuous. They imply that if a transaction makes a consistent transformation of
the database state when it commits, and if the transaction is well formed and
two-phase, then the transaction will not cause any inconsistencies for any other
transaction. In particular, a transaction is free to defer updates to remote or
replicated data (until commit) so long as it locks all updated objects and holds
such locks to commit.

The fact that a transaction can read any replica of an entity so long as it
updates all replicas is also nontrivial. Certainly, if there are no other transactions
executing, such a strategy will give consistent results. But on the basis of
Assertions 1 and 3, so long as locks are set correctly, transactions appear to
execute without concurrency. Thus any consistent strategy which works without
concurrency, works with concurrency.

6. CONCURRENCY TRANSPARENCY

To summarize the previous two sections, lock protocols exist which prevent
concurrency anomalies. These protocols work for centralized and distributed
systems. The protocols postulate that there is a lock manager at each node. Prior
to reading or writing an object at that node, the transaction executes a LOCK-S
or LOCK X action on the object. The lock manager will delay the completion
of the LOCK operation while the lock is granted to another transaction in a
conflicting lock mode.

Given these observations, concurrency transparency may be provided by au-
tomatically generating the required LOCK and UNLOCK actions as part of the
execution of a request. This automatic locking frees the programmer from having

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

340 0 I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

to issue explicit lock requests. This can be done as follows:
The case of partitioned data is simplest. Suppose that entity E is represented

by the single object (E, N) . Then the request (T, READ, E, Val) is replaced by
the actions

(T, LOCKS, (E, N), -)

(T, READY.-OBJ, (E, N), Val)

and the request (T, WRITE, E, Val) is replaced by the actions

(T, LOCI-LX, (E, N), -)

(T, WRITE-OBJ, (E, N), Val) .

The case of replicated data is a generalization of the partitioned data case.
Suppose entity E is represented by objects (E, N1), . . . , (E, N,). Then the
request (T, READ, E, Val) is replaced by the actions

(T, LOCKS, (E, N), -)

(T, READ--OBJ, (E, N), Val)

for some node N E { N1, . . . , N,}, and the request (T, WRITE, E, Val) is
replaced by the actions

(T, LOCK--X, W, Nl), -)

(T, WRITEPOBJ, (E, Nl), Val)

(T, LOCK-.. X, (E, Nz), -)

(Z’, WRITE.POBJ, (E, Nz), Val)

(T, LOCKX, W, Nn), -)

(T, WRITEPOBJ, (E, Nn), Val).

The request (T, COMMIT, -, -) is replaced by the actions

(T, UNLOCK, 01, -)

(T, UNLOCK, 02, -)

(T, UNLOCK,

(T, COMMITPOBJ,
.

(T, COMMIT- OBJ, (N,, -), -)

for all objects O,, 02, . . ., 0, locked by T and all nodes N,, . . . , N,,, which
performed actions of T.

This makes the lock actions implicit and transparently provides consistency.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982.

Transactions and Consistency in Distributed Database Systems * 341

7. FAILURE TRANSPARENCY

A variety of failures can prevent a transaction execution from completing suc-
cessfully. Application detected anomalies (e.g., insufficient funds), database sys-
tem difficulties (e.g., deadlock), and node failures (crashes) are familiar sources
of trouble in single-node systems. When multiple nodes are involved in a single-
transaction execution, communication network failures and distant node outages
complicate the task of ensuring system consistency.

Clearly, some of these failures will be visible to the end user, but it is possible
to arrange the system so that the application program is insulated from many of
these failures. Failure transparency relieves the application programmer of re-
sponsibility for restoring the system to a consistent state following a midtransac-
tion failure and for preserving the effects of the transaction execution in case of
postcommit failures.

Such a system must be able to deal with (1) application detected failures, (2)
local node crashes, (3) communication network failures, and (4) failures originat-
ing at other nodes involved in the transaction execution. Different failures are
detected by the system in different ways. An ABORT request is provided to allow
the application to announce application failure. Local node crashes are detected
during the node restart sequence. Network and distant node failures are detected
by time-outs as well as by explicit notification from the net or distant node.

When an in-progress transaction fails, its effects are undone. Restoring the
system state following the failure of a transaction requires remembering all
actions that have been done up to the point of the failure. One commonly used
strategy is for each node in the distributed system to maintain a log in which the
information necessary to undo (and redo) the actions of the transaction’s agent
is recorded.

When a node fails, all transactions in progress at the time of the failure will be
undone as part of the node restart. The work of any committed transactions will
be preserved (redone) as part of the restart of a node. If node N senses the failure
of node N’, then node N aborts any local uncommitted transaction executions
(agents) involving node N’.

If transactions are to be atomic, the commit request which marks the end of a
transaction execution must correspond to a single, atomic, recoverable action
somewhere in the system (e.g., a log write to stable (magnetic) storage). Until a
transaction executes this commit action, failures cause the transaction execution
to be undone. After the transaction executes this commit action, all changes at
all nodes must be retained (redone if necessary).

In a distributed system, commit must be carefully coordinated lest some nodes
backup while others go forward. All nodes in a transaction execution must first
agree not to abort the transaction on their own initiative. Then, after all nodes
have agreed to commit, some node can be the first to really commit (write the
commit log record). This so-called two-phase commit protocol has been described
by several authors [7, 8, 93.

8. SUMMARY

We have described a very simple model of the execution of transactions in a
distributed system. On the basis of this model, location, replica, concurrency, and
failure transparencies have been defined and discussed.

ACM Transactions on Database Systems, Vol. 7, NO. 3, September 1982.

342 * I. L. Traiger, J. Gray, C. A. Galtieri, and B. G. Lindsay

Location, replica, concurrency, and failure transparencies ease application
programming. The programmer is allowed to think in terms of entities rather
than having to know the location(s) of the object(s) which represents them.
Further, the programmer is given read and write requests, which in turn do
sufficient locking and logging actions so that concurrency is hidden and failures
are handled automatically (transaction is undone or redone). It has been shown
that these locking protocols provide concurrency transparency. Last, the commit
and abort requests allow the programmer to control whether partially complete
transactions are preserved or undone.

ACKNOWLEDGMENTS

Bill Kent carefully read and criticized many drafts of this paper. He recommended
many points of clarification and emphasis. We appreciate his help and patience.
The referees also made several constructive suggestions about the paper.

REFERENCES

1. BERNSTEIN, P.A., SHIPMAN, D.W., GOODMAN, N., AND ROTHNIE, J.B. Concurrency control in a
system for distributed databases (SDD-I). ACM Trans. Database Syst. 5, 1 (March 1980), 1-17.

2. CICS General Znformation Manual. IBM form number GC33-0066, IBM, White Plains, N.Y.,
1978.

3. ESWARAN, K.P., GRAY, J.N., LORIE, R.A., AND TRAIGER, I.L. The notions of consistency and
predicate locks in a database system. Commun. ACM, 19, 11 (November 1976) 624-633.

4. GIFFORD, D.K. Weighted voting for replicated data. In Proc. 7th Symp. Operating Systems
Principles (Pacific Grove, Calif., Dec.lO-la), ACM, New York, 1979.

5. GRAY, J.N. Notes on database operating systems. In Operating Systems-An Advanced Course,
R. Bayer, R.M. Graham, and G. Seegmuller, Eds. Springer-Verlag, New York, 1978.

6. IMS/VS. General Information Manual. IBM form number GH20-1260, IBM, White Plains,
N.Y., 1978.

7. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21, 7 (July 1978) 558-565.

8. LAMPSON, B.W., AND STURGIS, H.E. Crash recovery in distributed systems. Xerox Palo Alto
Research Rep., 1976. Xerox Pam, Palo Alto, Calif., 1976.

9. ROSENKRANTZ, D.J., STEARNS, R.E., AND LEWIS, P.M. System level concurrency control for
distributed database systems. ACM Trans. Database Syst. 3,2 (June 1978), 178-198.

10. STEARNS, R.E., LEWIS, P.M., AND ROSENKRANTZ, D.J. Concurrency control for database sys-
tems. In Proc. 17th Symp. Foundations of Computer Science, ACM, New York, 1976.

11. STONEBRAKER, M. Concurrency control and consistency of multiple copies of data in distributed
INGRES. IEEE Trans. Softw. Eng. SE-5,3. (May 1979), 188-194.

12. BORR, A. Transaction monitoring in encompass-reliable distributed transaction processing. In
Proc. 7th Znt. Conf Very Large Databases, IEEE, New York, 1981.

Received May 1979; revised May 1981; accepted May 1981

ACM Transactions on Database Systems, Vol. 7, No 3, September 1982.

