
The Tekkotsu Robotics Development Environment

Ethan Tira-Thompson and David S. Touretzky

Abstract— Tekkotsu has grown from a specialized framework
for development on the Sony Aibo to a general purpose
robotics development environment with support for a variety of
hardware, algorithms for autonomous operation, virtual simu-
lation, and associated curriculum for undergraduate education.
This paper describes the implementation of these features,
provides examples of their use in research and education, and
draws a comparison with other popular open-source robotics
frameworks.

I. INTRODUCTION

Writing non-trivial robot software demands proficiency in
a variety of disciplines, such as computer vision, planning,
control theory, machine learning, and human-robot interac-
tion. Development is greatly aided by the availability of tools
for data logging and simulation.

This high barrier to entry creates a demand for develop-
ment toolkits which allow users to focus on specific areas
of new development [1]. Ideally, these toolkits can also
promote collaboration and reproducibility of research results.
However, the wide range of hardware available for robot
construction has also spawned a wide variety of toolkits, each
originally specialized for a niche hardware configuration,
which shapes the toolkit’s overall architecture [2].

Tekkotsu originated on the Sony Aibo [3], a four-legged
platform with moderate computational resources. Legged
platforms emphasize the importance of real-time perfor-

Fig. 1. The “flagship” Tekkotsu platforms, clockwise from upper left:
Create/ASUS, Hand-Eye, Calliope, and Chiara hexapod

E. Tira-Thompson is a doctoral student in the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213
ejt@cmu.edu

D. S. Touretzky is a Research Professor of Computer Science,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213
dst@cs.cmu.edu

mance in order to produce smooth motion for walking. This
is seen in Tekkotsu’s architectural division of labor between
a ‘Motion’ thread with real-time constraints and a ‘Main’
thread which performs longer-term decision making.

This emphasis on efficient use of limited resources has
served Tekkotsu well as it has expanded to a variety of low-
cost systems suitable for university education, such as the
iRobot Create and others of the Tekkotsu lab’s own design
(Hand-Eye, Calliope, and Chiara). A quick overview of these
platforms shown in Fig. 1:

• iRobot Create with netbook and mounting bracket: $785
Wheeled navigation, fixed netbook camera

• Hand-Eye manipulator [4]: $995
3 DOF planar arm with pan/tilt camera, mounted to table
and tethered to a desktop computer

• Calliope [5]: approximately $3000 (in development)
iRobot Create base with non-planar manipulator and
pan/tilt camera

• Chiara hexapod [6]: under $4000 (price fluctuates with
component upgrades and availability)
Legged system with planar arm, pan/tilt camera, on-
board computation, battery power, and wireless com-
munication

The preceding prices represent assembled hardware from
RoPro Design, Inc. However, our hardware designs are open-
source (GPL), allowing users to independently construct,
extend, and customize our hardware as well as our software
(LGPL).

Tekkotsu users have developed support for additional
platforms. A group at the Technical University of Crete [7]
has Tekkotsu working on the Nao humanoid from Aldebaran
Robotics. And Road Narrows Robotics [8] has been using
Tekkotsu to develop support for the Kondo KHR-2 mini-
humanoid.

II. DESIGN GOALS/CONSTRAINTS

A. Real-Time Performance

Tasks such as object tracking require low latency between
sensor processing and motion generation. Similarly, legged
locomotion requires smooth generation of effector trajec-
tories. This type of real-time control becomes unreliable
when network communication is involved. Further, avoidance
of off-board computation simplifies user configuration and
reduces points of failure. For these reasons, Tekkotsu focuses
on maximizing its use of on-board computation. This focus
allows use of shared memory communication between real-
time and non-real-time threads, which avoids the potential
for backlogs that can form in buffer-based communication.

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 6084

Instead, behaviors in the Main thread directly call methods
on shared ‘motion commands’, and these methods can imme-
diately return status information or modify joint trajectories.
This architecture is further described in section IV-B.

However, it should be noted that our current systems use a
standard Ubuntu Linux installation, not a specialized ‘hard’
real-time variant, which does restrict our ability to make real-
time performance guarantees on these systems. Although
we have found this sufficient for our purposes, users with
more rigorous requirements can employ specialized real-time
kernels.

B. Ease of Use

Tekkotsu’s core audience is academia [9]. Several dozen
colleges and universities are using or have used Tekkotsu
for either teaching or research. Via the Cognitive Robotics
curriculum (Section V), students with varying levels of
programming proficiency are introduced to the framework
and use it to complete their assignments and laboratory work.

One key to this usage is a variety of developer tools
to aid in the configuration, execution, and debugging of
users’ behaviors. These tools range from runtime generation
of C++ stack traces for various error conditions (without
prescient use of a debugger), to GUI tools for configuring
color segmentation [10] (EasyTrain), robot kinematics (DH
Wizard [11]), behavior monitoring (Storyboard [12]) and
interaction (ControllerGUI).

Tekkotsu also includes Mirage, a fully 3D physics-based
simulation environment, which has proven to be enormously
useful for developing and debugging behaviors. This is
not only due to providing a controlled, repeatable testing
environment, but also because it allows students to continue
development outside of the lab, without physical access to
the robots.

One of the most successful tools is the state machine
compiler, which allows succinct description of complex robot
behaviors. Notably, it does this by extending C++ syntax,
not supplanting it, so users still have direct access to all
framework interfaces as needed.

The simplified syntax used for specifying state machines
also makes the framework accessible to novice programmers,
so that high school students in two CMU summer pro-
grams, the Summer Academy for Mathematics and Science
(SAMS), and Andrew’s Leap, have demonstrated the ability
to quickly produce interesting behaviors.

C. Modularity vs. Integration

Modularity can be a double-edged sword: it allows ab-
straction, which benefits conceptual simplicity, maintenance,
and reusability, but it can also restrict interoperability to a
lowest common denominator and incur overhead translating
between internal representations and interface standards.
Overuse can also increase complexity rather than lower it.

Tekkotsu’s approach varies as it provides programming
interfaces at different levels of abstraction. At the lowest
levels, drivers and events promote modularity, allowing in-
dependent plug-and-play implementations. At the highest

levels of abstraction, the “Crew” components [13] are highly
integrated in order to allow efficient reasoning regarding use
of the robot’s resources, such as where to direct its sensors,
coordination of navigation and localization, etc.

D. Open Source

Documented and accessible source code is crucial in a
field where so many technologies are still undergoing active
research and development. We remain committed to publicly
releasing both our source code and our hardware designs
in order to promote interoperability and extension to new
technologies.

III. HIGH LEVEL FEATURES

A. Crew

The Tekkotsu Crew [13] is the highest level interface for
robot control. Users formulate requests for actions to be
performed, and the relevant components work together to
satisfy these requests.

Currently, the crew consists of four components: Lookout,
Map Builder, Pilot, and Grasper.

The Lookout is responsible for the sensors mounted on
the “head”, typically a camera and rangefinders.

The Map Builder uses the Lookout to search for a target
or build a map of the local environment, converting camera
images to top-down views.

The Pilot plans collision-free paths through the environ-
ment, and uses the Map Builder and a particle filter to
perform localization within the environment.

The Grasper [14] accepts requests to manipulate objects,
also specified by map-based data.

B. Vision Processing

The Dual-Coding vision system [15] parses image data to
extract symbolic structures such as lines and ellipses, but also
to process pixel-based relationships such as edges and con-
nected components. These representations can be converted
bi-directionally, from pixels to algebraic representations and
back again as needed to perform efficient operations and
present final results back to the user. Dual-Coding operations
are automatically tracked and presented in a GUI interface
as a derivation tree which allows users to easily step through
the processing that has been performed.

There is also color segmentation, SIFT [16], and AprilTag
[17] support available.

C. Localization and Mapping (SLAM)

Tekkotsu includes a particle filter to perform mapping
and/or localization from a variety of sources, such as a range
finder scan or bearing-only landmarks. [18]

D. Kinematics

Tekkotsu’s kinematic descriptions can include both colli-
sion models and graphical models to provide planning, phys-
ical simulation, and display of the robot in a 3D environment.
The kinematic description supports tree structures, with
specification of which inverse kinematic algorithm should be

6085

used for solutions at each link. Tekkotsu includes a generic
gradient descent IK solver as well as analytic solvers for
common three-link configurations.

E. Speech Generation

It is often hard to see status information on a small moving
screen attached to the robot, or to split attention between the
robot itself and a fixed desktop display. On Linux, Tekkotsu
uses the MARY [19] text-to-speech engine from the German
Research Center for Artificial Intelligence (DFKI). On Mac
OS X, Tekkotsu uses the built-in text-to-speech interface
provided by the operating system.

F. Locomotion

Legged locomotion is a non-trivial problem with a variety
of approaches. Early Aibo-based development used a gait-
based engine developed by the CMU RoboSoccer team
CMPack’02 [20], as well as an alternate engine from the
University of Pennsylvania [21]. We have since written a
new engine, also gait-based, for the Chiara hexapod.

The choice of motion engine (gait generator or wheel
controller) is made at compile time based on the target robot.
The engines use a common interface, so user behaviors are
mostly portable between platforms.

IV. ARCHITECTURE

A. Deliberative vs. Real-time Processing

As noted in the introduction, Tekkotsu uses threads to
separate real-time tasks such as hardware interaction, sound
playback, and motion generation, from deliberative tasks
such as planning and image processing. Sensor updates
are considered a real-time task, as motion generation may
depend on this data, for example to maintain balance or
other dynamics. However image processing is considered a
deliberative task as it is typically time consuming and not
able to conform to useful real-time constraints.

B. Flow of Information

The canonical sense-think-act loop is used to illustrate the
processing of the framework.

1) Sense: Tekkotsu provides a Hardware Abstraction
Layer (HAL) which is responsible for device configuration
and coordinating the movement of data.

A device driver can advertise one or more data sources.
Each of the data sources listed in the HAL configuration
will receive callbacks to initiate and terminate sensor activity
when appropriate. (Besides starting or stopping the exe-
cutable, users can also pause execution or freeze individual
data sources on demand.) Data sources are responsible for
pushing data into Tekkotsu as it becomes available, com-
monly spinning off a thread to block on or poll a resource.

Sensors that provide individual values, such as non-
scanning rangefinders, contact sensors, torque sensors, etc.
are collated into a flat array of sensor data. Sensors that
provide arrays of values, such as cameras, are published as
individual images immediately as they become available.

2) Think: The publish/subscribe pattern provides a pop-
ular method to efficiently distribute information between
modules. Not only does it eliminate the overhead of repeated
polling, it also allows publishers to query whether they have
any subscribers and thus avoid unnecessary processing.

Tekkotsu uses a centralized publish/subscribe model, im-
plemented by a global Event Router from which all events
can be posted and received.

Tekkotsu’s centralized event processing is one of its unique
characteristics, particularly relative to other robotics frame-
works, and has interesting consequences:

• Providing a centralized list of events types makes the
system more transparent and comprehensible.

• Publishers can be added, removed, or replaced without
any changes to subscriber code, because publishers and
subscribers have no direct contact with one another.

• Events are normally processed on the local host with
no serialization overhead. However, serialization is sup-
ported in order to subscribe to events on remote hosts.

• Users can extend the event hierarchy by subclassing the
standard event types, allowing generic event operations
to proceed naturally, while savvy subscribers can access
the extended information via a simple C++ cast.

• When event processing (e.g., a new camera image)
triggers a child event (e.g., object detected in the image),
the centralized event queue completes processing of the
parent before recursing on the child. This ensures all
subscribers always receive events in temporal First-In-
First-Out order.

• Although not strictly a feature of centralized processing,
Tekkotsu’s Event Router guarantees to publishers that
all processing for an event has completed before the
postEvent() call returns. This allows subclassed
events to safely include direct references to generators’
internal data structures without resorting to reference
counting or semaphores, reducing the overhead of data
marshalling.

3) Act: The motion process entails repeatedly polling
active motion commands for their control values, and then
sending these to device drivers’ motion hooks.

Motion commands can implement arbitrary control
schemes, such as walking, balancing, or simply playing back
scripted trajectories. These motion commands are usually
primitive and task specific, relying on event-based behaviors
to do long term planning. For example, a gaited “walk”
motion command will produce a cycle of leg motions to loco-
mote in a specified direction, but relies upon a higher-level
behavior to direct the walk around obstacles. A footstep-
based motion command might receive a series of footstep
positions to iterate through, planned by an external behavior.

Since motion commands are independent, two motion
commands might try to concurrently move the same actuator.
Tekkotsu’s motion manager coordinates actuator values using
a system of priority levels assigned to each motion command
as well as a actuator weights which are used to perform a
weighted average of values at the same priority level.

6086

This management system allows some motion commands
such as an emergency stop to override other motions using
the priority level, and also allows motions to fade-out when
they complete, which prevents instantaneous actuator motion
if the motion command was in conflict with another. (If
two motion commands are in conflict, the actuator moves to
the weighted average of their requested positions—if one of
these commands were removed without fading, the actuator
would snap suddenly to the remaining command’s position.)

Once the motion manager produces a final array of values
for each actuator, which is passed to all device drivers’
motion hooks. These drivers are responsible for transmitting
the actuator values to their respective hardware.

C. Control and User Interface

To interact with and control the robot, Tekkotsu provides
a set of GUI tools written in Java. These can be run from
a remote machine and communicate with the robot over a
network connection.

The main interface is dubbed the ControllerGUI, which is
used to launch behaviors and bring up additional interfaces,
such as a remote control for locomotion or controlling the
robot’s “head” (as defined by the robot’s configuration).
There are also data views for investigating the Dual Coding
data structures encoding the robot’s parse of the visual world
or streaming video.

Independent tools provide additional user interfaces, such
as the EasyTrain program to assist in segmenting color space
for fast vision processing [10], or the Storyboard log viewer
to investigate state machine execution [12].

One major tool is Mirage, shown with some additional
interfaces in Fig. 2. Mirage provides 3D visualization (via
Ogre3D [22]) with dynamic physics simulation (via Bullet
Physics [23]). This allows many robot behaviors to be
developed and debugged in a simulated environment, which

Fig. 2. A screen capture of the Mirage simulation environment
(background) with additional windows. The lower left window illustrates
the result of color-segmented image processing with object bounding
boxes and the right window provides a remote control for the head.
http://www.youtube.com/watch?v=IZc2EftHVNQ

has proven extremely useful.
Mirage supports multiple concurrent robots interacting in a

common virtual world. Each robot makes a network connec-
tion, and then sends its kinematic configuration followed by
a stream of desired actuator positions. It can make additional
network connections to receive a stream of image and sensor
data from the simulated robot.

Several advanced features are available as well. For exam-
ple, behaviors running in Tekkotsu can send a message to the
Mirage driver that a point on the robot should be constrained
to its current position, which will be translated into a physics
constraint in Mirage. This is used by the walking motion
commands to allow “perfect” legged locomotion, as the feet
are prevented from slipping or tipping over. However, the
Mirage driver can also be configured to ignore these requests,
enabling purely physics-based locomotion. Each of these
modes is useful in different development contexts: sometimes
a user may wish to move ideally to test a navigation behavior,
other times they may wish to have more realistic locomotion
errors to test the locomotion itself. Wheeled navigation is
also supported and can similarly select between friction-
based or “perfect” motion.

Mirage uses a simple XML-based communication pro-
tocol, which allows a variety of different tools to use it
for visualization of robot state, regardless of whether this
state derives from a physical robot or a simulation. This
communication is independent of the Tekkotsu framework,
allowing Mirage to be used in other environments. For
example, the DH Wizard tool [11] provides interactive edit-
ing of kinematic configuration using the Denavit-Hartenberg
conventions, relying on Mirage for visualization of the robot
described by the kinematic tree.

D. Robot Definition and Behavior Portability

A unique feature of Tekkotsu is its handling of robot
configuration. Each robot is defined primarily by a header file
defining a series of preprocessor flags and a C++ namespace.
The preprocessor flags advertise robot features, such as the
existence of a camera, buttons, legs, etc. The namespace
contains statistics for these features, such as the number of
arms and legs, the number of joints in each limb, the number
of sensors, etc. The namespace also defines string names
for each of the outputs and sensors, and provides symbolic
offsets to each entry.

The duality between string names and compiler symbols
allows users to decide how they want to trade off between
dynamic run-time lookup versus compile-time verification
of features. For example, if a developer wishes to read the
current value of the infra-red distance rangefinder, he or she
could write:
state->sensors[IRDistOffset]
This assumes the target model provides an

IRDistOffset symbol, relying on naming conventions to
provide cross-platform compatibility. In practice, we often
define aliases in the robot header files to foster compatibility
between models. For example, the Chiara robot has three
rangefinders. The CenterIRDistOffset symbol is

6087

duplicated as IRDistOffset so that code which only
requires a single rangefinder will default to using the center.

If the target robot does not have an IR rangefinder, the
developer will receive a compile-time error that the robot
behavior cannot be built for the target robot model. If the
developer wishes to write their behavior more portably,
perhaps to fall back to another algorithm if a rangefinder
is unavailable, either a #ifdef TGT HAS IR DISTANCE
preprocessor directive could be used (to check whether the
macro was set in the target model’s header file), or the global
capabilities map could be queried at runtime to see if
the string name has been defined.

An additional use of the capabilities mapping is to query
the features available on robot models other than the current
host. This can be used to coordinate planning between
robots in a heterogenous team. In some cases where a
robot is reconfigurable, the capabilities map also provides
a mechanism to announce the current run-time functionality
of the robot, whereas the compile-time checking is limited
to the union of all features that might be available.

Another important source of robot configuration comes
from a model-specific kinematics file, which defines all the
joint names and the coordinate transformations between joint
reference frames. This XML file can either be edited by
hand, or updated using the DH Wizard GUI tool. On startup,
Tekkotsu loads the kin file for the target robot model. Mirage
also obtains its kinematic information from this file.

The third and final piece of robot configuration comes
from the HAL (Hardware Abstraction Layer) file. This file
is read when the Tekkotsu executable launches, and is used
to instantiate and configure the appropriate drivers. It is often
useful to load alternative HAL configurations—for example,
a generic ‘Mirage’ HAL configuration can be used to tell
Tekkotsu to connect to the simulator instead of attempting
to connect to physical hardware. Similarly, a different HAL
configuration file can be used to replay logged data from
disk.

E. Extensions to Off-Board Computing

Although Tekkotsu usually runs entirely on-board, there
are some extensions to streamline off-board communication.

One of these is the ability to subscribe to events on a
remote host. The request is relayed to the remote host where
a proxy listener is created, and then matching events are
serialized and transmitted to the local host. The subscriber
on the local host then receives these events like any other,
and can check the event’s host field to determine its origin.

Another way to achieve off-board control is to run
Tekkotsu on the robot and open a network connection to
the interface provided for GUI-based teleoperation tools.
This mechanism was used by the Pyro toolkit [24] to allow
Python programs to teleoperate the Aibo. More generally,
any Tekkotsu application can open a network connection
to do custom communication with off-board or distributed
resources.

The CommPort configuration of the HAL can also be used
to send and receive data over a variety of communication

links. This transplants the entire ‘brain’ of a robot to an
external platform, which may be required if the on-board
computation is only sufficient to run a thin client.

V. COGNITIVE ROBOTICS CURRICULUM

Although the curriculum described in [25] was developed
with the Aibo platform, we have since transitioned to use the
Create/ASUS as the flagship robot, with the more sophisti-
cated Calliope platform on the horizon.

The Cognitive Robotics course allows a high-level explo-
ration of the breadth of algorithms and techniques used in
the robotics domain. Requiring the students to re-implement
all of these technologies in a traditional “bottom-up” ap-
proach would require several courses, and indeed is already
available in traditional computer vision, machine learning,
and other classes. The Cognitive Robotics course instead
allows students to concentrate on exploring how to combine
these techniques to complete assignments on the robots, with
broader discussion of the strengths and weaknesses of the
various tools at hand.

The course also provides some new material, examining
how cognitive science theories of human information pro-
cessing can provide inspiration to approach similar problems
in robotics, such as is demonstrated in the Dual-Coding
vision system.

For more information regarding Tekkotsu in education,
visit wiki.tekkotsu.org.

VI. COMPARISON TO PREVIOUS WORK

Among other open-source robotics frameworks, the Robot
Operating System (ROS) [2] stands out for its rapidly grow-
ing acceptance in the research community.

The Tekkotsu environment is similar to ROS in scope, with
Tekkotsu’s Hardware Abstraction Layer mirroring ROS’s use
of Player [26] for device control, and Mirage providing
simulation similar to that of Gazebo. Tekkotsu event gen-
erators are analogous to “topics” in ROS, and various high
level Tekkotsu interfaces such as the Crew would be called
“services” in ROS.

However, these platforms differ significantly in the philo-
sophical approach to abstraction. Player provides a character
device model in the style of UNIX, perpetuated by ROS
for serialized communication between processes. In contrast,
Tekkotsu provides a structured data model in a single address
space, minimizing serialization and IPC latency. Although
Tekkotsu does provide mechanisms for off-board communi-
cation, this approach is the exception rather than the rule.

The platforms also differ in their approach to robot porta-
bility. As described in IV-D, various robot-specific capabili-
ties can be declared at compile time. This provides automatic
configuration of many features, for example whether the
“walk” motion command should use a wheeled or legged
implementation, or whether it should be left undefined to
flag attempts to move on immobile platforms. In contrast, the
distributed nature of ROS nodes implies they have no single
global concept of the robot target, each requiring indepen-
dent configuration, and lacking automatic verification of the

6088

capabilities of a particular robot configuration. (However, the
roswtf tool provides a degree of sanity checking regarding
node communications.)

In an educational setting, the C++ class-based abstractions
used by Tekkotsu are in line with the modern computer
science curriculum, demonstrating practical use of inheri-
tance, polymorphism, templating, functors, and namespaces.
Using a single language also reduces conceptual barriers for
students to move between modules, allowing them to easily
“peek under the hood.”

However, although ROS and Tekkotsu differ in many
ways, they are not mutually exclusive. Just as Player serves
a device driver role in a ROS network, Tekkotsu could
do the same. Further, Tekkotsu’s Crew and state machine
mechanisms may be of interest for top-level control of the
ROS network, using ROS’s distributed mechanisms for either
intermediary processing or additional device drivers. This is
particularly attractive because the computation required for
the highest levels of abstraction is usually relatively light,
and keeping this onboard the robot affords contextually savvy
error handling if remote resources become unavailable. (e.g.,
falling back on local computation, navigating towards better
signal strength, alerting a human operator, etc.)

VII. CONCLUSION

Tekkotsu provides tools and algorithms to jumpstart
robotics development on a variety of platforms. Although it
features built-in support for specific robot models serving
an educational curriculum, it also provides open source,
documented interfaces for extension to new platforms and
devices. Other popular environments such as the Robot
Operating System provide similar capabilities, but differ in
architectural focus and supported robot configurations. In
particular, Tekkotsu’s design emphasizes real-time embedded
control befitting its early use of legged systems, which comes
at the expense of easily distributed off-board processing. This
may be addressed by complementary usage of distributed
systems such as ROS.

VIII. ACKNOWLEDGMENTS

This research was funded by National Science Foundation
award DUE-0717705.

REFERENCES

[1] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22, p.
132, 2007.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[3] E. Tira-Thompson, “Tekkotsu: A rapid development frame-
work for robotics,” Master’s thesis, Carnegie Mellon
University, Pittsburgh, PA, May 2004. [Online]. Available:
http://www.tekkotsu.org/media/thesis ejt.pdf

[4] G. V. Nickens, E. J. Tira-Thompson, T. Humphries, and D. S. Touret-
zky, “An inexpensive hand-eye system for undergraduate robotics
instruction,” SIGCSE Bull., vol. 41, no. 1, pp. 423–427, 2009.

[5] D. S. Touretzky, O. Watson, C. S. Allen, and R. Russell, “Calliope:
Mobile manipulation from commodity components,” in Proceedings
of the AAAI-10 Robot Exhibition, Atlanta, GA, July 2010.

[6] (2010) The chiara robot. [Online]. Available: http://chiara-robot.org

[7] (2009) Tekkotsu over NaoQi. [Online]. Available:
http://www.intelligence.tuc.gr/%7Erobots/ARCHIVE/2009w/projects/
Orfanoudakis/

[8] J. B. Weinberg, W. Yu, K. Wheeler-Smith, R. Knight, R. Mead,
I. Berstein, J. Croxell, and D. Webster, “Making intelligent walking
robots accessible to educators: A brain and sensor pack for legged
mobile robots,” The 2008 Association for the Advancement of Artifi-
cial Intelligence (AAAI-08) Workshop on AI Education, Chicago, IL,
Tech. Rep. WS-08-02, July 2008.

[9] D. S. Touretzky, “Preparing computer science students for the robotics
revolution,” Commun. ACM, vol. 53, no. 8, pp. 27–29, 2010.

[10] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” in Proceedings of IROS-2000,
Japan, October 2000.

[11] N. Buroojy, O. Greeley, and L. C. Thorpe, “DH Wizard,” 2010. [On-
line]. Available: http://www.cs.cmu.edu/afs/cs/academic/class/15494-
s10/final-projects/2010/dhwizard/index.html

[12] A. Sangpetch, “Visualizing robot behavior with self-
generated storyboards,” Master’s thesis, Carnegie Mellon
University, Pittsburgh, PA, May 2005. [Online]. Available:
http://www.tekkotsu.org//media/thesis asangpetch.pdf

[13] D. S. Touretzky and E. Tira-Thompson, “The Tekkotsu “Crew”:
Teaching robot programming at a higher level,” in AAAI Symposium
on Educational Advances in Artificial Intelligence, Atlanta, GA, July
2010, pp. 13–14.

[14] J. A. Coens, “Taking Tekkotsu out of the plane,” Master’s thesis,
Carnegie Mellon University, Pittsburgh, PA, Aug. 2010. [Online].
Available: http://www.cs.cmu.edu/ jcoens/MastersThesis.pdf

[15] D. Touretzky, N. Halelamien, E. Tira-Thompson, J. Wales,
and K. Usui, “Dual-coding representations for robot vision
programming in Tekkotsu,” Autonomous Robots, vol. 22, pp.
425–435, 2007, 10.1007/s10514-007-9024-0. [Online]. Available:
http://dx.doi.org/10.1007/s10514-007-9024-0

[16] D. G. Lowe, “Object recognition from local scale-invariant features,”
in ICCV ’99: Proceedings of the International Conference on Com-
puter Vision-Volume 2. Washington, DC, USA: IEEE Computer
Society, 1999, p. 1150.

[17] E. Olson, “AprilTag: A robust and flexible multi-purpose fiducial
system,” University of Michigan APRIL Laboratory, Tech. Rep., May
2010.

[18] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in In Proceedings of the AAAI National Conference on
Artificial Intelligence. AAAI, 2002, pp. 593–598.

[19] M. Schröder and J. Trouvain, “The German text-to-speech synthesis
system MARY: A tool for research, development and teaching,” in
International Journal of Speech Technology, 2001, pp. 365–377.

[20] J. Bruce, S. Lenser, and M. Veloso, “Fast parametric transitions for
smooth quadrupedal motion,” in RoboCup-2001: The Fifth RoboCup
Competitions and Conferences, A. Birk, S. Coradeschi, and S. Ta-
dokoro, Eds. Berlin: Springer Verlag, 2002.

[21] D. Cohen, Y. H. Ooi, P. Vernaza, and D. D. Lee, “The
University of Pennsylvania Robocup 2004 legged soccer team,”
Digital Equipment Corporation, University of Pennsylvania,
Philadelphia, PA 19104, Tech. Rep., 1987. [Online]. Available:
http://isl.ecst.csuchico.edu/DOCS/Robots/AIBO/DOCS/Robocup/2004
/UPennalizers/UPenn04.pdf

[22] (2010) OGRE: Open sources 3d graphics engine. [Online]. Available:
http://www.ogre3d.org/

[23] (2010) Game physics simulation. [Online]. Available:
http://bulletphysics.org/

[24] D. S. Blank, D. Kumar, L. Meeden, and H. A. Yanco, “The Pyro
toolkit for AI and robotics,” AI Magazine, vol. 27, no. 1, pp. 39–50,
2006.

[25] A. B. Williams, D. S. Touretzky, E. J. Tira-Thompson, L. Manning,
C. Boonthum, and C. S. Allen, “Introducing an experimental cognitive
robotics curriculum at historically black colleges and universities,” in
SIGCSE ’08: Proceedings of the 39th SIGCSE technical symposium
on computer science education. New York, NY, USA: ACM, 2008,
pp. 498–502.

[26] R. T. Vaughan and B. P. Gerkey, “Reusable robot code and the
Player/Stage project,” in Software Engineering for Experimental
Robotics. Springer-Verlag, 2006, pp. 267–289.

6089

