Intro to Econometric Theory Heinz School, Carnegie Mellon University 90-906, Spring 2005-6

Homework #1, due Friday, February 24, 2006

1. Consider two matrixes: $A, m \times n$, and $B, n \times p$. Prove that their product, AB can be written:

$$AB = \sum_{i=1}^{n} A_i B^i.$$

How could we write X'X?

- 2. Prove that the commutative law of mulitplication applies to diagonal matrixes. What is the inverse of a diagonal matrix?
- 3. Consider the sum $\sum_{i=1}^{n} (X_i \overline{X})(Y_i \overline{Y})$, where X_i, Y_i are scalars.
 - (a) Please write the sum in matrix notation, using no sums. (Hint: use M_0).
 - (b) Use the matrix notation and facts you know about M_0 to prove:

$$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} (X_i - \overline{X})Y_i$$
$$= \sum_{i=1}^{n} X_i(Y_i - \overline{Y})$$

and that $\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} X_i Y_i$ if either the mean of X or the mean of Y is zero.