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Abstract
Surface electromyography (EMG) can be used to record the
activation potentials of articulatory muscles while a person
speaks. This technique could enable silent speech interfaces,
as EMG signals are generated even when people pantomime
speech without producing sound. Having effective silent speech
interfaces would enable a number of compelling applications,
allowing people to communicate in areas where they would not
want to be overheard or where the background noise is so preva-
lent that they could not be heard. In order to use EMG signals in
speech interfaces, however, there must be a relatively accurate
method to map the signals to speech.

Up to this point, it appears that most attempts to use EMG
signals for speech interfaces have focused on Automatic Speech
Recognition (ASR) based on features derived from EMG sig-
nals. Following the lead of other researchers who worked with
Electro-Magnetic Articulograph (EMA) data and Non-Audible
Murmur (NAM) speech, we explore the alternative idea of us-
ing Voice Transformation (VT) techniques to synthesize speech
from EMG signals. With speech output, both ASR systems and
human listeners can directly use EMG-based systems. We re-
port the results of our preliminary studies, noting the difficulties
we encountered and suggesting areas for future work.
Index Terms: electromyography, silent speech, voice transfor-
mation, speech synthesis

1. Introduction
In this paper, we present our recent investigations in synthe-
sizing speech from electromyographic (EMG) signals, where
the activation potentials of the articulatory muscles are directly
recorded from the subject’s face via surface electrodes during
speech. In contrast to many other speech recording technolo-
gies, the major advantage of EMG is that it allows the recogni-
tion of non-audible, i.e. silent speech. This makes it an inter-
esting technology not only for mobile communication in pub-
lic environments, where speech communication may be both a
confidentiality hazard and an annoying disturbance, but also for
people with speech pathologies.

Our particular approach to synthesizing speech from EMG
signals is to use Voice Transformation (VT) techniques. VT
is the process of taking speech from one person and making
it sound like it was produced by another. It has been studied
since at least the mid-1980s [1]. Although the original concep-
tion was to transform speech to speech, the general VT frame-
work of mapping between two sets of data with the target of the
map being suitable for speech synthesis is useful for transform-
ing other forms of data into speech. Indeed, this approach was
employed by researchers who mapped Electromagnetic Artic-
ulograph (EMA) data to speech [2] and Non-Audible Murmur

(NAM) to speech [3]. We follow their lead in using Gaussian
Mixture Model (GMM) mapping techniques [4] [5] [2] to trans-
form non-speech data to speech. Our work in this paper differs
from their work in that we used EMG-derived features for the
non-speech data. It should be noted that this approach essen-
tially ignores the physical reality of how the muscles measured
by EMG signals control the articulators, which in turn affect
the speech signal. Instead, the mapping problem is treated as
a pure machine learning problem without an associated physi-
cal model. This stands in contrast to strategies where speech is
produced from non-speech data by first modeling the vocal tract
[6].

2. Voice Transformation System
The voice transformation systems used in this work were cre-
ated by modifying the voice transformation tools that are freely
available through the FestVox project [7]. These tools are based
on work by Tomoki Toda and use the GMMmapping technique
with Maximum Likelihood Parameter Generation (MLPG) and
Global Variance (GV) regularization [8].

The FestVox GMM mapping-based VT training procedure
proceeds in the following steps. Speech from two speakers
reading the same text is analyzed to produce F0 estimates and
spectral features (the 1st through 24th Mel-Frequency Cepstral
Coefficients, or MFCCs) every 5ms. Mean and standard devi-
ation statistics are collected for the log F0 estimates from both
the source and target speaker training sets. Dynamic features,
which are short-time window features, are constructed from the
spectral features. Dynamic Time Warping (DTW) is used to
align the spectral features and their associated dynamic features
from the source and target speakers, and the Expectation Max-
imization (EM) algorithm is used to estimate parameters for a
GMM based on their joint distribution. After estimating the pa-
rameters, the mapping technique used during testing is used to
estimate target speaker spectral features from the source speaker
spectral features, these estimates are used to re-align the source
and target speaker data with DTW, and a new GMM based on
the new joint feature vectors is learned. This process is repeated
one more time. Global variance statistics are collected for the
spectral features.

The FestVox GMM mapping-based VT testing, or transfor-
mation, procedure of an utterance from the source speaker to the
target speaker proceeds in the following steps. The 0thMFCC is
extracted from the source speaker utterance every 5ms, and this
is used without change for the target speaker utterance. This
feature represents power. F0 is estimated every 5ms for the
source speaker utterance, and a z-score mapping is used in the
log domain to produce F0 estimates for the target speaker ut-
terance. The 1st through 24th MFCCs are extracted from the
target speaker utterance, their dynamic features are constructed,
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and a Maximum Likelihood based method that uses global vari-
ance statistics is used to produce corresponding target speaker
spectral feature estimates. This process is described in detail in
other sources [8].

When the FestVox VT system is applied to a problem such
as EMG-to-Speech transformation, a number of the steps for
training and testing need to be modified. Training is performed
on audible utterances with associated EMG signals, but testing
can be performed on audible or silent utterances with associated
EMG signals. For EMG-to-Speech transformation, the source
speaker is the same as the target speaker, and the EMG and au-
dio signal (if present) are collected simultaneously. We don’t
currently have a good frame-based distance metric to compare
EMG features with audible waveform features, so alignment is
performed by applying an offset based on marker signals in-
stead of an iterative DTW process. Features derived from the
EMG signals are used instead of spectral features for the source
speaker speech, but the typical VT features are extracted from
the target speaker utterances. There are a number of ways to
handle F0 and power. A few methods will be mentioned in the
later descriptions of experiments.

3. Data
For data acquisition, we adopted the electrode positions from
[9] which yielded optimal results, using five channels and cap-
turing signals from the levator angulis oris, the zygomaticus
major, the platysma, the anterior belly of the digastric and the
tongue.

In these experiments we used three data sets, consisting
of audible EMG data, which is EMG data created by normal
speech, and silent EMG data, for which the utterances were
mouthed silently, without producing any sound. The audible
utterances were additionally recorded by a conventional close-
talking microphone.

The first set is called “100.007” and consists of audi-
ble recordings made with EMG recordings for a single male
speaker with a Taiwanese English accent. It is split into a train-
ing set consisting of 380 sentences and a test set consisting of
120 sentences. The second set is called “100.018” and consists
of audible and silent recordings made by the same speaker from
the first set. The training set consists of 190 audible and 190
silent sentences, and the test set consists of 60 audible and 60
silent utterances. For VT training, only the 190 audible training
sentences were used. The third data set is called “EMG-PIT”
and includes data from a wider range of speakers. Its char-
acteristics are as follows: 14 female speakers with no known
voice disorders recorded two sessions with an in-between break
of about 60-90 minutes, during which the electrodes were not
removed. The recordings were collected as part of a psychobio-
logical study investigating the effects of psychological stress on
laryngeal function and voice in vocally normal participants [10]
[11].

Each session consisted of the recording of 100 sentences,
half of which were audible and the other half silent. Each block
of audible and mouthed utterances had two kinds of sentences,
40 individual sentences that were distinct across speakers and
10 “base” sentences which were identical for each speaker. We
used the individual block for training and the “base” sentences
as test set. Again, only the audible sentences were used for
training VT. In all cases, the test set vocabulary consisted of
108 words. All sentences were taken from the Broadcast News
(BN) Domain [12]. The duration statistics of the corpora are
summarized in Table 1.

Average Session Duration (seconds)
audible silent

100.007 3567 -
train 2882 -
test 685 -

100.018 1771 1994
train 1426 1603
test 345 391

EMG-PIT 232 234
train 180 181
test 52 53

Table 1: EMG Corpora Duration Statistics

3.1. Derived Features

There is some question as to which EMG feature represen-
tation would be appropriate for transformation from EMG to
speech. Though we are unaware of work done to find the best
parametrization of EMG signals for this task, there is work
on improving EMG-derived features for use in ASR [13]. It
seemed reasonable to perform transformation experiments us-
ing the E4 features that have worked best in previous ASR ex-
periments [13] under the assumption that features that capture
useful information for ASR would also capture useful informa-
tion for VT. There is room for further investigation into EMG-
derived features, both for ASR and VT.

4. Preliminary EMG to Speech
Experiments

For our first experiments in transforming EMG to speech, we
needed to establish plausibility for the technique. Although
there has been some level of success in transforming EMA [2]
and NAM [3] to speech, it was not certain that the EMG data
we had could be used successfully in the same way. EMG mea-
sures a different process from the ones measured by EMA and
NAM, and there is also some question of whether the 5 EMG
channels that were available to us were sufficient to fully repre-
sent speech. Perhaps more electrodes or a different placement
of the electrodes would be necessary. Thus, for our first exper-
iments, we constructed a system that was limited in the sense
that EMG was only used to predict spectral features, and F0

and power estimates were extracted from accompanying audio
files. This approach will not work for silent speech, but it is a
test of how much spectral information is contained in the EMG-
derived features.

In order to confirm that our modified VT system was rea-
sonable, we performed EMA-to-speech experiments that were
similar to those reported by Toda et al. [2] on a male speaker
(msak0) from the MOCHA database [14]. Using a training
set of 409 utterances and a test set of 46 utterances, the best
results for our EMA-to-speech experiments according to the
commonly-used Mel-Cepstral Distortion (MCD) measure was
an average of 4.46 with a standard deviation of 1.67. These re-
sults were obtained by using 64 full-covariance Gaussian com-
ponents in the GMM. The MCD result was a little better than
the average of 4.59 and standard deviation of 1.61 reported by
Toda et al. for the same speaker [2]. There were some slight dif-
ferences between the systems, and based on the results of Toda
et al., it appeared that we could probably improve our results
by adding F0 and power as predictive features, but such a tech-
nique would not work for later experiments with silent speech,
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N 10ms 5ms Double Shift
1 6.46 (2.31) 6.50 (2.33)
2 6.42 (2.23) 6.55 (2.25)
4 6.72 (2.29) 6.83 (2.33)
8 6.74 (2.44) 6.74 (2.37)
16 6.77 (2.56) 6.79 (2.63)
32 6.71 (2.55) 6.59 (2.50)
64 6.37 (2.34) N/A

Table 2: MCD Means (Std. Devs.) for EMG-to-Speech

and the goal with this experiment was to test whether the sys-
tem behaved in a reasonable manner. Also, it should be noted
that this objective metric does not perfectly correspond with hu-
man perception, so we also listened to the utterances that were
produced. Although we did not conduct a formal listening eval-
uation, our general impression was that they were fairly under-
standable and comparable to examples that Toda put on the web
(http://spalab.naist.jp/˜tomoki/SPECOM/ArtSyn/index.html).

After confirming that the system was running as expected
with EMA data, we switched to using EMG data. We started
with the 100.007 set because it had the largest set of audible
utterances from a single speaker among the EMG data sets that
were available to us. We tried two variations of the E4 data
which differed based on the frame advance rate of the feature
collection and the distance used in the context window for each
feature vector. The MCD results are in Table 2. The “N”
column lists the number of Gaussian components used in the
GMMs in each row, the “10ms” column lists the Mel-Cepstral
Distortion means and standard deviations for trials where a
frame advance of 10ms was used between E4 features. The
“5ms Double Shift” column lists the same statistics for trials
where a frame advance of 5ms was used, but the distance be-
tween successive contexts was still 10ms. MCD is a scaled Eu-
clidean distance between the spectral features of the speech that
was transformed from EMG-derived features and the original
audio recordings. Smaller values are better. Figures are not
available for the 64 Gaussian component case for 5ms Double
shift data because training did not converge. The MCD figures
for these EMG-to-Speech trials were higher than those for the
EMA-to-speech trials, but they are not directly comparable due
to differences in speakers and corpora. In particular, there is
some question of the quality of phonetic coverage in the EMG
data set because each sentence is repeated 10 times, so there
are only 38 distinct sentences in the training set and 12 distinct
sentences in the test set. Nevertheless, the EMG-to-Speech ut-
terances were fairly intelligible in informal listening tests, and
in particular the sibilants seemed to be clearer than in the EMA-
to-speech utterances.

4.1. ASR with EMG-to-Speech

Wewere curious to see how well the EMG-to-Speech utterances
would perform with ASR, so we tested the utterances produced
from the 10ms version of the data set. Speech recognition ex-
periments were performed as follows.

4.1.1. The Speech Recognizer

The speech recognizer used an HMM-based acoustic model,
which was based on fully continuous Gaussian Mixture Mod-
els. It used a standard MFCC-based feature extraction, where
LDA was applied to an 11-frame segment to generate the final
feature vectors for recognition. The acoustic modeling used a

N 10ms WER
1 19.2%
2 17.2%
4 15.7%
8 17.7%
16 16.1%
32 16.1%
64 18.5%

Table 3: WERs for EMG-to-Speech Using Actual F0 and Power

multi-stream architecture of bundled phonetic features [15]. For
each session a full training run was performed. Such a training
run consisted of training an initial context- independent speech
recognizer, determining a set of bundled phonetic features as
acoustic models, and training the final recognizer based on the
acoustic models defined in the previous step.

4.1.2. Testing

For decoding, we used the trained acoustic model together with
a trigram BN [12] language model. We restricted the decod-
ing vocabulary to the 108 words appearing in the test set. The
testing process used lattice rescoring to determine the opti-
mal weighting of the language model compared to the acoustic
model.

4.1.3. Results

The Word Error Rates (WERs) on the EMG-to-Speech data are
listed in Table 3. The “N” column lists the number of Gaussian
components in the GMM for the system in each row. The 10ms
WER column lists the WERs for each of the sets of transformed
speech based on the E4 features using a 10ms frame advance.
The WER results for EMG-to-Speech are actually better than
results from training the ASR system directly on the E4 data.
The best result on this data set, using an optimal EMG recog-
nizer based on bundled phonetic features, was 18.0% WER. It
is important to note that the EMG-to-Speech data used in these
initial ASR experiments based on the 100.007 data set included
F0 and power information from the audio files in addition to the
spectral features predicted from the E4 data. This additional in-
formation is not used in the ASR system built directly from the
E4 data, so it could make a difference. Typical ASR systems
focus on spectral features and try to minimize the effects of ex-
citation features, such as F0 and power, so this may not be an
important factor.

4.2. EMG-to-Speech for Silent Speech

Although the initial results from transforming EMG-to-Speech
look promising, the ultimate goal is to work with silent speech.
This initial technique cannot work with silent speech as it uses
F0 and power estimates from corresponding audio signals. The
question for synthesis, then, is how to produce reasonable ex-
citation features for EMG data that was produced from silent
speech. If the transformed data will just be provided to an ASR
system, it may not be necessary to produce an excitation, be-
cause the MFCCs produced from the EMG data may be suffi-
cient without them. If the goal is to synthesize speech for human
listeners, however, an excitation is necessary. Based on our VT
system, we focused on providing F0 features and power fea-
tures without using audio signals. Since this approach creates
speech solely from the EMG data, ASR systems based on it are
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directly comparable with traditional ASR systems built directly
from EMG data.

4.3. Excitation Features Without Using Audio

For audible speech, it may be possible to estimate F0 reason-
ably from the EMG signals already collected or from addi-
tional electrodes placed near the larynx. Unfortunately, it is
unclear whether this is the case for silent speech. When work-
ing with NAM-to-Speech transformation, Nakagiri et al. noted
that prediction of F0 was very difficult, so they tried convert-
ing NAM-to-Whisper instead [3]. This appeared to be a rea-
sonable approach for EMG-to-Speech conversion, so we imple-
mented the F0 portion of the EMG-to-Whisper transformation
by treating the utterances as completely unvoiced during syn-
thesis and using noise as excitation. Another possibility that is
also simpler than full F0 modeling would have been to synthe-
size monotonous speech by picking an F0 value and using it
throughout an entire utterance.

After settling on a strategy for F0, it was necessary to con-
sider power. We decided to treat power as another feature that
could be predicted from the EMG-derived features. This was
achieved by giving the VT scripts the option to predict the
0th through 24th MFCCs instead of only the 1st through 24th
MFCCs. This meant that training was still performed only on
EMG data that was collected from audible recordings, though it
could be tested on both audible and silent recordings. It is un-
clear whether there is sufficient power information in the EMG
signals, especially for silent speech, but this seemed like a rea-
sonable first approach.

4.4. EMG-to-Whisper

We transformed EMG-derived features from both the 100.018
and EMG-PIT data sets to whisper. In informal listening tests,
the EMG-to-Whisper was mostly unintelligible, but some words
were understandable, so the process appeared to be produc-
ing speech-like audio. Interestingly, some of the more under-
standable words were longer, multi-syllabic words such as “Re-
publican” and “American.” EMG-to-Whisper appeared to have
more power and a more natural power trajectory for the audible
speech than for the silent speech. This is evidence that there is
a difference between EMG signals produced during audible and
silent speech. The intelligibility of the EMG-to-Whisper did not
seem high enough to warrant a formal listening test, but it was
possible to perform ASR experiments on it. Also, mel-cepstral
distortions cannot be calculated for silent speech as there are no
reference audio files.

On the EMG-PIT set, ASR was performed on EMG-to-
Whisper on 27 separate sessions from 14 different speakers.
The word error rates for EMG-to-Whisper generated from audi-
ble speech ranged from 33.3% to 91.90%. The word error rates
for EMG-to-Whisper generated from silent speech tended to be
considerably worse and ranged from 79.8% to 94.90%. This
again suggested a difference between EMG collected during au-
dible and silent speech. These word error rates were consider-
ably greater than those that were achieved when using actual
excitation features from audible speech, but the number of sen-
tences per speaker in the EMG-PIT corpus was much smaller
than in the 100.007 corpus, so this may have also been a factor.

5. Conclusions
Our preliminary findings suggest that it is possible to use VT
techniques to produce speech from EMG-derived features, but

there are still a number of difficulties that need to be overcome.
The biggest barriers to a silent speech interface with this tech-
nique appear to be the production of an adequate excitation sig-
nal and differences between EMG produced during audible and
silent speech.

Speech synthesis from EMG would be valuable for a num-
ber of reasons. It would enable new applications for human
listeners. It could be used to provide feedback for diagnos-
tic purposes in data collection. Perhaps deficiencies in syn-
thetic speech could be analyzed in a way that would suggest
new placements of electrodes to collect important missing data.
Also, if a real-time EMG synthesis system were created, people
speaking silently might be able to listen to this synthesis and
adjust the way they silently speak. This could reduce the differ-
ence between the EMG data produced during audible and silent
speech.
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