Inverted List Caching for Topical Index Shards

Zhuyun Dai and Jamie Callan

Language Technologies Institute, Carnegie Mellon University
{zhuyund, callan}@cs.cmu.edu

Abstract. Selective search is a distributed retrieval architecture that intention-
ally creates skewed postings and access patterns. This work shows that the
well-known Qt£Df inverted list caching algorithm is as effective with topically-
partitioned indexes as it is with randomly-partitioned indexes. It also shows that
a mixed global-local strategy reduces total I/O without harming query hit rates.

1 Introduction

Search engines use caching to reduce computation and disk access. One form of
caching, list caching, keeps the inverted lists of frequent query terms in memory. Usu-
ally it is used by distributed search architectures that randomly partition the corpus
into index shards, maintain one list cache per shard, and assign one shard per processor.
Thus postings are distributed uniformly across index shards, list caches, and processors.

Selective search is a distributed search architecture that partitions a corpus into
many fopic-based index shards and routes each query to the few shards that are most
likely to have relevant documents [1, 4, 5]. Topic-based indexes skew postings dis-
tributions and access patterns. Few index shards are searched per query, so it is not
necessary to have a one-to-one mapping between shards and processors. Instead, multi-
ple topic-based index shards are assigned to each processor. These differences create a
substantially different caching environment - one in which data and access patterns are
more skewed, and multiple index shard caches compete for a processor’s RAM.

It is an open question whether inverted list caching is effective with topic-based in-
dex shards. This paper investigates the behavior of the well-known Qt£Df static caching
algorithm [2] when used with selective search. First it investigates whether topically in-
dexed shards reduce the impact of Qt£Df caching. Second, it investigates whether using
shard-wise query log information can improve list caching for selective search.

2 Related Work

Selective search partitions a collection into topic-based index shards that have skewed
vocabularies and access patterns. Resource selection algorithms (e.g., Rank-S [5],
Taily [1]) select shards to search for each query. Shards are searched in parallel; results
are merged to form a final ranking. Computational costs are lower than with traditional
distributed retrieval because fewer and smaller shards are searched for any query [4, 5].

Inverted list caching has been studied extensively [2, 6, 7, 8]. Most studies consid-
ered a centralized system or a traditional distributed system in which queries are run on
all shards. Qt£Df [2] is a well-known static caching policy for posting lists. It caches

the posting lists of the terms with the highest values of the ratio %, where ¢t f denotes
the frequency of the term in a query log, and df the document frequency of the term.
Experiments showed that although Qt£Df is a static policy, it can outperform dynamic
policies because the query term vocabulary is stable over time [2].

3 Caching Strategies

A distributed system has a total of C' CPU cores. Each core has a cache of size m. With
random document partitioning, there are C' shards, and each core serves one shard. With
topical partitioning, there are P shards, typically with P > C, and each core serves
multiple shards. The cache is a key-value data structure. The key is (shard s, term t),
and the corresponding value is the posting list of term ¢ in shard s.

Qt£Df [2] uses term frequency in a query log (¢t f) and document frequency in the
corpus (df) to select terms for the cache. It is a global strategy because it does not use
shard-specific statistics. We refer to it as Qt£Df -G to distinguish it from local methods.

QtfDF-G(t) = qé){(%)

Each CPU core caches the posting lists of the highest scoring terms from its
shard(s). When a CPU core hosts multiple shards, they share its cache. Each topical
shard uses a different amount of cache because a term’s posting list lengths vary across
shards. We found it to be more effective than forcing topical shards to use equal amounts
of cache. Thus, topical and random partitions do not cache identically under Qt£Df -G.

When shards are partitioned randomly, global ¢t f and df are representative for in-
dividual shards. However, topical shards have skewed contents and access patterns. A
term may not be equally valuable to each shard. The second strategy estimates the value
of term ¢ to shard s. L)

qt]s
QtfDf-L(t, s) a0)
qtfs(t) is the term frequency of term ¢ in queries submitted to shard s. dfs(¢) is the
number of documents in shard s that contain term ¢. Each core ranks its (shard s, term
t) pairs, and loads the highest scoring posting lists into the cache until it is full.

ey

4 Experimental Methodology

Document collection: We used ClueWeb09-B which has 50M documents, 96M unique
terms, and 109GB of uncompressed postings. Each posting is a pair of (docid, tf).
Selective Search settings followed prior research. The collection was distributed on
two 8-core machines (16 cores in total). For exhaustive search, each CPU core served
one index partition; documents were distributed randomly across 16 partitions. For se-
lective search, the document collection was partitioned into 123 topical index shards
using QKLD-QInit! [3]. Shards were assigned to the 16 cores by random and log-based

! Obtained from http://boston.1ti.cs.cmu.edu/appendices/CIKM16-Dai/CW09B-cent1/

Term Hit Rate
0.9 Exhaustive
Selective, log-based
Selective, random

Query Hit Rate
Selective, log-based
1(16) 2(32) 3(48) 4 (64) 5(80) Exhaustive
Cache Size Per Core (Total Cache Size), GB Selective, random
Fig. 1: Term hit rate (solid lines) and query hit rate (dashed lines) of Qt£DF-G under different
shard assignment policies. Average number of shards searched per query: n = 3.9

policies [4]. Taily [1] was used for resource selection with the default parameters. It
selected 3.9 shards per query on average. For higher recall rate, we also tested Taily
with a lower threshold, which selected an average of 8.5 shards per query.

Query log: We used the AOL query log. Queries from the first 3 weeks were used to
populate caches; queries from the next 3 weeks were used for testing. Queries that ap-
peared less than 10 times were filtered out. The training queries had 0.3 million unique
terms covering 86GB of posting lists.

Evaluation: Two metrics were used. Term hit rate is the percentage of times a
requested term was in the cache for a selected shard. Query hit rate is the percentage
of queries that had all terms in cache for all selected shards. Term hit rate measures
the effect on posting list I/O. Query hit rate measures the effect on response times. It is
harder to achieve high query hit rate than high term hit rate.

5 Experimental Results

5.1 Global Term Selection (QtfDf-G)

First we tested the global method QtfDf-G on random (exhaustive) and topical (se-
lective) shards. There is a many-to-one mapping of topical shards to cores, thus selec-
tive search requires a shard assignment policy. Most prior research randomly assigned
shards to cores [5], but log-based policy improves throughput by assigning shards by
their popularity [4]; we tested both.

QtfDf-G is equally effective for exhaustive search and selective search with log-
based assignment (Fig. 1). Qt£Df-G is less effective for selective search with random
shard assignment, especially for query hit rate. Similar trends were observed in the
high-recall setting that searched an average of n = 8.5 shards per query (not shown).

Random assignment had a lower hit rate because topical shards have skewed posting
distributions. Shards with long inverted lists could be assigned to the same core, forcing
them to compete for cache space. Log-based assignment reduced this competition by
spreading popular shards across different cores. We found that log-based shard-to-core
assignment enables caching of 10% more vocabulary than with random assignment.

This experiment shows that although using the same caching strategy, the cache per-
formance of topically indexed shards can be worse than that of randomly-partitioned
shards due to skewed term distributions across shards. However, a log-based assign-
ment of shards to cores solves this problem and produces cache hit rates comparable to
exhaustive search with randomly-organized shards.

0.85 mix,

go7s Term Hit
5
085 QL € g5 Rote
T e oTiiieaeeeeTT mix,
055 _e-s-—e-e=-=-%"

0.75 ——QtfDf-G - Query Hit
1(16) 2(32) 3(48) 0.45 Rate

. . 0% 20% 40% 60% 80% 100%
Cache Size Per Core (Total Cache Size), GB a

o
©
a

Percentage of the
vocabulary cached

Fig. 2: Percentage of training log vocabulary Fig. 3: Hit rate of mixed caching. a: percent
cached by different caching strategies. of cache used by Qt£Df-G. Cache size: 2GB.

5.2 Local Term Selection (QtfDf-L)

The second experiment explored the use of local term and query distributions to im-
prove caching for selective search. It compares the cache hit rates of global (Qt£Df-G)
and local (Qt£Df-L) strategies. Table 1 shows the hit rates of different strategies.

QtfDf-L produced a substantially higher term hit rate than QtfDf-G for small
caches. The local-ranking term hit rate was 18% higher than the global-ranking hit rate
for the cache size m = 1GB; this gap gradually decreased when cache size increased.

If QtFD£ -G decides to cache a term such as ‘apple’, it caches the postings from all
shards. QtfDf-L may cache the postings from only a few shards (e.g., ‘cooking’ and
‘technology’ topics), saving space to cache other terms from other shards. Fig. 2 shows
that Qt£Df-L (partially) caches almost the whole vocabulary, while Qt£Df-G (fully)
caches a smaller vocabulary. This difference is stronger when the cache size is small.

When few shards are searched (n = 3.9), the local method Qt£Df-L has equal or
higher query hit rate than the global method Qt£Df-G. However, when the query runs
on more shards (n = 8.5), QtfDf-L’s query hit rate drops substantially. The next two
experiments examined this behavior.

5.3 Rank-biased Local Term Selection (rQtfDf-L)

One cause of cache misses in QtfDF-L is the mismatch between the caching strategy
and the resource selection algorithm. Resource selection favors shards that have many
documents containing query term ¢ (high df(t)). However, Qt£Df-L penalizes high
dfs(t), thus ¢ is not always cached for the most-relevant shards.

To align caching strategy with resource selection, we propose a rank-biased strat-
egy, rQtfDf-L(t,s) = ngigzg), where rqtfs(t) is a discounted query term fre-
quency based on how resource selection ranks shards. It is defined as rqtfs(t) =
> qcQ.iteq 1/108(rd + 1), where r{ is the rank of shard s for query ¢ given by re-
source selection. Each occurrence of term ¢ in the shard’s local query log Qs is dis-
counted by 1/log(r? + 1). Term ¢ is more likely to be cached if the shard ranks highly
for queries that contains ¢.

Table 1 reports the hit rates of rQtfDf-L. rQtfDf-L significantly improved the
query hit rate of Qt£Df -L for small cache sizes. In the high precision setting, rQtfDF-L
has the best cache performance. In the high recall setting, it improved Qt£Df-L’s query
hit rate by up to 15%, but is still lower than Qt£Df-G. For term hit rate, rQtfDf-L
maintains the performance of Qt£Df -L; both local methods are significantly better than
the global method for small cache sizes.

Table 1: Hit rate of Qt£Df-G, Qt£Df-L and rQt£Df-L. n: average number of shards searched.
t and « indicate statistically significant improvement over Qt£Df -G and Qt£DF-L, respectively.
Methods are compared by a pairwise permutation test with p = 0.05.

n = 3.9 (High Precision) n = 8.5 (High Recall)
Term Hit Rate | Query Hit Rate | Term Hit Rate | Query Hit Rate

Cache|1GB 2GB 3GB|1GB 2GB 3GB|1GB 2GB 3GB|1GB 2GB 3GB
QtfDf-G|0.59 0.78 0.89]0.38 0.61 0.76]0.57 0.79 0.90(0.38* 0.60* 0.76*
QtfDf-L|0.687 0.821 0.89]0.40 0.61 0.75|0.677 0.847 0.90|0.27 0.49 0.67

0.667 0.847 0.91[0.31* 0.53* 0.68

rQtfDf-L[0.707 0.857 0.91]0.43™ 0.63 0.77

Table 2: Hit rate of Qt£Df-G, rQtfDf-L, and mix caching strategy. {: statistically significant
improvement over Qt£Df -G using pairwise permutation test with p = 0.05. §: equivalence to
Qt£Df-G using a noninferjority test with 5% margin and 95% confidence interval.

n = 3.9 (High Precision) n = 8.5 (High Recall)

Term Hit Rate

Query Hit Rate

Term Hit Rate

Query Hit Rate

Cache

1GB 2GB 3GB

1GB 2GB 3GB

1GB 2GB 3GB

1GB 2GB 3GB

QtfDf-G
rQtfDf-L
mix

0.59 0.78 0.89
0.70" 0.857 0.917
0.70" 0.86" 0.927

0.38 0.61 0.76
0.43" 0.637 0.777
0.421 0.647 0.787

0.57 0.79 0.90
0.66" 0.84" 0.91
0.64" 0.84" 0.927

0.38 0.60 0.76
0.31 0.53 0.68
0.36% 0.58% 0.74

5.4 Mixed Caching

The second reason that local term selection methods have lower query hit rates is that
they do not cache general terms. Local methods favor terms that characterize the shard.
It does not cache terms such as ‘main’, ‘cheap’, and ‘American’ that are not topical, but
instead commonly modify the scope of other query terms. These general terms occur in
a large portion of the query traffic, causing partial miss for many queries.

The last experiment combined global and local methods by allocating part of the
cache to each method. Qt£Df -G selected terms cached by all shards. rQt£Df -L selected
terms cached by individual shards. The percentage of cache used by QtfDf-G was «.

Fig. 3 shows the hit rates as a function of . First there is an increase in term hit rate,
meaning that the terms with the highest global Qt£Df -G scores are of high importance
and should always be cached. Term hit rate then remains higher than rQt£fDf-L until
70% of the cache is used by globally-selected terms. Term hit rate is stable because
local caching can maintain a useful set of cached terms even with fairly small cache
sizes (Fig. 2). On the other hand, query hit rate increased almost linearly as the cache
size used by the global method («) grew. This result suggests that a small local cache is
sufficient to maintain term hit rate, whereas a larger global cache is required to provide
a good query hit rate. In other words, there is a small vocabulary of important shard-
specific terms, and a larger vocabulary of important topic-independent terms.

Table 2 shows hit rates for a mixed strategy that devotes a=70% of the cache to
global caching. In the high-precision setting, mix slightly improved rQtfDf-L; they
both outperformed the Qt£Df -G baseline. In the high-recall setting, the query hit rate for
mix was almost equal to the Qt£Df -G baseline, however the term hit rate was improved
by over 10% for small cache sizes. Thus, response time remains the same for most users

(as determined by query hit rate), but there is less disk activity and I/O (as determined
by term hit rate). A parallel system is likely to have moderately improved throughput.

6 Conclusion

Selective search uses topical index shards and selects just a few shards per query, which
skews the distributions of postings and queries across index shards. It has been an open
question how typical inverted list caching algorithms perform in this architecture.

Our experiments show that the skewed distribution of postings can cause lower
query hit rate in topically indexed shards. However, this effect can be eliminated by
using a log-based shard assignment policy to spread popular shards across different
cores, which prior research showed also improves load balancing and query throughput.

Global and local term selection methods provide choices to system designers us-
ing selective search. Global selection is best for user response time (as determined by
query hit rate). Local selection using shard-specific information significantly reduces
the posting list I/O (as determined by term hit rate) for small cache sizes, which in-
creases throughput in parallel systems; however the query hit rate is lower compared
with the global method when larger number of shards are searched. A rank-biased local
variant that incorporates the preferences of resource selection significantly improves the
query hit rate for small cache sizes.

A mixed strategy allows trade-offs between user response time and system through-
put. Devoting a small portion of the cache to the local method maintains the response
time of the global method for most users, but reduces system-wide posting list I/O.

7 Acknowledgments

This research was supported by National Science Foundation grant IIS-1302206. Any
opinions, findings, and conclusions in this paper are the authors’ and do not necessarily
reflect those of the sponsors.

References

[1] Aly, R., Hiemstra, D., Demeester, T.: Taily: Shard selection using the tail of score distribu-
tions. In: Proc. SIGIR (2013)

[2] Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri, F.: The
impact of caching on search engines. In: Proc. SIGIR (2007)

[3] Dai, Z., Xiong, C., Callan, J.: Query-biased partitioning for selective search. In: Proc. CIKM
(2016)

[4] Kim, Y., Callan, J., Culpepper, J., Alistair, M.: Load-balancing in distributed selective search.
In: Proc.SIGIR (2016)

[5] Kulkarni, A.: Efficient and Effective Large-Scale Search. Ph.D. thesis, Carnegie Mellon
University (2013)

[6] Marin, M., Gil-Costa, V., Gomez-Pantoja, C.: New caching techniques for web search en-
gines. In: Proc. HPDC (2010)

[7] Saraiva, P.C., Silva de Moura, E., Ziviani, N., Meira, W., Fonseca, R., Riberio-Neto, B.:
Rank-preserving two-level caching for scalable search engines. In: Proc. SIGIR (2001)

[8] Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in search
engines. In: Proc. WWW (2008)

