
PySiLK: SiLK in Python
Release 1.1.0

CERT NetSA

July 8, 2008

silk-help@cert.org

Abstract

This document describes how to read and write SiLK packed data from within Python.

Contents

1 silk — SiLK record and file support 1
1.1 Available Types . 2
1.2 PySilk Example . 2
1.3 IPAddr Objects . 4
1.4 IPWildcard Objects . 4
1.5 IPSet Objects . 5
1.6 TCPFlags Objects . 6
1.7 RWRec Objects . 7
1.8 SilkFile Object . 8
1.9 FGlob Objects . 9

1 silk — SiLK record and file support

The silk module supplies objects for interfacing with SiLK records and data files.

The silk module exports the following functions:

init_site(filename)
Uses the given filename as the site file. If filename is omitted, the value of $SILK CONFIG FILE will be
used as the name of the configuration file. If $SILK CONFIG FILE is not set, the module looks for a file
named ‘silk.conf’ in the following directories: the directory specified in the $SILK DATA ROOTDIR environ-
ment variable; the data root directory that is compliled into SiLK; the directories ‘$SILK PATH/share/silk/’, and
‘$SILK PATH/share/’.

This function should not generally be called explicitly unless one wishes to use a non-default site configuration
file.

The init_site function can only be called once. Subsequent invocations will throw a RuntimeError.

Several functions and use of class members in PySilk implicitly call init_site if it has not already been
called. These include sensors, classtypes, classes, have_site_config, the RWRec.as_dict
method, and using the RWRec attributes classname, typename, classtype, or sensor.

sensors()
Returns a tuple of valid sensor names. Implicitly calls init_site with no argument if it has not yet been
called.

classtypes()
Returns a tuple of valid (class name, type name) tuples. Implicitly calls init_site with no argument if it has
not yet been called.

classes()
Returns a tuple of valid class names. Implicitly calls init_sitewith no argument if it has not yet been called.

ipv6_enabled()
Return True if SiLK was compiled with IPv6 support, False otherwise.

initial_tcpflags_enabled()
Return True if SiLK was compiled with support for initial TCP flags, False otherwise.

have_site_config()
Returns True if the module was able to locate the SiLK configuration file, False otherwise. Implicitly calls
init_site with no argument if it has not yet been called.

1.1 Available Types

class IPAddr
A representation for IP Addresses.

class IPWildcard
A representation of IP wildcard addresses or CIDR blocks.

class IPSet
A representation of an IPset.

class TCPFlags
A representation of TCP flags.

class RWRec
A representation of a SiLK data record.

class FGlob
An iterable object that allows retrievel of filenames in a SiLK data store.

1.2 PySilk Example

The following is an example using the PySiLK bindings. The code is meant to show some standard PySiLK techniques,
but is not otherwise meant to be useful. Explanations for the code can be found inline in the comments.

2 1 silk — SiLK record and file support

#!/usr/bin/python2.4

Import the pysilk bindings
from silk import *

Import sys for the command line arguments.
import sys

Main function
def main():

if len(sys.argv) != 3:
print ("Usage: %s infile outset" % sys.argv[0])

Open an silk file for reading
infile = SilkFile(sys.argv[1], READ)

Create an empty IPset
destset = IPSet()

Loop over the records in the file
for rec in infile:

Do comparisons based on rwrec field value
if (rec.protocol == 6 and rec.sport in [80, 8080] and

rec.packets > 3 and rec.bytes > 120):

Add the dest IP of the record to the IPset
destset.add(rec.dip)

Save the IPset for future use
destset.save(sys.argv[2])

count the items in the set
count = 0
for addr in destset:

count = count + 1

print "%d addresses" % count

Another way to do the same
print "%d addresses" % len(destset)

Print the ip blocks in the set
for base_prefix in destset.cidr_iter():

print "%s/%d" % base_prefix

Call the main() function when this program is started
if __name__ == ’__main__’:

main()

1.2 PySilk Example 3

1.3 IPAddr Objects

An IPAddr object represents an IPv4 or IPv6 address.

class IPAddr(address)
The constructor takes either a string address, which must be a string representation of either an IPv4 or IPv6
address, or an integer representation of the address. IPv6 addresses are only accepted if ipv6_enabled()
returns True.

Examples:

>>> addr1 = IPAddr(’192.160.1.1’)
>>> addr2 = IPAddr(’2001:db8::1428:57ab’)
>>> addr3 = IPAddr(’::ffff:12.34.56.78’)
>>> addr4 = IPAddr(0xffffffff)
>>> addr5 = IPAddr(0xffffffffffffffffffffffffffffffff)

Supported operations:

Operation Result
addr1 < addr2 addr1 is considered less than addr2 if the 128-bit representation of addr1 is less than addr2
int(addr1) The integer representation of addr

Instance methods:

ipv6()
Return True if the address is an IPv6 address, False otherwise.

__str__()
For an address addr, str(addr) returns a human-readable representation of that address.

1.4 IPWildcard Objects

An IPWildcard object represents a range or block of IP addresses. The IPWildcard object handles iteration over
IP addresses with for x in wildcard.

class IPWildcard(wildcard)
The constructor takes a string representation wildcard of the wildcard address.

The string wildcard can be in CIDR notation, an integer, an integer with a CIDR designation, or an entry in
SiLK wildcard notation. In SiLK wildcard notation, a wildcard is represented as a string IP address in canonical
form with an x representing an entire octet or hexadectet. An IP wildcard string can also have lists or ranges
in place of an octet or hexadectet. IPv6 wildcard addresses are only accepted if ipv6_enabled() returns
True.

Examples:

>>> a = IPWildcard(’1.2.3.0/24’)
>>> b = IPWildcard(’ff80::/16’)
>>> c = IPWildcard(’1.2.3.4’)
>>> d = IPWildcard(’::FFFF:0102:0304’)
>>> e = IPWildcard(’16909056’)
>>> f = IPWildcard(’16909056/24’)
>>> g = IPWildcard(’1.2.3.x’)
>>> h = IPWildcard(’1:2:3:4:5:6:7.x’)
>>> i = IPWildcard(’1.2,3.4,5.6,7’)
>>> j = IPWildcard(’1.2.3.0-255’)
>>> k = IPWildcard(’::2-4’)
>>> l = IPWildcard(’1-2:3-4:5-6:7-8:9-a:b-c:d-e:0-ffff’)

4 1 silk — SiLK record and file support

Supported operations:

Operation Result
addr in wildcard True if addr is in wildcard, False otherwise

addr not in wildcard False if addr is in wildcard, True otherwise
string in wildcard Same as: IPAddr(string) in wildcard

string not in wildcard Same as: IPAddr(string) not in wildcard

Instance methods:

__str__()
For an IP wildcard wild, str(wild) returns the string that was used to make the wildcard.

1.5 IPSet Objects

An IPSet object represents any set of IP addresses, as produced by rwsetbuild and related programs. The IPSet
object handles iteration over IP addresses with for x in set, and iteration over CIDR blocks using for x in
set.cidr_iter().

class IPSet([iterable])
The constructor creates an empty IPset. If an iterable is supplied as an argument, each item of the iterable will
be added to the IPset. Each item of the iterable should either be an IPv4 IPAddr or a string representing a valid
IPv4 address.

Other constructors, all class methods:

load(path)
Creates an IPSet from an IPset saved in a file. path must be a valid location of an IPset.

Supported operations:

Operation Equivalent Result Notes
len(s) cardinality of IPset s (1)

s.cardinality() cardinality of IPset s
addr in s test addr for membership in s (2)

addr not in s test addr for non-membership in s (2)
s.issubset(t) s <= t test whether every element in s is in t (3)

s.issuperset(t) s >= t test whether every element in t is in s (3)
s.union(t) s | t new IPset with elements from both s and t (3)

s.intersection(t) s & t new IPset with elements common to s and t (3)
s.difference(t) s - t new IPset with elements in s but not in t (3)

s.symmetric_difference(t) s ˆ t new IPset with elements in either s or t but not both (3)
s.copy() new set with a copy of s

s.update(t) s |= t update s, adding elements from t (3)
s.intersection_update(t) s &= t update s, keeping only elements found in both s and t (3)

s.difference_update(t) s -= t update s, removing elements found in t (3)
s.symmetric_difference_update(t) s ˆ= t update s, keeping elements found in s or t but not in both (3)

s.add(addr) add element addr to IPset s (2)
s.remove(addr) remove addr from IPset s; raises KeyError if not present

s.discard(addr) removes addr from IPset s if present
s.clear() remove all elements from IPset s

Notes:

(1) May throw OverflowError if there are too many IP addresses in the IPset. Use s.cardinality() instead.

1.5 IPSet Objects 5

(2) addr can be an IPAddr, an IPWildcard, or the string representation of either. The address or addresses must
be an IPv4 addresses.

(3) With the non-operator version of this method, t can be any iterable object of IP addresses or IP address strings.
The operator version requires that t be an IPSet.

Instance methods:

cidr_iter()
Returns an iterator over CIDR blocks. Each iteration returns a tuple, the first element of which is the
first IP address in the block, the second of which is the prefix length of the block. Can be used as
for (addr, prefix) in s.cidr_iter().

save(filename)
Saves the IPSet in the file filename.

1.6 TCPFlags Objects

A TCPFlags object represents the eight bits of flags from a TCP session.

class TCPFlags(value)
The constructor takes either a TCPFlags value, a string, or an integer. If a TCPFlags value, it returns a copy
of that value. If an integer, the integer should represent the 8-bit representation of the flags. If a string, the
string should consist of a concatenation of zero or more of the characters ‘F’, ‘S’, ‘R’, ‘P’, ‘A’, ‘U’, ‘E’, and
‘C’—upper or lower-case—representing the FIN, SYN, RST, PSH, ACK, URG, ECE, and CWR flags. Spaces
in the string are ignored.

Examples:

>>> a = TCPFlags(’SA’)
>>> b = TCPFlags(5)

Instance attributes (read-only):

Attribute Value
FIN True if the FIN flag is set, False otherwise
SYN True if the SYN flag is set, False otherwise
RST True if the RST flag is set, False otherwise
PSH True if the PSH flag is set, False otherwise
ACK True if the ACK flag is set, False otherwise
URG True if the URG flag is set, False otherwise
ECE True if the ECE flag is set, False otherwise
CWR True if the CWR flag is set, False otherwise

Supported operations:

Operation Result
f The bitwise inversion (not) of f

f1 & f2 The bitwise intersection (and) of the flags from f1 and f2
f1 | f2 The bitwise union (or) of the flags from f1 and f2
f1 ˆ f2 The bitwise exclusive disjunction (xor) of the flags from f1 and f2
int(f) The integer value of the flags f

f Can be used as a truth value with any flag set == True, False otherwise

Constants:

The following constants are defined:

6 1 silk — SiLK record and file support

Constant Meaning
FIN A TCPFlags value with only the FIN flags set
SYN A TCPFlags value with only the SYN flags set
RST A TCPFlags value with only the RST flags set
PSH A TCPFlags value with only the PSH flags set
ACK A TCPFlags value with only the ACK flags set
URG A TCPFlags value with only the URG flags set
ECE A TCPFlags value with only the ECE flags set
CWR A TCPFlags value with only the CWR flags set

Supported methods:

matches(flagmask)
Given a flagmask of the form "flags/mask", returns True if if the flags of self match flags after being
masked with mask, False otherwise.

Given a flagmask without the ‘/’, checks for literal equality, as if the mask contained all flags.

__str__()
For an TCPFlags object f , str(f) returns the a string representation of the flags set in f .

1.7 RWRec Objects

An RWRec object represents a SiLK record.

class RWRec([rec],[field=value],...)
This constructor creates an empty RWRec object. If an RWRec rec is supplied, it will create a copy of rec. The
variable rec can be a dictionary, such as that supplied by RWRec.as_dict(). Initial values for record fields
can be included.

Example:

>>> recA = RWRec(input=10, output=20)
>>> recB = RWRec(recA, output=30)
>>> (recA.input, recA.output)
(10, 20)
>>> (recB.input, recB.output)
(10, 30)

Instance attributes:

1.7 RWRec Objects 7

Attribute Value Type
application The “service” port set by the collector integer
bytes The count of the number of bytes in the flow integer
classname The class name of the record (read-only) (1) string
classtype A tuple of the class name and type name of the record (1) (string, string)
dip The destination IP (can be set as a string) IPAddr
dport The destination port integer
duration The duration of the flow datetime.timedelta
etime The end time of the flow datetime.datetime
initflags The TCP flags of the first packet of the flow (may be None) TCPFlags
icmpcode The ICMP code (only valid if protocol is 1) integer
icmptype The ICMP type value (only valid if protocol is 1) integer
input The router’s incoming SNMP interface integer
nhip The router’s next-hop IP (can be set as a string) IPAddr
output The router’s outgoing SNMP interface integer
packets The packet cout for the flow integer
protocol The IP protocol integer
restflags The union of the flags of all but the first packet of the flow (may be None) TCPFlags
sensor The sensor ID (1) string
sip The source IP (can be set as a string) IPAddr
sport The source port integer
stime The start time of the flow datetime.datetime
tcpflags The union of the TCP flags of all packets in the flow TCPFlags
timeout_killed Whether the flow ended early due to timeout by the collector (may be None) boolean
timeout_started Whether the flow is a contination from a timed-out flow (may be None) boolean
typename The type name of the record (read-only) (1) string

Notes:

(1) Using or setting this attribute implicitly calls init_site with no argument if it has not yet been called.

Supported methods:

is_web()
True if the record can be represented as a web record, False otherwise.

as_dict()
Returns a dictionary representing the contents of the record. Implicitly calls init_site with no argument if
it has not yet been called.

__str__()
For an record rec, str(rec) returns the string representation of rec.as_dict().

Supported operations:

Operation Result
rec1 == rec2 True if rec1 is structurally equivalent to rec2
rec1 != rec2 True if rec1 is not structurally equivalent to rec2

1.8 SilkFile Object

An SilkFile object represents a channel for writing to or reading from SiLK flow files. A SiLK file open for
reading can be iterated over using for rec in file.

8 1 silk — SiLK record and file support

class SilkFile(filename, mode, compression=DEFAULT, notes=[], invocations=[])
The constructor takes a filename, a mode, and a set of optional keyword parameters. The filename should be the
path to the file to open. The mode should be one of the following constant values:

Mode Meaning
READ Open file for reading
WRITE Open file for writing
APPEND Open file for appending

A few filenames are treated specially. The filename ‘stdin’ maps to the standard input stream when the mode
is READ. The filenames ‘stdout’ and ‘stderr’ map to the standard output and standard error streams respectively
when the mode is WRITE. A filename consisting of a single hyphen (‘-’) maps to the standard input if the mode
is READ, and to the standard output if the mode is WRITE.

The compression parameter can be one of the following constants:
Constant Meaning
DEFAULT Default compression scheme compiled into SiLK
NO_COMPRESSION No compression
ZLIB Use zlib block compression
LZO1X Use lzo1x block compression

If notes or invocations are set, they should be list of strings. These add annotation and invocation headers to the
file.

Examples:

>>> myinputfile = SilkFile(’/path/to/file’, READ)
>>> myoutputfile = SilkFile(’/path/to/file’, WRITE, compression=LZO1X,

notes=[’My output file’,
’another annotation’])

Instance methods:

read()
Returns an RWRec representing the next record in the SilkFile. If there are no records left in the file, returns
None.

write(rec)
Writes the RWRec rec to the file. Returns None.

next()
A SilkFile object is its own iterator, for example iter(f) returns f . When the SilkFile is used as an iter-
ator, the next()method is called repeatedly. This method returns the next record, or raises StopIteration
when EOF is hit.

notes()
Returns the list of annotation headers for the file as a list of strings.

invocations()
Returns the list of invocation headers for the file as a list of strings.

close()
Closes the file. Returns None.

1.9 FGlob Objects

An FGlob object is an iterable object which iterates over filenames from a SiLK data store. It does this internally by
calling the rwfglob program. The FGlob object assumes that the rwfglob program is in the PATH, and will throw an
execption when used if not.

1.9 FGlob Objects 9

class FGlob(classname=None, type=None, sensors=None, start date=None, end date=None, data root-
dir=None, site config file=None)

Arguments are:

classname, if given, should be a string representing the class name. If not given, defaults based on the site
configuration file.

type, if given, can be either a string representing a type name or comma-separated list of type names, or can be
a list of strings representing type names. If not given, defaults based on the site configuration file.

sensors, if given, should be either a string representing a comma-separated list of sensor names or IDs, and
integer representing a sensor ID, or a list of strings or integers representing sensor names or IDs. If not given,
defaults to all sensors.

start date, if given, should be either a string in the format YYYY/MM/DD[:HH], a date object, a datetime object
(which will be used to the precision of one hour), or a time object (which is used for the given hour on the current
date). If not given, defaults to start of current day.

end date, if given, should be either a string in the format YYYY/MM/DD[:HH], a date object, a datetime object
(which will be used to the precision of one hour), or a time object (which is used for the given hour on the
current date). If not given, defaults to start date. end date cannot be used without a start date.

data rootdir, if given, should be a string representing the directory in which to find the packed SiLK data files.
If not given, defaults to $SILK DATA ROOTDIR or the compiled-in default.

site config file, if given, should be a string representing the path of the site configuration file. If not given,
defaults to $SILK CONFIG FILE or ‘$SILK DATA ROOTDIR/silk.conf’.

At least one of classname, type, sensors, start date must be specified.

An FGlob object can be used as a standard iterator. For example:

for filename in FGlob(classname="all", start_date="2005/09/22"):
for rec in SilkFile(filename):

...

10 1 silk — SiLK record and file support

	1 silk --- SiLK record and file support
	1.1 Available Types
	1.2 PySilk Example
	1.3 IPAddr Objects
	1.4 IPWildcard Objects
	1.5 IPSet Objects
	1.6 TCPFlags Objects
	1.7 RWRec Objects
	1.8 SilkFile Object
	1.9 FGlob Objects

