Intro to Econometric Theory Heinz School, Carnegie Mellon University 90-906, Spring 2005-6

Homework #4, due Friday, April 28, 2006

- 1. Consider the generalized regression model. Suppose we try to run GLS using a matrix Ω_1 which we believe is equal to (or a good estimator of) Ω . Suppose further that we are wrong, and that $\Omega_1 \neq \Omega$. Let's call the estimator we calculate using Ω_1 , $\hat{\beta}_{WGLS}$ (W for wrong).
 - (a) Is $\hat{\beta}_{WGLS}$ unbiased?
 - (b) What is its variance?
 - (c) Can you think of a reasonable estimator for this variance?
 - (d) Is this variance bigger or smaller than the GLS variance?
 - (e) What should we conclude about the dangers of trying to correct for a non-scalar covariance matrix, but screwing it up?
- 2. With respect to the hospital cost dataset from the web site, please estimate the following two models:

$$lnC = \beta_1 + \beta_2 lnD + \beta_3 lnV + \beta_4 time + \epsilon \tag{1}$$

$$C = \alpha_1 + \alpha_2 D + \alpha_3 V + \alpha_4 time + \epsilon \tag{2}$$

In the above, D is inpatient days, V is outpatient visits, and time is the number of quarters since the first quarter of 1991.

- (a) Discuss how the estimates that these two equations provide for marginal costs differ.
- (b) Test for non-linearity in equation 2. Discuss the meaning of your findings.
- (c) Think carefully about the variable C. Think carefully about equation 2 (not the estimated version, but the theoretical version). Are there circumstances in which equation 2 can give obviously wrong predictions for C? Does equation 1 suffer from a similar problem?
- (d) Calculate predicted values for C from both models. Calculate the mean squared error for both models: $\sum (C \hat{C})$. Which model is better by this criterion?
- (e) Would it make sense to compare the R^2 from the two equations in order to decide which is best? Why or why not?

- (f) If we care about getting the right answer, which equation should we use and why? (You may do more analysis if you like to answer this question)
- 3. The Medical Expenditure Panel Survey is an annual survey which collects information about medical expenditures, income, employment, demographics, health information, &c for a representative sample of Americans.

I have prepared an extract of these data for 1996, and it is available on the course website. The following are the columns in the data, in order:

Variable	Meaning
age	age of person in years
sex	sex of person, 1=male & 0=female
income	income in 1996 $\$$
$\operatorname{employed}$	1=employed, $0=$ not employed
$_{ m insured}$	1=had health insurance, 0=not
health	perceived health status, higher is sicker
$_{ m spending}$	spending on health care, 1996 \$

To begin with, let's consider this model:

spending_i =
$$\beta_1 + \beta_2$$
income + β_3 age + β_4 sex
+ β_4 employed + β_5 insured + β_6 health (3)

- (a) What do you think of the claim that income and sex do not belong in this model?
- (b) Consider the health status variable. Respondents were asked to rate their health status; their choices were excellent, very good, good, fair, or poor. These were assigned the numerical values 1-5. Does it make sense to enter health status as a single continuous variable as in equation 3?
 - Enter health status into the model as a set of dummies, and then test whether they belong.
- (c) How much more do people in very good health status spend than do people in excellent health status (estimate and CI).
- (d) Test whether it was correct to enter health status linearly.
- (e) Test whether insurance affects spending for people of different health statuses differently and discuss.