
1 2010-2024 M. Satyanarayanan

Project Assignments Done

Meet with your mentor ASAP

• work out details of your project, get equipment

• get started working on it, so you get to grips with the real issues fast

• “Fail early” – if any changes needed to project, discover this soon

Checkpoint-1 is on September 17 (two weeks from now)

2 2010-2024 M. Satyanarayanan

Checkpoint-1: Sep 17
online score sheet

What we are trying to figure out:

• Are you clear on the problem being addressed?

• Have you broken up the work into small steps?

• Are you realistic about how long each step will take?

• Will you need any special resources
(e.g. hardware, cloud resources, cloudlet resources, etc.)?

• Do you know how to acquire these resources?

• Do you have a good sense of what might go wrong?

• Do you have backup plans if Murphy strikes?

• Have you gotten your hands dirty yet?

3 2010-2024 M. Satyanarayanan

Ubiquitous Data AccessUbiquitous Data Access

Mahadev Satyanarayanan
School of Computer Science
Carnegie Mellon University

15-821 / 18-843
Fall 2024

4 2010-2024 M. Satyanarayanan

Readings for Today

Muthitacharoen, A., Chen, B., Mazieres, D.
A Low-bandwidth Network File System
In Proceedings of the 18th ACM Symposium on Operating Systems Principles. Chateau Lake Louise,
Alberta, October, 2001.

[Muthitacharoen2001]

Lee, Y.W., Leung, K.S., Satyanarayanan, M.
Operation Shipping for Mobile File Systems
IEEE Transactions on Computers 51(12), December, 2002.

[Lee2002b]

Bai, Y., Zhang, X., Zhang, Y.
Improving Cloud Storage Usage Experience for Mobile Applications
In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems. Hong Kong, China,
August, 2016

[Bai2016]

Tolia, N., Satyanarayanan, M., Wolbach, A.
Improving Mobile Database Access over Wide-area Networks without Degrading Consistency
In MobiSys ’07: Proceedings of the 5th International Conference on Mobile Systems, Applications and
Services. San Juan, Puerto Rico, 2007.

[Tolia2007]

Flinn, J., Sinnamohideen, S., Tolia, N., Satyanarayanan, M
Data Staging on Untrusted Surrogates
In Proceedings of FAST’03: 2nd USENIX Conference on File and Storage Technologies. San Francisco,
CA, March, 2003

[Flinn2003]

Kistler, J.J., Satyanarayanan, M.
Disconnected Operation in the Coda File System
ACM Transactions on Computer Systems 10(1), February, 1992.

[Kistler1992]

5 2010-2024 M. Satyanarayanan

Roots of These Concepts
The earliest reading is from 1992 – 30+ years ago!

How could there possibly be anything useful to say back then for this course?

To understand how/why, we need to go back even earlier to the late 1970s

And then work our way forward

Let’s start with today 

6 2010-2024 M. Satyanarayanan

Bewildering Complexity of Cyberspace

7 2010-2024 M. Satyanarayanan

déjà vu?
Bewildering complexity of physics in the late 19th Century

• proliferation of entities (elements)

• vague similarities, weak patterns, imprecise understanding

• missing abstractions
we did not even know the difference between Atomic Weight & Atomic Number!

Nagging suspicion of a deep underlying order

We developed a brilliant solution that reduced complexity

It has withstood the test of time (with significant evolution)

The Periodic Table

8 2010-2024 M. Satyanarayanan

Amazing Distillation of Knowledge
simple data structure, just a few KB in size

9 2010-2024 M. Satyanarayanan

Can We Do Something Similar for Computing?
Bring order to the explosive diversity that we see today

A tiered model of computing appears to have the right attributes

Each tier→ set of design constraints that dominate attention

Many alternative implementations of any given tier

• but all are subject to the unique constraints of that tier

• essential similarity in spite of design freedom

Major shifts in computing involve appearance, disappearance or repurposing of tiers

• e.g., batch processing, timesharing, personal computing, mobile computing,
IoT/pervasive computing, edge computing, …

• tier structure appears to be stable on the order of a decade or so

10 2010-2024 M. Satyanarayanan

Tier 3 (Mobile and IoT)
• mobility

weight, size, heat dissipation, battery life, …

• sensing
cheap IoT devices

Tier 3

Static & Vehicular
Sensor Arrays

Microsoft
Hololens Magic

Leap
AR/VR Devices

Drones

Smartphones

Tier 4

RFID Tag

Robotic
Insect

Swallowable
Capsule

WiFi
Backscatter

Device

Im
m

er
siv

e P
ro

xim
ity

Tier 2

wireless
network

network
proximity

low-
latency
high-

bandwidth

CloudletsCloudlets

LuggableLuggable

MiniMini--datacenterdatacenter

VehicularVehicular

Aircraft

Internet

Tier 1 (Cloud)
• compute elasticity
• storage permanence
• consolidation

lowest marginal cost of ownership
efficient capex

Tier 2 (Edge)
• network proximity to Tier 3

low-latency offloading
bandwidth scalable architectures

Tier 4
• immersive proximity to Tier 4
• energy harvesting and opportunism

“intermittent computing”
• no chemical energy source

zero maintenance long-term deployments

Internet

Tier 1

11 2010-2024 M. Satyanarayanan

Optional Followup Reading

“The Computing Landscape of the 21st Century”
Satyanarayanan, M., Gao, W., Lucia, B.
In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (HotMobile '19)
Santa Cruz, CA, February 2019

12 2010-2024 M. Satyanarayanan

A Tiered View of the Past

13 2010-2024 M. Satyanarayanan

In the beginning 

Only Tier 1 existed

No other tier could exist as long as
computing hardware was big & expensive

Batch Processing (1950-60s)

No networking, but remote job entry and
telemetry existed using point-to-point links

Mainframe

Remote Job Entry

Telemetry

14 2010-2024 M. Satyanarayanan

Improving Elasticity: Timesharing

Mainstream by 1970s

Batch  serial resuse

Timesharing 
elasticity, as long as
below saturation

Leverage statistical
multiplexing of
resource demands by
different users

Mainframe

Telemetry

15 2010-2024 M. Satyanarayanan

Low Latency: Personal Computing
the emergence of Tier 2

Queueing delays of shared mainframe became
intolerable at high levels of sharing

Lampson & Thacker: why bother sharing?

Disaggregated mainframe  large collection of
personal computers

Tier 1 completely replaced by Tier 2

Positive consequence: fine-grain improvement
of user experience via small investments

(not quite replacing capex with opex, but close)

16 2010-2024 M. Satyanarayanan

Need for “the cloud” Emerges
Enterprise data sharing became easy
in timesharing era

• Single shared file system

• Data permanence becomes crucial

• Ease of information sharing improved
productivity

• Tight access control

• “Single System Image”

This vanished with disaggregation

Can easy data sharing of timesharing
file systems be combined with new
benefits of personal computing?

"Andrew: A Distributed
Personal Computing
Environment"

Communications of the ACM,
April 1986

Solution (AFS):
store in the cloud
and cache at the
edge

17 2010-2024 M. Satyanarayanan

Mobile Data Access in a Cloud/Edge World

How to reconcile these opposing forces?

Tension between centralization and decentralization (autonomy versus interdependence)

Mobile computing
• all about freedom and lack of constraints

“anything, anytime, anywhere”

• consequence: bewildering complexity
Which device has my data? Where is the latest version?
How did this update conflict happen?
The network is broken, I can’t reach the cloud

Cloud computing
• all about simplicity through centralization

“like flipping a switch or turning on a faucet”

• reduced user complexity, reduced TCO
• just pay bill at the end of the month

18 2010-2024 M. Satyanarayanan

Disconnected Operation in
the Coda File System

19 2010-2024 M. Satyanarayanan

Replica Control Strategies

maybe update conflicts
maybe stale reads

no update conflicts
no stale reads

optimistic schemes
higher availability

pessimistic schemes
stronger consistency

aka “strict consistency”
or “one-copy semantics”

aka “eventual
consistency”

cloud computing
LANs in data centers

mobile computing & IoT
3G/4G/5G disconnected

emphasize Safetyemphasize Liveness

no update conflicts
maybe stale reads

20 2010-2024 M. Satyanarayanan

Disconnected Operation
Key enabling technology for mobile computing

• masks temporary isolation from file servers
• exploits caching for availability
• effectively zero bandwidth & infinite latency
• uniform handling of voluntary and involuntary disconnections
• applications/users are unaware that they are disconnected
• simplifies creation of failure-resilient applications

Conceived and first demonstrated in Coda File System

Benefits
• worst-case fallback position for connectivity
• valuable even when communication feasible

lowers cost & power for communication
allows radio silence in military applications

21 2010-2024 M. Satyanarayanan

Caching Functions

Venus cache performs 3 functions for disconnected operation

• hoarding user-augmented LRU caching

• emulation of services while disconnected

• reintegration resyncing and resolving conflicts

22 2010-2024 M. Satyanarayanan

User-Augmented Cache Management
Each cached object, f, has a current priority, p(f)

Composed of two parts
• hoard priority, h(f) static part (user-specified)
• reference priority, r(f) dynamic part (observed)

Weight of hoard priority is p(f) =  h(f)  (1 - ) r(f) default value of  is 0.75
(value of zero gives classic LRU)

warm pages cold pages
MRU LRU

next reference

Temperature is a good metaphor for object priority

• object never cools below hoard priority

• it can heat up substantially, depending on reference priority

23 2010-2024 M. Satyanarayanan

Emulation
Updates have to be buffered until connectivity restored

• disconnection may be minutes, hours, or possibly days
• persistent cache absolutely critical

Venus records mutations in per-volume client modification log (CML)
• temporal log of all updates, one log record per operation
• log is kept in persistent transactional memory (RVM)

simplifies correctness in the face of failures

• store records point to container file in local file cache

Log
Head

Time

m
kd

ir

st
or

e

ch
ow

n to
server

Log
Tail • • • more log records • • • •

container files in local storage

24 2010-2024 M. Satyanarayanan

Log Optimizations
Shrinking of log whenever possible

• performed when logging each disconnected update
• log kept at shortest possible length at all times
• exploits semantics of file system operations

Exploits temporal locality of updates
• “if an object is modified, it will be modified again soon”
• example: rm -rf <some directory>
• example: cp -pr <sourcedir> <targetdir>
• example: edit-debug cycle, editor checkpoint file

Key to long-term disconnected operation

• reduces cache space usage (especially container file space)

• speeds reintegration when connectivity is restored

25 2010-2024 M. Satyanarayanan

Reintegration
Reintegration ≈ cache resync + CML replay

• deferred until authentication tokens available
• temporary FIDs replaced by permanent (if necessary)
• CML is applied first; file data is backfetched
• transparent unless conflicts are detected

Implementation uses RVM for fault tolerance
• greatly simplify cleanup
• wireless networks can be very flaky!

Coda approach to conflict handling

• syntactic detection (fast path, version check)

• semantic resolution (slow but sure, type-specific)
“conflict” is in the eye of the beholder (e.g. checkbooks, calendars)

26 2010-2024 M. Satyanarayanan

Syntactic vs. Semantic Consistency
Entire responsibility for detection rests with client

Syntactic definition of consistency based only on interleaving
• same as “one-copy semantics”
• no attempt to use semantics of data, replicas are black boxes
• restrictive but cheap

(no application-specific code execution)

Semantic definition of consistency takes full account of data semantics
• more liberal, allows may interleavings disallowed by syntactic defn
• usually more expensive (involves app-specific code execution)

Coda approach
• syntactic  normal case
• semantic  exception handling

Contrast with systems like Bayou, that always use semantics

27 2010-2024 M. Satyanarayanan

Key Insights from AFS & Coda

A distributed file system that uses on-demand caching is

1. an excellent user abstraction for cloud-mobile convergence

2. it extends the familiar hierarchical name space to the cloud

3. all local applications work seamlessly on cloud data
no manual steps to download, upload, etc.
chances for human error

Success of DropBox validates this in the marketplace today

28 2010-2024 M. Satyanarayanan

Coda

AFS

2007
2010
Maginatics

1999

reading for this class (1992)

29 2010-2024 M. Satyanarayanan

Used AFS in Project Athena at MIT in 2000s
Founded DropBox in 2007

Inspiration for Dropbox from AFS and Coda
Wired Magazine, December 2011

1993 CMU PhD on Coda
Founded Maginatics 2010
Purchased by EMC in 2014
EMC acquired by Dell in 2016

Jay Kistler

Worked on Coda at CMU 1997-1999
Founded Cluster File Systems 1999
Sold to Sun in 2007
Open sourced by Oracle 2010
Worldwide use in Supercomputers (HPC)

http://lustre.org/about/

Peter Braam

30 2010-2024 M. Satyanarayanan

How Do You Know What to Cache?
Approach 1: Full Replication

Used by DropBox and other similar services

Designate a subtree as backed by DropBox

1. every participating machine gets a full and complete copy

2. every new file gets transmitted to all replicas

3. every updated file gets propagated
no well-defined semantics for when updates are propagated

All data is fetched in advance to point of useAll data is fetched in advance to point of use

31 2010-2024 M. Satyanarayanan

Place Entire Subtree in DropBox

32 2010-2024 M. Satyanarayanan

Machine1

Machine2

Machine3

Machine4

Machine5

Machine6

MachineN

33 2010-2024 M. Satyanarayanan

Shortcomings of DropBox Approach
(all such solutions are known as “sync solutions” in industry jargon)

1. Storage for entire subtree consumed on every replica

2. Significant update traffic on hot spots
painful on metered networks (e.g. 4G LTE)
no well-defined semantics for when you see updates

3. Machines receive updates whether they care or not
aka “push” model of update propagation

Coarse-grain, non-selective management of data

34 2010-2024 M. Satyanarayanan

DropBox Approach Works “Well Enough”

Technical excellence is only weakly correlated with business success

35 2010-2024 M. Satyanarayanan

A Much Better Approach
Transparently fetch file only if needed: on-demand caching

(aka “demand caching”)

• approach used in AFS (inherited and extended from AFS-2 by Coda File System)

• requires integration with the operating system

• fine-grained and selective approach to data management

Optional reading
“Efficient User-Level File Cache Management on the Sun Vnode Interface”
Steere, D. C., Kistler, J. J. , Satyanarayanan, M.
Proceedings of the Summer Usenix Conference, Anaheim, CA, June 1990

Support first introduced into Linux by Coda File System

• now standardized as FUSE module

• “FUSE”  “file system in user space”
• original Coda kernel module continues to exist in Linux kernel

36 2010-2024 M. Satyanarayanan

from Steere1990

- requires operating system modifications

+ total application transparency

+ enable demand caching

Inspiration
for FUSE
interface in
Linux today

37 2010-2024 M. Satyanarayanan

Price of Ignoring These Lessons

Bai, Y., Zhang, X., Zhang, Y.
“Improving Cloud Storage Usage Experience for Mobile Applications”
In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems. Hong Kong, China, August, 2016.

“However, today’s commercial services for mobile access to cloud storage have ignored
some useful insights and practical experience of this multi-decade research. Most
notably, they choose to avoid client side OS-level monitoring and support, in
exchange for fast and easy service deployment. As the result of this implementation
and deployment strategy, many of the existing mobile apps fall short of using cloud
storage service efficiently, and thus leading to poor usage experience, such as
unnecessary energy consumption, extended folder synchronization time, and redundant
network transmission traffic. Here we summarize our findings as follows.”

38 2010-2024 M. Satyanarayanan

Why Did DropBox Go Retro?
AFS/Coda approach dates back to the mid-1980s

• DropBox was created  2007

• AFS/Coda approach assumes sophisticated OS
Unix adequate even as early as 1984
Windows was DOS-like internally until XP (2001)

• DOS / Windows had ~90% client marketshare

Founders of DropBox used AFS extensively at MIT

• AFS part of Athena at MIT since ~1987

• pain: AFS not accessible after graduation
created DropBox to address this pain

DropBox approach simplifes OS portability
• Linux, Windows, iOS, Android, 
• simplifies software development time/cost

DropBox is essentially AFS--
• 2011 Wired Magazine article

• on Wayback Machine, see
http://www.wired.com/2011/12/backdrop-dropbox/all/

39 2010-2024 M. Satyanarayanan

But Even DropBox Dreams of Caching

April 2016 video
from DropBox

Never released as a product!

40 2010-2024 M. Satyanarayanan

Multi-OS On-Demand Caching
It is possible, but takes enormous technical skill

Implemented in MagFS, by CMU founders of Maginatics (2010-2014)

• uses on-demand caching based on FUSE

• completely transparent to applications (just like AFS and Coda)

Purchased by EMC in November 2014
(purchase price large, but not public)

• EMC purchased by Dell for $67B in October 2015

41 2010-2024 M. Satyanarayanan

Very Strong CMU Roots!
(over one-third of the company)

Niraj Tolia
Chief Architect

BS-ECE 2002
MS-ECE 2003
PhD-ECE 2008

Vijay Panghal
MS-INI 2009

Vibhav Sreekanti
BS-CS 2009

Julio Lopez
PhD-ECE 2007Jay Kistler

CTO & co-founder
PhD-CSD 1993

Deepti Chheda
MS-INI 2007

Rajiv Desai
MS-INI 2008

Vaibhav Kamra
BS-ECE 2003
MS-ECE 2004

Konteya Joshi
MS-SE 2006 Akshay Moghe

MS-ECE 2008
Mark Schreiber

BS-CS 2003

42 2010-2024 M. Satyanarayanan

MagFS Architecture

43 2010-2024 M. Satyanarayanan

What Happened to MagFS?
Maginatics acquired by EMC in 2014

• MagFS targeted at an EMC security product (unannounced)

EMC acquired by Dell in 2015

• EMC security product killed by Dell

• MagFS killed with it

• Development frozen as of 2015
all stock vested for MagFS team, so they all left Dell

MagFS code base gathering dust somewhere inside Dell

No incentive for Dell to open source MagFS

Sad story of a huge amount of innovation

44 2010-2024 M. Satyanarayanan

Are Classic File Systems Dead?

45 2010-2024 M. Satyanarayanan

Hot Topic Today
the death watch has begun

46 2010-2024 M. Satyanarayanan

Appears True at High Level
E.g. Android software focuses on Java classes and SQLite

• Android users never see a classic file system

• But, underneath Android, is the Linux native environment

• classic hierarchical file system continues to live on

This model may indeed become common

Will the lower layer vanish completely some day?

47 2010-2024 M. Satyanarayanan

Not a New Viewpoint!

48 2010-2024 M. Satyanarayanan

Why are File Systems Hierarchical?
Ken Thompson made radical changes in creating Unix

• why was the Unix file system so conventional and hierarchical?
• mere sentiment? lack of imagination?

“The Architecture of Complexity”
Herbert A. Simon, Proceedings of the American Philosophical Society,
Vol. 106, No. 6., Dec. 12, 1962, pp. 467-482.

“Empirically, a large proportion of the complex systems we observe in
nature exhibit hierarchic structure. On theoretical grounds we could
expect complex systems to be hierarchies in a world in which complexity
had to evolve from simplicity. In their dynamics, hierarchies have a
property, near-decomposability, that greatly simplifies their behavior.”

49 2010-2024 M. Satyanarayanan

Near-Decomposability
Key property of human-created hierarchical systems (Simon 1962)

Consequence of human cognitive limitations

Allows focus on immediate neighborhood (current directory + children)
• apparent shrinking of scale
• valuable to exploit in achieving scalability
• exploitable in concurrency control, failure resiliency, consistency, etc.

Hierarchical file systems reflect the limitations of human cognition

• without external tools, that’s the best organization for human minds

• “external tools”: e.g., SQL databases and search engines

50 2010-2024 M. Satyanarayanan

How Hierarchy Helps
Hierarchical file systems conflate search and access

• well-matched to limitations of human cognition,
• locality is an emergent property (temporal and spatial)
• locality is precious performance-wise for direct human exploration of data

Retrospective use of old unstructured data (e.g., decades later) 
• even the features for indexing may be unclear
• manual exploration may be necessary

Need for manual exploration (even if rare) 
• hierarchical file systems will not disappear
• but the hierarchical nature may remain deeply buried

51 2010-2024 M. Satyanarayanan

The Death of File Systems?
“…report of my death was an exaggeration”

52 2010-2024 M. Satyanarayanan

Coda Cartoons
from

Nikkei Electronics, September 1990
translation of IEEE Computer May 1990 article

53 2010-2024 M. Satyanarayanan

54 2010-2024 M. Satyanarayanan

AFS and Coda Difference

55 2010-2024 M. Satyanarayanan

Impact of Hoarding on Cache Size

56 2010-2024 M. Satyanarayanan

Trust Model

