
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2011; 00:1–33
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

JAVADAPTOR – Flexible Runtime Updates of Java Applications

Mario Pukall1∗, Christian Kästner2, Walter Cazzola3,
Sebastian Götz4, Alexander Grebhahn5, Reimar Schröter5, Gunter Saake1

1University of Magdeburg, {mario.pukall, saake}@iti.cs.uni-magdeburg.de
2Philipps-University Marburg, kaestner@informatik.uni-marburg.de

3University of Milano, cazzola@dico.unimi.it
4University of Dresden, sebastian.goetz@tu-dresden.de

5University of Magdeburg, {alexander.grebhahn, reimar.schroeter}@st.ovgu.de

SUMMARY

Software is changed frequently during its life cycle. New requirements come and bugs must be fixed.
To update an application it usually must be stopped, patched, and restarted. This causes time periods of
unavailability which is always a problem for highly available applications. Even for the development of
complex applications restarts to test new program parts can be time consuming and annoying. Thus, we
aim at dynamic software updates to update programs at runtime. There is a large body of research on
dynamic software updates, but so far, existing approaches have shortcomings either in terms of flexibility or
performance. In addition, some of them depend on specific runtime environments and dictate the program’s
architecture. We present JAVADAPTOR, the first runtime update approach based on Java that (a) offers
flexible dynamic software updates, (b) is platform independent, (c) introduces only minimal performance
overhead, and (d) does not dictate the program architecture. JAVADAPTOR combines schema changing class
replacements by class renaming and caller updates with Java HotSwap using containers and proxies. It runs
on top of all major standard Java virtual machines. We evaluate our approach’s applicability and performance
in non-trivial case studies and compare it to existing dynamic software update approaches. Copyright c©
2011 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: dynamic software updates; program evolution; state migration: tool support

1. INTRODUCTION

Once a program goes live and works in productive mode its development is not completed. It has
to be changed because of bugs and new requirements. In order to maintain a program, it usually
must be stopped, patched, and restarted. This downtime is always a problem for applications that
must be highly available. But, also for the development of complex applications restarts to test the
new program parts can be time consuming and annoying. This is also true for end-user desktop
applications that have to be restarted because patches must be applied [4]; end users prefer update
approaches that do not interrupt their tasks. For that reasons, we aim at dynamic software updates
(DSU), i.e., program updates at runtime.

Even though dynamic languages like Smalltalk, Python, or Ruby natively support runtime
program changes, we address Java for several reasons. First, Java is a programming language
commonly used to implement highly available applications. Examples are Apache Tomcat, Java
DB, or JBoss Application Server. Second, in most fields of application Java programs execute faster
than programs based on dynamic languages [12]. Thus, developers often prefer Java over dynamic
languages in time-critical scenarios. Amongst others, one reason for the better performance is that
Java is a statically typed language. Unfortunately, compilation prevents Java and other statically

Copyright c© 2011 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2

Construct to be changed Related Elements

C
la

ss
es

(1) Class Declaration Modifiers, Generic, Inner Classes, Superclass, Subclasses, Superinter-
faces, Class Body, Member Declarations

(2) Class Members Fields, Methods

(3) Field Declarations Modifiers, Field Initialization, Field Type

(4) Method Declarations Modifiers, Signature (Name, Parameters), Return Type, Throws,
Method Body

(5) Constructor Declarations Modifiers, Signature (Name, Parameter), Throws, Constructor Body

(6) Blocks Statements

(7) Enums Enum Declaration, Enum Body

In
te

rf
ac

es

(8) Interface Declaration Modifiers, Generic, Superinterface, Subinterface, Interface Body,
Member Declarations

(9) Interface Members Fields, Method Declarations

(10) Field (Constant) Declarations Field Initialization, Field Type

(11) Abstract Method Declarations Signature (Name, Parameters), Return Type, Throws

(12) Blocks Statements

(13) Annotations Annotation Type, Annotation Element

Table I. Language constructs of Java [14].

typed languages such as C or C++ from natively offering powerful instruments for runtime program
updates.

Literature suggests a wide range of DSU approaches for Java (see related work in Section 6).
The flexibility of an approach can be determined by answering the following three questions: Are
unanticipated changes allowed (i.e., can we apply requirements for which the running program was
not prepared)? Can already loaded classes (including their schema) be changed, and is the program
state kept beyond the update? Other quality criteria for a DSU approach are the caused performance
overhead, the influence on the program architecture and the platform independency. We believe that
it is impossible to prepare an application for all potential upcoming requirements. Furthermore, only
offering modifications of not previously executed program parts while disregarding the executed
parts (e.g., already loaded classes) restricts the application of program changes. In addition, state
loss and major performance overhead are unacceptable in many scenarios as well. Next, we argue
that DSU approaches should not dictate the program’s architecture, i.e., they should be capable of
being integrated into the program’s natural architecture (different application domains might require
different architectures). Last but not least, runtime update approaches should not force the customer
to use a specific platform for program execution, e.g., to use a Linux based Java Virtual Machine
even though the customer only runs Windows based machines. For all these reasons, we aim at
(a) flexible, (b) platform independent, and (c) performant runtime update approaches that (d) do
not affect the program’s natural architecture. However, we do not (yet) aim at a solution that fully
supports reliable (immediate) and consistent runtime updates (which, to our best knowledge, is not
supported by any existing DSU approach which is applicable in real-world scenarios). In other
words, our goal is to provide Java with the same runtime update capabilities known from dynamic
languages.

Researchers spent a lot of time to overcome Java’s shortcomings regarding runtime program
adaptation. Approaches like Javassist [7, 6] and BCEL [8] allow to apply some unanticipated
changes, but only to program parts that have not been executed yet. In contrast, Steamloom [19],
Reflex [44], PROSE [31], DUSC [36], AspectWerkz [3], Wool [41], or JAsCo [46] allow unanticipated
changes even of executed program parts; however, Steamloom, Reflex, PROSE, AspectWerkz,
Wool, and JAsCo do not support class schema changing runtime updates. Although DUSC allows

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

3

class schema changes the program loses its state. Another dynamic software update approach is
JRebel [21] which puts abstraction layers between the executed code and the JVM. It enables class
schema changes except from modifications of the inheritance hierarchy. Kim presents in [23] a DSU
approach based on proxies which, similar to JRebel, only enables schema changes that not affect
the inheritance hierarchy.

We present JAVADAPTOR, the first (to our best knowledge) dynamic software update approach
that fulfills all our quality criteria postulated above: it is flexible, platform independent, performant,
and it does not affect the architecture of the program to be updated. To meet the criteria, we utilize
Java HotSwap in an innovative way and combine it with class replacement mechanisms. Technically,
we update all classes with a changed schema via class replacements and update their callers with
the help of Java HotSwap. The key concepts of our solution are class renamings (to replace classes)
and containers respectively proxies (to avoid caller class replacements). Furthermore, we contribute
a discussion of desired properties for DSU approaches and a detailed survey off related approaches
and their trade offs. In addition, we demonstrate the practicability of our approach with non-trivial
case studies and show that the performance drops are minimal. We last but not least discuss ongoing
and future work to improve JAVADAPTOR.

2. MOTIVATING EXAMPLE

Program maintenance is not a trivial task, which usually affects many parts of a program.
Depending on the requirements, it ranges from single statement modifications to complex structural
modifications, i.e., it might affect all language constructs of Java as listed in Table I.

TempSensor

Sensor {
...

currentTemp() {

}

}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.currentTemp();

...

}

}

TempSensor {

Sensor s;

...

currentTemp() {

}
}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.currentTemp();

...

}

}

TempSensor {

Sensor s;

...

averageTemp() {

}

}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.averageTemp();

...

}

}

1st DSU 2nd DSU

Figure 1. Weather station. The example spans updates which replace methods, remove fields, and change
inheritance hierarchies.

The weather station program depicted in Figure 1 examplifies that even simple program changes
can affect many parts of a program. The weather station program consists of 2 classes. One class
(TempSensor) measures the air temperature while the other class (TempDisplay) is responsible
for displaying the temparature. Consider a maintenance task: the actual measuring algorithm
(average temperature) must be replaced by another measuring algorithm (current temperature).
Because the service provided by the weather station must be non-stop available, stopping the
program in order to apply the necessary changes is no option; we want to change it at runtime.
The application of the new functionality requires to change different parts of the program. First,
method averageTemp of class TempSensor must be replaced by method currentTemp
which requires to change the class schema. Second, in order to execute the new algorithm, method
displayTemp of class TempDisplay must be reimplemented. Short time after applying the

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

4

new measuring algorithm it was also decided to let TempSensor inherit from class Sensor in
order to add new functions to TempSensor while avoiding to implement them again. Therefore,
statement extends Sensor has to be applied to class TempSensor. Additionally, member
s of original class TempSensor has to be removed because superclass Sensor let it become
useless. However, changing the program code is only the first step toward an updated application.
In addition, all objects that exist in the program must be also updated to let them access the new
program parts as well as to keep the program state.

Even if the required program changes seem to be simple, they affect many different parts of the
program (i.e., Points 1 – 6 of Table I). Therefore, we search for a new mechanism in Java that allows
to change every part of a program at runtime without anticipating the changes.

3. THE JAVA VIRTUAL MACHINE

In order to understand what is provided or possible in Java and what challenges remain regarding
runtime adaptation, it is necessary to understand the standard design of Java’s runtime environment
– the Java virtual machine (JVM) [48]. As shown in Figure 2, a Java program is stored in the heap,
in the method area, as well as on the stacks of the JVM. Within the heap, the runtime data of all
class instances are stored [27]. In case a new class instance has to be created, the JVM explicitly
allocates heap memory for the instance, whereas the garbage collector cleans the heap from data
bound to class instances no longer used by the program. Unlike the heap, the method area stores all
class (type) specific data such as runtime constant pool, static field information and method data,
and the code of methods (including constructors) [27]. The stacks contain the currently executed
program parts.

class loader
subsystemclass files

runtime data areas

method
area heap Java

stacks
pc

registers

native
method
stacks

execution
engine

native method
interface

Native
method

libraries

Figure 2. Program representation – HotSpot JVM [48].

Changing a program during its execution in the JVM requires to modify the data within the heap,
the method area, and on the stacks. For instance, program changes such as depicted in Figure 1,
which also include method replacements require to extensively change the data of a class. In general,
they require to modify the class schema. Unfortunately, the JVM does not permit class schema
changes, because class schema changes may let the data on the stack, on the heap, and the class
data stored in the method area become inconsistent while the JVM does not provide functions to
synchronize them. In order to disallow the developer class schema changing updates, the JVM
enforces a strict class loading concept. To load a class, the JVM requests the following basic class

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

5

loaders (in this order): (a) the bootstrap class loader (root class loader – loads system classes),
(b) the extension class loader (loads classes of the extension library), and (c) the application class
loader (loads classes from classpath). The first class loader in this hierarchy that is able to load the
requested class will be finally bounded to this class, i.e., none of the other class loaders is allowed
to load or reload this class. The only way (beside customized class loaders that we will discuss in
later sections) to reload (update) a class with a changed schema is to unload the old class version,
which is only possible if the owning class loader can be garbage collected. Unfortunately, a class
loader can only be garbage collected if all classes (even the unchanged ones) loaded by this class
loader are dereferenced, which is equivalent to a (partial) application stop.

Java HotSwap. Despite the insufficient native runtime adaptation support of the JVM there is
one feature that provides some simple runtime update capabilities – called Java HotSwap [10]. It is
provided by the Java Virtual Machine Tool Interface (JVMTI) [35] and allows to replace the body
of a method (which partly covers points 4 - 6 of Table I) while the program is running. Even if
HotSwap is not a standard feature, it is implemented by all major Java virtual machines commonly
used in production, i.e., the HotSpot JVM, the JRockit JVM, and IBM’s JVM.

The class data restructuring via Java HotSwap consists of the following steps: First, an updated
version of a class is loaded into the JVM. It contains the new method bodies. Second, it is checked
if old and new class version share the same class schema. Third, the references to the constant pool,
method array, and method objects of the old class are successively (in the given order) redirected to
their (up-to-date) counterparts within the updated class. After this is done, all corresponding method
calls refer to the redefined methods. Unfortunately, Java HotSwap (and other features of JVMTI)
neither allows to swap the complete class data nor removing or adding methods, i.e., it does not
allow class schema changes.

4. DYNAMIC SOFTWARE UPDATES VIA JAVADAPTOR

Having described the shortcomings of Java’s runtime environment, i.e., the JVM, regarding flexible
runtime program updates, we present JAVADAPTOR which overcomes the limitations of the Java VM
and adds flexible DSU to Java while not causing platform dependencies, architecture dependencies,
and significant performance drops. It combines Java HotSwap and class replacements, which are
implemented via containers and proxies.

4.1. Tool Description and Demonstration

Before we describe the concepts of our DSU approach, let us illustrate the general architecture and
update process of JAVADAPTOR.

Tool Description. Figure 3 describes JAVADAPTOR from the developers point of view. The
current implementation of our tool comes as a plug-in which smoothly integrates into the Eclipse
IDE∗ (conceptually JAVADAPTOR could be integrated into any other IDE or even used without an
IDE). The implementation of the required program updates conforms to the usual static software
development process, i.e., the developer implements the required functions using the Eclipse IDE
and compiles the sources. This ensures type-safety because of the static type checking done by the
compiler.

When the developer decides to update the running application, JAVADAPTOR establishes a
connection to the JVM executing the application (see Figure 4). In more detail, it connects to
the JVM’s Java Virtual Machine Tool Interface (JVMTI) which is used to control the JVM [35]
(accessible from outside the JVM through the Java Debug Interface which is part of the Java
Platform Debugger Architecture [34]). Once the update process is triggered, JAVADAPTOR prepares
the classes changed within Eclipse so that they can be applied to the running application. The
required bytecode modifications are performed by Javassist.† In order to load and instantiate new

∗http://www.eclipse.org/
†http://www.csg.is.titech.ac.jp/˜chiba/javassist/

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.eclipse.org/
http://www.csg.is.titech.ac.jp/~chiba/javassist/

6

Implement updates via IDE

Connect to running
application

Update running application

Disconnect from running
application

connected?

more
updates?

no

yes

no

yes

Figure 3. Update process.

IDE

JavAdaptor

JDI

Target JVM

Application

JVMTI

Update Thread Class Loaders
Update Logic

Class
Class_v1

Class_v2
Class_v3

Class_v4
Class_v5

code change

update classes, create containers/proxies, and so forth, using Javassist

Invoke JVMTI to: load new class versions,
update callers, and hotswap method body

implementations

Developer

load

Figure 4. Dynamic software update architecture.

class versions, a special update thread is added to the target application. This thread is only active
when the running program is updated and, thus, causes no performance penalties during normal
program execution. After the update, JAVADAPTOR disconnects from the application. The described
process can be repeated as often as required.

Tool Demonstration. Because abstract descriptions on the usage of tools are sometimes hard
to understand and do not reflect the reality well, we created a tool demonstration showing
JAVADAPTOR in action. Concretely, we used JAVADAPTOR to update the well-known arcade game
Snake at runtime. The update consists of 4 different steps which each add new functions to the (at
startup) very basic game. It required to redefine existing methods, to add new methods and fields,
and even to update inheritance hierarchies. That is, the demonstration covers all kinds of updates

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

7

essential to flexibly update running applications. For more information about our tool demo see
[38]. The corresponding demo video is available on YouTube.‡

In the following, we describe the basic mechanisms how JAVADAPTOR changes applications
running in the target JVM, namely class replacements using containers and proxies.

TempSensor_v2 { ... }TempSensor { ... } Replacement

Figure 5. Class renaming.

4.2. Class Reloading

As stated in Section 3, the JVM disallows updating an already loaded class when the update alters
the class schema. In order to circumvent these restrictions, we perform class replacements (updates)
through class renaming. As exemplified in Figure 5, the key idea is that, while we cannot load a
new class version with the same name, we rename the new version and load it under a fresh name.
Since the resulting class name is not registered in any class loader, the updated class can be loaded
by the same class loader that also loaded the original class.

Listing 1. JAVADAPTOR – class reloading.
1 class ClassUpdateLoader {
2 VirtualMachine targetJVM;
3 ...
4 void replaceClass(String oldClassName) {
5 if(isOldClassLoaded) {
6 ...
7 CtClass c = classpool.getCtClass(oldClassName);
8 c.replaceClassName (oldClassName, newClassName);
9 ...

10 ReferenceType refT = targetJVM.classesByName("UpdateHelper").get(0);
11 ObjectReference uHelper = refT.instances(0).get(0);
12 uHelper.invokeMethod(thread, loadClass, args[newClassName], options);
13 }
14 }
15 }

Listing 2. Target VM – class reloading.
16 class UpdateHelper extends Thread{
17 ClassLoader origClassLoader;
18 ...
19 void loadClass(String newClassName) {
20 origClassLoader.loadClass(newClassName);
21 }
22 }

Listing 1 sketches how class loading based on class renaming is implemented in JAVADAPTOR.
The renamed and updated class (here class TempSensor v2 from our motivating example
depicted in Figure 1) is created by our adaptation tool (using the source level API of Javassist
to manipulate the bytecode in Lines 7 and 8, Listing 1). In the next step, the adaptation tool invokes
method loadClass (Line 12) of class UpdateHelper (Lines 16 – 22, Listing 2), which resides
in the update thread added to the target application on application start. By invoking loadClass
within the target application, the new class version is loaded by the same class loader that loaded
the original class (Listing 2, Line 20), which ensures that our DSU approach is compatible with any
application employing multiple class loaders (e.g., component based applications).

‡http://www.youtube.com/watch?v=jZm0hvlhC-E

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.youtube.com/watch?v=jZm0hvlhC-E
http://www.youtube.com/watch?v=jZm0hvlhC-E

8

4.3. Caller-Side Updates

As demonstrated above, our class reloading mechanism allows us to load a new version of an
already loaded class even if the class schema has changed. However, the mechanism only triggers
the loading of the updated class. To let the class become part of program execution, all references
to the original class have to be changed to point to the new class version. For the sake of clarity,
we will name the classes which hold references to classes to be reloaded (updated) callers and the
classes subject to updates callees. In addition, the terms caller side and callee side cover the class
itself as well as all its instances.

15 TempDisplay {

16 ...

17 copy() {

18 ...

19 TempSensor v2 local =

20 TempSensor v2();

21 ...

22 }

23
24 displayProducer() {

25 System.out.println(

26 TempSensor v2.getProducer());

27 }

28 }

1 TempDisplay {

2 ...

3 copy() {

4 ...

5 TempSensor local =

6 TempSensor();

7 ...

8 }

9
10 displayProducer() {

11 System.out.println(

12 TempSensor.getProducer());

13 }

14 }

Java HotSwap

Figure 6. Caller side updates in case of short-lived objects.

In case of short-lived objects, such as local variable local of class TempDisplay (Figure 6),
only method body redefinitions are required to refer to the new class version. This is, because with
each method execution, the local variables are newly created. Thus, after redefining a method, such
as depicted in Figure 6, the local variables created during method execution will be of type of the
updated class (here of class TempSensor v2). Those updates can be easily located and applied
using the source level API of Javassist and Java HotSwap.

A snippet of the corresponding update code is depicted in Listing 3. For each application class,
JAVADAPTOR checks whether the class references the class to be updated. Technically, all classes
referenced by the caller side are requested using Javassist method getRefClasses (Line 4). If
references of the old callee class (here of class TempSensor) are found, we update them method by
method to the updated class (Lines 17-24). After this is done, the updated caller method is redefined
using Java HotSwap (Line 26).

Different from references to short-lived objects, references to long-lived objects (such as class
or instance field references) are vital beyond method executions, i.e., they are inherent parts of
the caller side. Thus, caller-side updates because of references to long-lived objects of type of the
callee must be handled in a different way. Those updates require four steps: (1) caller detection, (2)
instantiation of the updated callee class, (3) callee-side state mapping, and (4) reference updates.

4.3.1. Caller Detection. In order to replace the references to instances of the original callee class by
instances of the new callee class version (as required for class TempSensor from our motivating
example), we have to detect all callers and their instances that refer to long-lived objects of
the original callee class. The JVMTI supports this operation. A snippet of the caller detection
implementation is depicted in Listing 4. First, the class object of the old callee class is retrieved from
the target JVM (Line 4). This object is used to get all instances of the old callee class via reflection
(Line 5). Again, using the instances all callers are retrieved (Line 7). This includes even callers
whose global fields are of type of a super class the old class extends, which is possible because the
function requests the objects runtime type and not the static type. In addition, JAVADAPTOR searches
all application classes for class and instance fields of type of the old callee class (using Javassist
method getRefClasses). This is necessary in order to detect even caller classes which are not

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

9

Listing 3. JAVADAPTOR – caller-side update in case of short-lived objects.
1 class CallerUpdateShortLived {
2 ...
3 void detectAndUpdateCaller(CtClass caller) {
4 Collection col = caller.getRefClasses();
5 Iterator colIterator = col.iterator();
6 ...
7 while(colIterator.hasNext()) {
8 CtClass callee = (CtClass) colIterator.getNext();
9 if(callee.getName().compareTo(oldClassName) == 0) {

10 ClassMap classMap = new ClassMap();
11 classMap.put("oldClassName", "newClassName");
12 ...
13 callee.replaceClassName(classMap);
14 }
15 }
16 ...
17 CtMethod[] methods = caller.getDeclaredMethods();
18 ...
19 ExprEditor exprE = new ExprEditor() {...};
20 for(int i = 0; i < methods.length; i++) {
21 ...
22 methods[i].instrument(exprE);
23 ...
24 }
25 ...
26 targetVM.redefineClasses(callerClass);
27 ...
28 }
29 }

Listing 4. JAVADAPTOR – caller detection.
1 class CallerUpdateLongLived {
2 ...
3 List<ClassObjectReference> detectCallers(String oldClassName) {
4 ReferenceType refL = targetJVM.classesByName(oldClassName);
5 List<ObjectReference> oRefL = refL.instances(0);
6 ...
7 List<ObjectReference> cRefL = oRefL.get(i).referringObjects(0);
8 ...
9

10 }
11 }

yet loaded, instantiated, or whose instances do not refer to the callee side because the corresponding
class or instance fields are not yet initialized.

4.3.2. Callee Class Instantiation. In the next update step, JAVADAPTOR creates for each instance
of the original callee class an instance of the new class version (here of class TempSensor v2
from our motivation). The new instances will be used later on to replace the instances of the old
class and, thus, to update the caller side (i.e., class TempDisplay).

Again, the instantiation is triggered by our adaptation tool. The corresponding code is depicted in
Listing 5. Method createInstance of our update tool takes as argument the name of the new
class version and invokes method newInst of class UpdateHelper in the target application
which creates an instance of the new class. Listing 6 shows a code snippet of method newInst of
the helper class at application side. Via method forNamewe retrieve the class object of the updated
class (Line 14). Then we call method allocateInstance of class sun.misc.Unsafe
which performs the instantiation. One reason why we use sun.misc.Unsafe instead of method
newInstance of class Class for instantiation is that it prevents us from initializing the objects
twice, i.e., it would require to initialize the objects when they are created and again when they

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

10

Listing 5. JAVADAPTOR – instantiation.
1 class UpdateInstantiation {
2 ClassObjectReference updateHelper;
3 ...
4 void createInstance(String newClassName) {
5 ...
6 updateHelper.invokeMethod(thread, newInst, args[newClassName], options);
7 }
8 }

Listing 6. Target VM – instantiation.
9 class UpdateHelper extends Thread {

10 Unsafe unsafe;
11 ClassLoader applClassLoader;
12 ...
13 Object newInst(String cName) {
14 Class c = Class.forName(cName, false, applClassLoader);
15 return unsafe.allocateInstance(c);
16 }
17 }

get the state from their outdated counterparts, which would be inefficient. Furthermore, method
allocateInstance eases the instantiation of classes which do not provide a default constructor.

4.3.3. Callee-Side State Mapping. Having finished the instantiation step, JAVADAPTOR has to
map the state from old to corresponding new instances. In our example, this means to map the
state from instances of old class TempSensor to instances of class update TempSensor v2.
Due to the simplicity of one-to-one mappings (mappings of values from fields that exist in both
class versions) and mappings where either fields are removed or added they can be executed
automatically. However, for more complex (indefinite) mappings, e.g., mappings where the type of
a field differs between old and new class but the field name remains the same, a mapping function
must be manually defined by the user.

4.3.4. Reference Updates. Finally, once for each instance of the original callee class an instance
of the new class version has been created and initialized with the state of its outdated counterpart,
JAVADAPTOR updates the caller side. That is, all instances of the original callee class (according our
motivation class TempSensor) have to be replaced by the instances of the new callee class (here
class TempSensor v2). Unfortunately, updated and outdated callee class are not type compatible,
thus, objects of the updated class cannot be assigned to fields of type of the outdated class (such as
required to update field ts of caller class TempDisplay).

Containers. To solve the type-incompatibility problem while avoiding to change the caller
class schema, we use containers whose usage is exemplified in Figure 7. Before program start,
JAVADAPTORJavAdaptor prepares the program for the container approach, i.e., it adds field cont
(Line 17) to each class in the program. The container field does not affect program execution as
long as no callee of the caller class has to be replaced. To replace a callee instance referenced
by the caller class, the program has to be changed as depicted in the right part of Figure 7. First,
JavAdaptor creates a container class (see Figure 7, Lines 48 – 52) used to store instances of the new
callee class (here of class TempSensor v2). Second, our tool assigns the up-to-date counterpart
of an outdated object (such as referenced by field ts in Figure 7) to an instance of the container. The
container instance containing the up-to-date object is then assigned to field cont within the caller
class (here class TempDisplay). Third, the tool redirects all accesses of the old callee instance to
the updated callee instance located in the container (see Figure 7, Lines 36 – 38 and Lines 43 – 44),
i.e., the tool redefines all method bodies in which the old callee instance is accessed and swaps
the resulting method bodies via Java HotSwap. Note that we, for clarity reasons, will remove the
necessary downcasts to the specific container type (as shown in Lines 37 and 43 of Figure 7) from
the following code examples.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

11

1 TempDisplay {

2 TempSensor ts;

3 ...

4 TempDisplay() {

5 ...

6 ts = TempSensor();

7 ...

8 }

9
10 displayTemp() {

11 ts.averageTemp();

12 ...

13 }

14 }

Program Start

15 TempDisplay {

16 TempSensor ts;

17 IContainer cont;

18 ...

19 TempDisplay() {

20 ...

21 ts = TempSensor();

22 ...

23 }

24
25 displayTemp() {

26 ts.averageTemp();

27 ...

28 }

29 }

30 TempDisplay {

31 TempSensor ts;

32 IContainer cont;

33 ...

34 TempDisplay() {

35 ...

36 cont = Container();

37 ((Container) cont).ts =

38 TempSensor v2();

39 ...

40 }

41
42 displayTemp() {

43 ((Container) cont).ts

44 .currentTemp();

45 ...

46 }

47 }

48 Container

49 IContainer {

50 TempSensor v2 ts;

51 ...

52 }

DSU

+averageTemp()
TempSensor

+currentTemp()
TempSensor_v2

+averageTemp()
TempSensor

Figure 7. Containers.

Proxies. The basic container approach described in Figure 7 is sufficient in many cases. However,
it fails when the caller class to be updated contains methods whose parameters or returned objects
are of type of the old callee class (such as shown in Figure 8, Line 5 and 9). One workaround
would be to replace the caller class as well. But, this strategy may result in additional class
replacements which at the worst require to essentially replace all classes of the system and thus
let our DSU approach become inefficient. In order to avoid cascading class replacements, we extend
our approach by proxies (see Figure 8). Caller updates work in the same manner as described above.
Only difference is, that, in addition to the container class a proxy class is generated.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 TempSensor getSensor() {

6 ts;

7 }

8
9 setSensor(TempSensor ts) {

10 .ts = ts;

11 }

12 }

DSU

13 TempDisplay {

14 TempSensor ts;

15 IContainer cont;

16 ...

17 TempSensor getSensor() {

18 Proxy(cont.ts);

19 }

20
21 setSensor(TempSensor ts) {

22 cont.ts = ((Proxy)ts).update;

23 }

24 }

25 Proxy TempSensor {

26 TempSensor_v2 update;

27 ...

28 }

Figure 8. Proxies.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

12

The idea of proxies is to guide objects of an updated callee class through the caller methods that
require or return objects of type of the old callee class. The usage of proxies is exemplified on the
basis of method getSensor of class TempDisplay which returns an instance of callee class
TempSensor (Line 6). After replacing callee class TempSensor by class TempSensor v2,
method getSensor has to return an instance of the new callee class which is not possible because
TempSensor and TempSensor v2 are not type compatible. To achieve type compatibility, we
wrap the instance of TempSensor v2 with an instance of class Proxy (Line 18). Since the
proxy extends class TempSensor, it can be returned by method getSensor. Technically, we
use method allocateInstance from class sun.misc.Unsafe for the proxy instantiation, because
it eases the creation of proxy instances even if the proxy’s super class has no default constructor.
In order to use the returned object wrapped by the proxy at receiver side (i.e., within the class that
called method getSensor), the object is unwrapped. That is, the proxy is only used to guide
instances of the new callee class through type incompatible methods. The receiver will finally work
with the new callee object and not with the proxy object, which avoids the self-problem [26]. How to
propagate instances of the updated callee class back to the caller (more precisely to the container) is
exemplarily shown in Figure 8 (Line 22). Before method setSensor is called, its parameter (i.e,
an instance of TempSensor v2) is wrapped by a proxy. In order to unwrap and use the received
instance of class TempSensor v2, proxy ts must be cast to type Proxy.

Listing 7. Bytecode modifications proxy: return.
1 TempSensor getSensor() {
2 0 aload_0
3 1 astore_1
4 2 aconst_null
5 3 astore_2
6 4 aload_1
7 5 getfield #15 <TempDisplay.fieldContainer1265725244704>
8 8 checkcast #17 <TempDisplay_Cont_1>
9 11 getfield #21 <TempDisplay_Cont_1.ts>

10 14 astore_2
11 15 aload_2
12 16 invokestatic #27 <TempSensor Proxy 1.newInst>
13 19 checkcast #29 <TempSensor>
14 22 areturn
15 }

Proxy Bytecode Modifications. Up to this point, most of the required bytecode modifications
described above could be processed using the source level API of Javassist which makes bytecode
modifications easy to handle. However, the modifications required to apply proxies exceed the
power of Javassist’s source level API. The source level API cannot terminate the type of local
variables referenced through the method’s local variable table. Because parameters are stored in
local variables by default, it is not possible to apply the code to unwrap them using the source level
API. The same problem occurs when locally stored objects that have to be returned must be wrapped
by a proxy. For that reasons, we manage the application of proxies manually, i.e., with the bytecode
level API of Javassist.

Listing 7 shows the bytecode modifications (here of method getSensor of example class
TempDisplay) required to wrap returned objects (Lines 12 and 13). First, we call method
newInst (Line 12) of the Proxy class which takes as parameter an object of the updated callee
class (here of class TempSensor v2), wraps the object by a newly created proxy instance, and
returns the proxy. Second, the returned proxy is casted to the type of the old callee class (here of
example class TempSensor, Line 13).

How to modify the bytecode in order to unwrap proxy based parameters (here of method
setSensor of example class TempDisplay) is depicted in Listing 8 (Lines 2-5). First, we load
the parameter stored in a local variable (Line 2). Second, we cast the parameter to the related proxy
type (Line 3). Third, we unwrap the updated class instance (here of class TempSensor v2) stored
in field call of the proxy object (Line 4). Fourth, to avoid recurring unwrappings, the unwrapped
instance is stored in the local variable that previously stored the proxy (Line 5).

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

13

Listing 8. Bytecode modifications proxy: parameters.
1 void setSensor(TempSensor ts) {
2 0 aload 1
3 1 checkcast #23 <TempSensor Proxy 1>
4 4 getfield #34 <TempSensor Proxy 1.call>
5 7 astore 1
6 8 aload_0
7 9 aload_1
8 10 astore_3
9 11 astore_2

10 12 aload_2
11 13 getfield #36 <TempDisplay.fieldContainer1265725244704>
12 16 checkcast #17 <TempDisplay_Cont_1>
13 19 aload_3
14 20 putfield #38 <TempDisplay_Cont_1.ts>
15 23 return
16 }

4.3.5. Concurrent Updates of Multiple Classes. So far, we described the mechanisms and concepts
of JAVADAPTOR on the basis of the very simple weather station example given in Section 2. This
example only consists of one single class update and the corresponding caller-side update. However,
JAVADAPTOR does not only allow the developer to update a single class but multiple classes in
one step, which is essential to update complex real-world applications. On the one hand, this is
because updates of real-world applications normally span many different classes. On the other
hand, concurrent updates of multiple classes is essential for inheritance hierarchy updates, because
superclass updates implicitly require to update and reload corresponding subclasses, too (note that
we have to reload the subclasses in order to let them extend the new superclass version).

Class Reloading

Caller-Side Updates

Class 1 Class 3Class 2 Class n...

Class 1
State

Mapping

Reference Updates

HotSwap

Class 2
State

Mapping

Class 3
State

Mapping

Class n
State

Mapping

Caller-Side Detection

...

Figure 9. Concurrent multiple class updates.

Figure 9 sketches how JAVADAPTOR handles concurrent updates of multiple classes. At first,
JAVADAPTOR reloads all classes with changed schemas (as described in Section 4.2). Afterwards,
it identifies all classes (callers) with references to the classes to be reloaded (see Section 4.3.1).
This information is gained in one atomic step for efficiency reasons. That is, having an overview
about all changes required to update the running program allows us to create possible containers and
proxies in one single step. In addition, we only have to touch each class one-time in order to modify
its bytecode. However, in the next two steps, JAVADAPTOR creates the new callee instances and
maps the state (as we described in Section 4.3.2 and 4.3.3). If this is done, JAVADAPTOR updates all
references conform to the workflow described in Section 4.3.4. Since we already gained information
about all dependencies between callers and callees, this can be efficiently done in one atomic step,
too. In the last update step, we update all modified and hotswapable classes at once using Java

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

14

HotSwap. This includes not only all callers of reloaded classes, but also classes which are explicitly
changed by the developer.

In summary, JAVADAPTOR allows us to flexibly change applications during their runtime. The
update granularity can vary from minor changes (i.e., of single classes) to system wide changes
(i.e., of multiple classes). In addition, JAVADAPTOR will only update the changed classes and the
corresponding caller classes. All other classes remain untouched which minimizes the influence of
the update on the running program.

5. EVALUATION

Our goal was to develop an update approach which allows running Java applications to be updated
in every possible way (a feature only known from dynamic languages). In addition, the approach
should not introduce performance drops. In order to check whether JAVADAPTOR meets the goals,
we applied it to different non-trivial case studies.

5.1. HyperSQL

To simulate a real-world scenario which requires flexible runtime updates, we proceeded as follows.
We chose a reasonable application to update, which was HyperSQL§ amongst others used by
OpenOffice (we chose HyperSQL because it is a database management system for which runtime
adaptation promises benefits of no-downtime, it is entirely written in Java, and an open source
application whose source code is available for the latest program version and earlier versions). We
started version 1.8.0.9 of it downloaded from the HyperSQL website and applied all changes to
evolve it to the next version 1.8.0.10 without shutting down the application. After program start, we
ran the open source database benchmark PolePosition¶ in order to generate and query some data
which ensured that HyperSQL was fully activated and deployed.

The new version of HyperSQL (released 9 month after version 1.8.0.9 came out) comes with
a bunch of changes. It fixes major bugs that cause null-pointer exceptions, problems with views,
timing issues, corrupted data files, and deadlocks. Additionally, new and improved functionality
such as new lock-file implementations and performance improvements to the web server are
included. To lift the running program from version 1.8.0.9 to the new version 1.8.0.10, we had
to update 33 of 353 classes. The updates affected many language constructs (Points 1 – 7 of
Table I). In case of 21 out of 33 classes the changes did not affect the class schema, i.e., the
changes could be applied by our tool solely using Java HotSwap. Apart from that, 12 classes
were affected by schema-changing program modifications. JAVADAPTOR replaced them using class
replacements. The state mappings that came along with the replacements span one-to-one mappings,
added, and removed fields, i.e., they were automated by JAVADAPTOR. Table II lists all classes
that had to be replaced. Note that updating class NIOLockFile also included changes to the
inheritance hierarchy. In addition, with class LockFile$HeartbeatRunner we had to update
even a nested class. Inheritance hierarchy updates as well as updates that involve nested classes are
supported by JAVADAPTOR. However, Table II provides also information about the required caller
updates, i.e., how many caller classes are updated in the context of short-lived objects, containers, or
proxies. The number of references within method bodies that have to be changed to update the caller
classes is given as well (in brackets). In 148 out of 197 cases (75.1 %) updates because of references
to short-lived callee objects (via Java HotSwap) were required to update the callers. 21 caller classes
(10.7 %) had to be updated through containers. 28 caller class updates (14.2 %) required proxies.

In order to verify that HyperSQL was still correctly working (in a consistent state) after the update,
we reran the PolePosition benchmark. In the result, HyperSQL passed the benchmark without errors,
i.e., all database operations were correctly executed after the update. In a second test we checked

§http://hsqldb.org/
¶http://polepos.sourceforge.net/

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

http://hsqldb.org/
http://polepos.sourceforge.net/

15

Replaced Class Caller Updates
Kind of Update Short-lived Objects (# Ref.) Container (# Ref.) Proxy (# Ref.)
FontDialogSwing 8 (9) 0 (-) 0 (-)structural
HsqlDatabaseProperties 11 (98) 2 (25) 11 (23)functional
LockFile 1 (9) 10 (5) 11 (47)functional
LockFile$HeartbeatRunner 2 (2) 0 (-) 0 (-)functional
Logger 22 (93) 3 (93) 3 (4)structural
NIOLockFile 0 (-) 0 (-) 0 (-)changed inheritance hierachy
ScriptReaderZipped 3 (3) 0 (-) 0 (-)functional
SimpleLog 9 (105) 3 (27) 0 (-)structural
Token 5 (671) 0 (-) 0 (-)structural
Trace 80 (1306) 0 (-) 0 (-)structural
Transfer 4 (6) 0 (-) 0 (-)structural
View 3 (37) 3 (13) 3 (16)functional

Table II. HyperSQL: Required class reloadings because of schema changes. The table lists all classes to be
reloaded. It furthermore provides information on the required caller updates, i.e., how many referring classes
are updated in the context of short-lived objects, containers, or proxies. The number of updated references

is given as well (in brackets).

whether the updates were applied and active. Therefore, we hooked the JVM profiler VisualVM‖ into
the running application and checked what classes/methods were executed during the PolePosition
benchmark. We found out that 5 of the 12 replaced classes were active and central part of program
execution during the PolePosition benchmark which confirms that they were updated correctly. The
remaining 7 classes were correctly loaded into the JVM, but inactive during the benchmark. Thus,
we could verify their correct execution.

5.2. Refactorings

With the HyperSQL case study we demonstrated the flexibility and practicability of JAVADAPTOR
on the basis of a real-world application. However, we could continue indefinitely updating specific
real-world applications which demonstrate the capabilities of our tool and would end up each time
with just another case study. The problem with case studies such as HyperSQL is that they present
specific update scenarios, which may not cover all eventualities and thus do not allow us to draw
conclusions on the general applicability of JAVADAPTOR.

To get a better understanding of JAVADAPTOR’s general applicability, we followed a different
path and checked if the tool would be able to dynamically apply common program updates, i.e,
updates, that frequently occur in practice and do not rely on certain application scenarios. But, what
are common program updates and how could we unbiased test if JAVADAPTOR is able to apply them
to running applications? We found Refactorings [32] to be appropriate for our analysis. Actually,
Dig and Johnson [9] found out that:

Refactorings cause more than 80 % of API changes that were not backwards-compatible.

Once we decided to prove the general applicability of JAVADAPTOR on the basis of refactorings,
we had to reason about a test setup which ensures the tests to be unbiased. Our tests base on

‖https://visualvm.dev.java.net/

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

https://visualvm.dev.java.net/

16

the refactorings presented by Fowler [11], which is the standard reference regarding refactorings.
To achieve an unbiased test setup, we simply took the example programs from Fowler and
refactored them at runtime. JAVADAPTOR was able to process all refactorings including possible
state mappings. 61 out of the 72 refactorings (ca. 84 percent) required class reloadings. Reference
updates because of class reloadings required containers in 57 out of 61 cases (ca. 93 %) and proxies
in 3 out of 61 cases (ca. 5 percent). State mappings could be automatically processed in 41 out of
61 cases (ca. 67 %), while mapping methods were required in 20 out of 61 cases (ca. 33 percent).

To sum up, the results of our refactoring case study show that JAVADAPTOR covers a large
bandwidth of different update scenarios and chances are high that the tool performs well when
it must update concrete real-world applications.

5.3. Performance

Having demonstrated JAVADAPTOR’s capabilities regarding flexible updates, it is time to take a look
at the performance penalties induced by our tool, i.e., the execution speed of the changed program
parts.

No Update Callee Caller

Callee

Caller

No Update

19,790set&get 4,2
set 3,30 15,61

0 12,79get 2,9

7,3
9,4

2,7
3

Outliers in %

9,1

2,9

Method

38set
46

0

13,8
13,93

Median in ns

set 0

Mean in ns
0

53,5

get

set&get
0

get

13,73

0

0
set&get

20
00

00
40

00
00

0
60

00
00

80
00

00
10

00
00

0

Figure 10. Method execution times in the presence of proxies. Meaning of the plotted elements: —— =
box plot, = outlier, — = low concentration of overlapping outliers, = high concentration of

overlapping outliers.

Because we were primarily interested in getting to know how JAVADAPTOR affects the
performance of a real-world application, we chose our HyperSQL case study and proceeded
as follows. We ran the PolePosition benchmark (mentioned above) immediately after runtime
updating HyperSQL to version 1.8.0.10 and compared the results with the benchmark results
of HyperSQL version 1.8.0.10 not updated at runtime. We could not measure any statistically
significant difference, i.e, the benchmark results of the HyperSQL instance updated at runtime were

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

17

as good as the results of the HyperSQL instance not updated at runtime. In other words, the runtime
updates performed by us did not affect the performance of HyperSQL in a measurable way.

However, even if we did not measure performance penalties because of our runtime update
approach in a real-world scenario, we assumed that our approach does not come entirely without
performance overhead in some borderline cases. To get evidence about this assumption, we
additionally implemented a micro benchmark that is able to detect even minimal performance
penalties. It measures the costs of crossing the version barrier from old program parts (i.e., callers)
to the new ones (i.e., updated callees).

To get reliable results, we ran ten samples of one million invocations of all major invocation types
and for each calculated the average access time in nanoseconds. For containers and local updates,
no statistically significant performance overhead was measurable (calculated through a one-way
analysis of variance), i.e., programs updated using containers and local updates perform as fast as
the original program. One reason for the good results is the just-in-time compiler of the JVM that is
able to optimize the code used to instrument the containers.

In Section 4.3.4, we described the need for proxies to avoid implicit caller replacements in case
the callee appears to be an argument of a caller method, returned by a caller method, or both. To
figure out possible execution speed penalties due to our proxy approach, we again ran ten samples
of one million (get-, set-, and set&get-) method invocations and recorded the method access times.
The boxplots of the recorded access times are shown in Figure 10. The average access times with
No Update (left part of Figure 10) range from 13,73 ns to 13,93 ns, with a median access time value
of 0 ns and only 2,7 % to 3 % outliers. When we reload the Callee and thus have to use proxies,
the average method access times increase (middle of Figure 10) now ranging from 38 ns to 53,5 ns,
while the median is still at 0 ns (7,3 % – 9,4 % outliers). That is, dynamic updates involving proxies
introduce slight execution speed penalties.

In order to get to know how the results scale, we put some workload on the methods and let
them process statement System.out.println("Hello JAVADAPTOR"). The results are
shown in Figure 11. As one can see, the times to execute the method bodies are much higher
than the method access times, which results in similar overall method execution times with and
without proxies, ranging from 8892 ns to 11210 ns on average. That is, workload on methods (which
should be the common case) renders the performance overhead introduced by proxies negligible. In
addition, reloading the referring class (i.e., the Caller) as well, almost recovers the original method
access times (right part of Figure 10). The average access times after reloading the caller, range
from 12,79 ns to 19,79 ns, with a median access time value of 0 ns (2,9 % – 4,2 % outliers).

All in all, the results of our HyperSQL case study and the micro benchmark confirm that runtime
program changes by JAVADAPTOR produce only minimal performance overhead. Only proxies
produce a measurable overhead. Caller updates through local changes and containers do not cause
measurable performance drops.

5.4. Update Speed

Even if the contributions of our current JAVADAPTOR implementation are others than applying
updates the fastest way, we evaluated how well JAVADAPTOR performs in this regard. That is, we
measured the time JAVADAPTOR pauses the application during the update process in order to avoid
program inconsistencies. Our measurements base on two different programs representing different
application scenarios.

At first, we measured the time required to update our HyperSQL case study under different
conditions. With our first test, we measured the time period required to update HyperSQL with
an empty database (i.e., without any data object stored), which was 1407 milliseconds. In further
tests, we ran the PolePosition benchmark creating hundreds, thousands, ten thousands, and hundred
thousands of data objects before the update. The corresponding update times ranged from 1518
milliseconds to 5346 milliseconds, which seems to be not outstanding fast but sufficient in many
scenarios. By contrast, restarts and reinitializations of HyperSQL (e.g., filling caches, reloading data
objects, creating views, creating users, etc.), as we simulated them using PolePosition, took more
time.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

18

No Update Callee Caller

Callee

Caller

No Update

10730set&get
set 10730

10729get

Method

10729set
10730

11196
10729set

Median in ns

10729

get

set&get

get

10729set&get

11168
11134
8892

10922
10897

11210
10811
10805
11094

Mean in ns

7,1
5,5
0,2
46
3

1,3
2,9
0,9
4,7

Outliers in %

0
20

00
00

0
40

00
00

0
60

00
00

0
80

00
00

0
10

00
00

00

Figure 11. Method execution times in the presence of proxies and workload. Meaning of the plotted
elements: —— = box plot, = outlier, — = low concentration of overlapping outliers, = high

concentration of overlapping outliers.

The other application for which we measured the update times was the Snake demo we briefly
described in Section 4.1 and presented in [38]. Compared to the update of HyperSQL, which affects
wide parts of the system (the update spans changes made during 9 months of development), each
Snake update step consists only of small changes to few classes. Thus, the Snake updates represent
scenarios common to the software development process, i.e., frequent minor changes and immediate
application of the changes. As our demo video (available on YouTube∗∗) suggests, the update times
are rather short ranging from 28 milliseconds to 142 milliseconds.

All in all, the update times we measured suggest that our current JAVADAPTOR implementation
could be beneficial in many different scenarios (even if currently other DSU approaches such as
presented in [49] and [16] may offer shorter update times). What is the bottleneck of our current
JAVADAPTOR implementation is JDI method referringObjects, which JAVADAPTOR uses
during state mapping to identify the callers of an outdated object. The execution times of this method
notably increase the more objects are present in the JVM, even if the number of objects to be updated
remains unchanged. However, high speed updates were not yet in our scope. Therefore, our current
JAVADAPTOR implementation is not optimized for them. But of course, optimizations to the update
speed are subject to new versions of JAVADAPTOR we are working on (we will discuss possible
improvements of JAVADAPTOR and first benchmark results in Section 7).

∗∗http://www.youtube.com/watch?v=jZm0hvlhC-E

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.youtube.com/watch?v=jZm0hvlhC-E
http://www.youtube.com/watch?v=jZm0hvlhC-E

19

6. RELATED WORK AND COMPARISON

In this section we provide an overview of recent work to overcome Java’s limitations regarding
dynamic software updates. For better comparability and because of the broad range of related work
ranging from theoretical to practical solutions, we focus on practice-oriented approaches which,
like JavAdaptor, can be directly applied in real-world scenarios. We group the related work into
three groups based on their main strategies: Customized Java Virtual Machines, Customized Class
Loaders, and Wrappers. For each group we discuss the general mechanism and some representative
approaches.

In addition, we evaluate the quality of JavAdaptor and of the related work based on the
criteria given in Section 1. That is, we analyze an approach’s flexibility, platform dependency,
performance and its influence on the program architecture. We chose the criteria because they let
us describe the differences between the approaches. For instance, considering support for reliable
(immediate) consistent program updates would be irrelevant, because no approach fulfills this
criterion. Furthermore, the criteria align with our goals presented in Section 1. We derived the
criterion flexibility from the fact that static software development allows the developer to change
a program in any way, no matter when and where the changes must be applied. Runtime update
approaches should provide the same flexibility in order to cover all update scenarios. We further
choose platform dependency because platform independence is one of the reasons for the success
of Java, i.e., DSU approaches should not cause dependencies to specific JVM implementations. In
Section 1, we argued that Java’s performance in terms of program execution speed is better than
the performance of dynamic languages, which natively provide flexible runtime updates. Ending
up with an updated Java program whose execution speed is worse than the execution speed of the
same updated program based on a dynamic language might be a good reason to prefer dynamic
languages. Users virtually always prefer a good performing approach over a comparable but worse
performing one (particularly when the program is supposed to be used in production). Finally, we
pick up the program architecture criterion because in software development there is no such thing
like “one architecture fits all scenarios”. As already mentioned in Section 1, different scenarios
require different architectures. Thus, DSU approaches should not restrict the usage of different
architectures. However, different criteria might be of different importance to different stakeholders.
For instance, users might emphasize flexibility whereas administrators might attach great importance
to platform independence. That is, in order to satisfy the stakeholders, a DSU approach must fulfill
all mentioned criteria.

6.1. Customized Java Virtual Machines

As mentioned in Section 3, the JVM disallows the developer to reload a class whose schema has
changed and thus forbids flexible dynamic software updates.

Therefore, researchers suggest virtual machine patches that enable to reload classes with changed
schemas. For instance, Malabarba et al. [29] add dynamic class loaders to their Dynamic Virtual
Machine (DVM) for this purpose. JDrums [40] is a JVM that uses handles to decouple classes and
objects from each other in order to reload classes. The Jvolve VM [43] decouples classes using
meta-objects that can be easily changed to refer to updated classes. In addition to Java HotSwap,
which allows the developer to redefine methods bodies of already loaded classes, Dmitriev [10]
patched the Hotspot JVM in such way that it supports even class schema changes. Unfortunately,
unlike Java HotSwap, this feature never made it into a standard JVM.

Flexibility. All in all, customized Java virtual machines perform well when it comes to flexibility.
They allow unanticipated changes of virtually all parts of a program. Furthermore, they all provide
mechanisms to keep the program state beyond the update. Customized JVMs provide this flexibility
because the update mechanism is implemented within the JVM itself and not at application level
which otherwise would complicate or prevent flexible updates.

Platform Dependency. Even if virtual machine customization seems to be the most natural way
to enhance Java’s runtime update capabilities (because it does not require to operate at application
level to apply the update approach), different problems arise from it. First of all, there is a standard

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

20

which precisely defines the functionality and structure of a JVM [27]. Changing the standard in
order to add dynamic software updates is difficult because it would require to change all existing
JVM implementations. Thus, there are only slight chances that DSU becomes a standard. However,
as long as DSU is not part of the JVM specification it must be added via patches. One problem
with JVM patches is that they base on a specific JVM implementation and might not be applicable
to other JVMs. In addition, each new release of the JVM must be patched again. This might be
difficult (eventually impossible) in case the JVM implementation has largely changed in the new
JVM version. Last but not least, companies rather prefer standard (certified) JVMs over customized
ones to run their applications in productive mode. This is why dynamic software update approaches
are needed that operate on top of different standard virtual machines.

Performance. First of all we point out that it is virtually impossible to exactly measure and
compare the performance of the referred approaches. Some JVMs are not available for download
and those that are available do (partly) support only outdated Java versions (e.g., JDRUMS only
executes programs based on Java version 1.2). Thus, we were not able to benchmark them and
get meaningful benchmark results. Instead, we searched the literature for information regarding the
performance. We found that the four patched JVMs significantly differ in terms of performance (see
[43] and [49]). DVM [29] executes programs in interpreted mode only, which is commonly known
to be slow. JDrums [40] aims at lazy updates and uses transformer functions to migrate the state
from old objects to their updated counterparts which introduces noticeable constant performance
overhead. Jvolve [43] immediately updates applications, i.e., it applies the updates in one step
and thus avoids considerable performance penalties. Würthinger et al. present in [49] a new and
improved version of Dmitriev’s JVM patch [10] that comes without any performance overhead.

Program Architecture. As previously described, JVM customization aims at integrating the
update mechanisms with the JVM which makes changes to the application architecture unnecessary.

6.2. Customized Class Loaders

As mentioned above, the basic idea of JVM patches is to enhance the JVM with capabilities to
reload and thus update classes. In addition to the basic class loaders required to load and run a
program, the class loading capabilities of a program can be extended even at application level by
customized class loaders [25], which is common technique to load updated versions of already
loaded classes or components. For instance, the OSGi Service Platform [1] or Oracles FastSwap
[33] utilize customized class loaders to update components. Javeleon [16] allows to flexibly update
NetBeans based applications and thus uses customized class loaders, too. Zhang and Huang [50]
presented Dynamic Update Transactions (DUT) which also make use of customized class loaders.

Flexibility. Customized class loaders serve the flexibility required to largely update running
programs, i.e., they allow to update virtually all parts of a running program in an unanticipated
way while preserving the program state. This is true for Javeleon [16] and also for Dynamic Update
Transactions (DUT) [50]. In case of the OSGi Service Platform [1] the state of a bundle is lost when
it is refreshed, though.

Platform Dependency. Because customization of class loaders is a standard feature in Java, it
can be applied to all standard Java runtime environments. Javeleon additionally requires NetBeans
components for execution.

Performance. One issue with customized class loaders is that they reduce the application
performance when applied to JVMs older than version 1.6. This is, because old and updated program
parts are loaded by different class loaders which requires poor performing reflection-based version-
barrier crossings. Cazzola [5] found out that even simple reflective method invocations (as required
for crossing the version barrier) slow down method invocations with a factor of up to 6.5 compared
to direct method invocations. More complex version-barrier crossings might cause even higher
performance penalties. However, with Java 1.6 this situation relaxed because the related JVM is
able to optimize reflective calls.

Program Architecture. Generally, the application of customized class loaders largely affects
the application architecture. More precisely, customized class loaders dictate how an application
must be designed and thus disallow alternative (tailor-made) designs. DUT requires methods

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

21

that maintain the updates to be present in each class. Javeleon, FastSwap as well as the OSGi
Service Platform require the applications to run on top of their infrastructure to be refactored into
components (if not already done). This does not only alter the application architecture, it might be
also inefficient because even small changes require to replace whole components.

6.3. Wrappers

Another frequently used approach to provide Java with enhanced runtime update capabilities are
wrappers (also known as decorators [13]). Wrappers aim at wrapping old program parts in order to
update them [39, 37, 45].

To apply the updates introduced by a wrapper, all clients (callers) of the changed program
parts must be updated, too. That is, all references to the original callee must be redirected to the
corresponding wrapper instance that wraps the callee. To update the caller side, Gamma et al. [13]
suggest that wrapper and wrappee extend the same superclass or (even more flexible) implement the
same interface. The application of the wrapping can be either statically predefined before program
start or triggered at runtime using method body redefinitions based on Java HotSwap (as we did
it in [39]). However, the big conceptual drawback compared to JavAdaptor, JVM patches, and
customized class loaders is that wrappers never really update (reload) classes but put them in a
new context from which several limitations (particularly regarding our criteria) arise.

Flexibility. Wrappers do not provide the same flexibility as JavAdaptor, customized JVMs and
customized class loaders do. Lasagne [45] and JAC [37] only allow anticipated runtime program
updates, because the wrappings must be predefined before application start. Nevertheless, wrappers
can be also used in an unanticipated way, as we demonstrated in prior work[39]. The big issue is
that conceptually wrappers cannot remove fields or methods defined in classes they wrap.

Platform Dependency. The wrapper approach is a well-known design pattern [13], which is
fully implemented at application level and thus does not require specific platforms to act. However,
to enlarge its flexibility it must be combined with techniques which allow to (re-)define wrappings
at runtime.

Performance. There is one point with wrappers that cause significant performance penalties:
indirections due to object wrappings. In [15], we measured the performance penalties caused by
long wrapping chains, which raise by up to 50% compared to the same program without wrappers.

Program Architecture. The principle drawback of wrappers is that an application must be
completely refactored in order to prepare it for wrapper-based dynamic software updates. If the
developer aims at avoiding poor performing reflective field accesses, she has to allow read and
write access to all fields of the old program part namely the object to be wrapped. Furthermore, all
classes have to be forced to implement unique interfaces. In addition, all fields have to be of the type
of the interface their classes implement. That is, similar to customized class loaders, the wrapper
approach dictates the design of an application and, thus, restricts user-defined application designs.
In addition, the forced design has serious drawbacks because it violates encapsulation and causes
the self-problem [26]. Another problem with the design of several wrapper approaches is decreased
reliability due to frequent type casts.

6.4. JavAdaptor

So far, all considered approaches have their strengths and weaknesses regarding the given criteria,
i.e., no approach fulfills them all. But, as we described above, their is a need for approaches that
cover all criteria. In the following we compare JavAdaptor with the previously described approaches
and discuss whether JavAdaptor fulfills all criteria or not. An overview of the comparison results
can be found in Table III.

Flexibility. As demonstrated in Section 5, the flexibility of our runtime update approach
JavAdaptor is as good as the flexibility that could be achieved by patched JVMs and customized
class loaders. More precisely, it is on a par with Jvolve, JDrums, DVM, the HotSpot VM patch of
Dmitriev and Würthinger [10, 49], Javeleon, and DUT.

Platform Dependency. When it comes to platform independence, JavAdaptor clearly
outperforms many competitors. Without any JVM patches it runs on top of all standard JVMs that

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

22

DSU Approach Flexibility Platform Independency Performance Architecture Independency

JavAdaptor

JV
M

Jvolve #

HotSpot #

JDrums # #

DVM # #

C
C

L

Javeleon H# #

DUT H# #

FastSwap H# H# #

OSGi # H# #

W
ra

pp
er [39] H# # #

JAC # # #

Lasagne # # #

Table III. Overview comparison.

provide Java HotSwap, which amongst others is a standard feature in the HotSpot VM, the JRockit
VM, and IBM’s JVM. Furthermore, it does not require any library or framework to act.

Performance. Another strength of JavAdaptor is its performance. As our benchmark results in
Section 5 show, container based updates come along without performance penalties and proxy based
updates only cause slight performance drops. JavAdaptor neither requires performance-dropping
JVM patches nor reflection-based version-barrier crossings (which may be slow particularly on
older JVMs) caused by customized class loaders. It also does not depend on a component
framework, such as Javeleon, FastSwap or OSGi, whose execution causes additional performance
overhead. Furthermore, JavAdaptor causes no wrapping chains and thus comes without the related
performance issues.

Program Architecture. Unlike customized JVMs, JavAdaptor requires to add a container field
to each class. However, the container field is transparent to the user and can be easily integrated with
the application to be updated without any changes to the architecture. By contrast, customized class
loaders particularly in conjunction with component frameworks dictate the application design and,
thus, render alternative (tailor-made) application designs impossible. This is also true for wrappers
where the forced application design additionally causes serious drawbacks (for further details see
Section 6.3).

7. ENHANCEMENTS AND OPTIMIZATIONS

In Section 4, we described the basic concepts of our DSU approach and evaluated its practicability
under real-world conditions in Section 5. Even if the results of our evaluation confirm the
practicability and usefulness of JavAdaptor, there is still space for improvements. In this section we
summarize work in progress to improve JAVADAPTOR. We point out that most of the here discussed
improvements are inspired by existing work, such as presented in [11, 23, 16]. However, we do not
simply discuss the related work, but describe how to combine it with the existing JAVADAPTOR
concept.

7.1. Update-Speed Improvements

In Section 5.4 we evaluated the update speed of JAVADAPTOR on the basis of our HyperSQL
and Snake case studies. We found the current JAVADAPTOR implementation acceptable fast
in this regard, but stated that it could be further improved. From what we found out, the
bottleneck of our current JAVADAPTOR implementation is JVMTI method referringObjects,

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

23

which helps us to identify all objects referring to outdated objects. The problem with method
referringObjects is, that it performs a full heap search every time we request the referring
objects of an outdated object, which causes long program update times and thus long time periods
of program unavailability if the program heap is large and/or many requests must be processed.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 TempDisplay() {

6 ...

7 ts = TempSensor();

8 ...

9 }

10
11 displayTemp() {

12 ts.averageTemp();

13 }

14 }

15 TempDisplay {

16 TempSensor ts;

17 IContainer cont;

18 ...

19 TempDisplay() {

20 ...

21 cont = Container();

22 cont.ts = TempSensor_v2();

23 ...

24 }

25
26 displayTemp() {

27 (cont == || cont.upToDate()) {
28 cont = Container.mapState(ts);

29 }
30 cont.ts.currentTemp();

31 }

32 }

33 Container IContainer {

34 TempSensor v2 ts;

35 ...

36 Container mapState

37 (TempSensor old) {
38 Container cont = Container();

39
40 // initialize ts

41 // map state from old -> ts

42
43 cont;

44 }
45 }

DSU

+currentTemp()
TempSensor_v2

+averageTemp()
TempSensor

Figure 12. Lazy state mapping.

An appropriate solution to the described problem are lazy state mappings as Kim [23] and
Gregersen [16] use them in their DSU approaches. Different from our current implementation,
in which we map the state and update the referring program parts in one atomic step, lazy state
mappings operate on a per access basis. That is, the state transfer between the outdated and up-to-
date object and the update of the referring program parts is carried out from within the program if
and only if an outdated object is accessed.

Figure 12 exemplifies how lazy state mappings work and how we are going to integrate them
into JAVADAPTOR. In order to dynamically change our small weather station program such that
it computes and displays current instead of the average temperatures, JAVADAPTOR updates the
running program as follows. It processes all update steps we described in Section 4, but applies
additional code to the program, which carries out the state mapping and updates the referring
program parts without the need of method referringObjects. More precisely, JAVADAPTOR
modifies the program code in such way that before each access to a potentially outdated object,
it will be checked, whether the object must be updated or not. In the example depicted in Figure
12, this applies to all references to field ts, which we must update using our container approach
because we replaced class TempSensor with class version TempSensor v2 in order to add
new method currentTemp. Concretely, before we access the up-to-date object (here of class
TempSensor v2) stored in the container, we check whether the container object already exists
and is up-to-date or not (see Figure 12, Line 27). In the latter case, a mapping method (in our
example method mapState) of the container class will be called (Figure 12, Line 28). This method
maps the state from outdated object (here of type TempSensor) to the up-to-date object (i.e., of
type TempSensor v2), applies the newly created object to a container instance, and returns the

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

24

container instance (see Figure 12, Lines 36 – 44). After the state mapping, the newly created object
can be accessed as usual, i.e., via the container instance (see Line 30).

NO OBJECT 100X 1000X 10000X 100000X

NO UPDATE
ACCESS TIME

680 861 878 895 916
1407 1518 1540 1809 5346

0

1500

3000

4500

6000

0 671 6710 67100 671000

5346

1809154015181407
916895878861680

DIAGRAMM 20

Ti
m

e
A

pp
lic

at
io

n
Pa

us
ed

 (i
n

m
s)

Number of Data Objects

Lazy State Mapping Busy State Mapping

Figure 13. Update speed HyperSQL: lazy vs. busy state mapping.

After we described how we could provide our tool with lazy state mappings, let us present some
update-speed numbers confirming that lazily mapping the state and thus avoiding to use method
referringObjects could significantly improve the update speed of JAVADAPTOR. In Section
5.4 we measured the update times of JAVADAPTOR regarding our HyperSQL case study with
zero, hundreds, thousands, ten thousands, and hundred thousands of data objects. The numbers
ranged from 1407 to 5346 milliseconds. With a JAVADAPTOR prototype which provides lazy state
mappings as we sketched them in Figure 12, we were able to significantly reduce the update-
speed times. Figure 13 contrasts the old update-speed times with the new ones based on lazy state
mappings. What can be seen is, that the update-speed numbers remain somewhat comparable as
long as only few objects are on the heap of the JVM. But, in case of many objects on the heap
(here hundred thousands of data objects), JAVADAPTOR based on lazy state mappings clearly
outperforms our current (i.e., busy) state mapping implementation, i.e, the prototype requires to
pause the application only 916 milliseconds, whereas current JAVADAPTOR causes an application
pause time of 5346 milliseconds.

1 10 100 1000 10000 100000

LAZY STATE
MAPPING

BUSY STATE
MAPPING

17 16 18 18 15 15

377 441 1369 10169 214072 18595330

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000

18595330

214072

10169

1369
441377

151518181617

Ti
m

e
A

pp
lic

at
io

n
Pa

us
ed

 (i
n

m
s)

Number of Objects scheduled for an Update

Lazy State Mapping Busy State Mapping

Figure 14. Update speed in correspondence to the number of objects to be updated: lazy vs. busy state
mapping.

The numbers presented in Figure 14 further underpin the benefit of lazy state mappings. Different
from our HyperSQL case study, where the number of objects to be updated remained unchanged
with each benchmark configuration, the here presented results outline how the application pause
times develop depending on the number of objects scheduled for an update. As shown in Figure 14,
the application pause times caused by our current JAVADAPTOR implementation further increase
dependent on the number of objects to be updated, which is because with each object update

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

25

JAVADAPTOR must call method referringObjects. By contrast, the application pause times
of our JAVADAPTOR prototype based on lazy state mappings are significantly shorter and moreover,
remain virtually unchanged regardless of the number of objects that require an update.

Because the tests with our prototype show significant update-speed improvements, we are
currently working to complete the integration of lazy state mappings into JAVADAPTOR. What is
still missing, is support for lazy state mappings within the Java system classes. Nevertheless, we are
optimistic to provide a fully working JAVADAPTOR version with lazy state mappings soon.

7.2. Solutions Towards Consistent Program Updates

The HyperSQL as well as the Snake case study show that JAVADAPTOR could update
programs without compromising their correctness, i.e., the programs consistency. This is, because
JAVADAPTOR already includes mechanisms aiming at consistent program updates. For instance,
JAVADAPTOR permits updates only if the program sources compile without errors. Another example
is, that JAVADAPTOR pauses the application during the update in order to ensure that all changed
program parts are present within the JVM. However, similar to other DSU approaches, the current
JAVADAPTOR implementation does not ensure program consistency at all beyond the update.
Therefore, we discuss how to improve our tool in this regard.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() InterruptedException {

6 (ts) {

7 ts.wait();

8 ts.requestTemp();

9 ...

10 }

11 }

12
13 measureTemp() {

14 (ts){

15 ts.averageTemp();

16 ts.notify();

17 }

18 }

19 }

20 TempDisplay {

21 TempSensor ts;

22 IContainer cont;

23 ...

24 displayTemp() InterruptedException {
25 (ts) {
26 ts.wait();

27 ts.requestTemp();

28 ...

29 }
30 }
31
32 measureTemp() {

33 (cont.ts){

34 cont.ts.currentTemp();

35 cont.ts.notify();

36 }

37 }

38 }

39 Container IContainer {

40 TempSensor v2 ts;

41 ...

42 }

+ currentTemp()
+requestTemp()
TempSensor_v2

+averageTemp()
+requestTemp()

TempSensor

 Deadlock

DSU

Figure 15. Deadlocks because of dynamic software updates.

7.2.1. Thread-safe Updates. One issue, we plan to tackle with future JAVADAPTOR versions is
the lack of support for thread-safe updates of multi-threaded applications. Currently, updates of
multi-threaded applications may cause deadlocks and thus inconsistencies under certain conditions.
Such a scenario is depicted in Figure 15. In the example, two different threads alternately
access TempSensor ts of class TempDisplay of our small weather station. The first thread
periodically instructs ts to measure the temperature (by calling method measureTemp) whereas
the second thread is responsible for displaying the measured temperature (by calling method
displayTemp). Because measuring and displaying the temperature at the same time would cause

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

26

unexpected program behavior, access to TempSensor ts must be synchronized (see Figure 15
Lines 6 – 10 and Lines 14 – 17).

What could happen when JAVADAPTOR updates a multi-threaded application such as shown in
Figure 15 (note that for clarity reasons the lazy state mapping related code is hidden) is, that for
some methods the necessary method body redefinitions already took effect, while other methods
remain unaffected, which is due to the principles of Java HotSwap (remember that method body
redefinitions would not affect methods active on the stack at the moment of redefinition). In
our example (see right side of Figure 15), method measureTemp (Lines 32 – 37) is already
redefined and thus refers to an object of up-to-date class version TempSensor v2, whereas
method displayTemp (Lines 24 – 30) is still active on the stack with the old method body
referring to outdated TempSensor ts. What appears to be the problem here is that method
notify (Figure 15, Line 35) would not activate the thread executing method displayTemp
because method notify is executed on a different object. In other words, we have a deadlock.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() InterruptedException {

6 (ts.syncObj){

7 ts.syncObj.wait();

8 ts.requestTemp();

9 ...

10 }

11 }

12
13 measureTemp() {

14 (ts.syncObj){

15 ts.averageTemp();

16 ts.syncObj.notify();

17 }

18 }

19 }

20 TempDisplay {

21 TempSensor ts;

22 IContainer cont;

23 ...

24 displayTemp() InterruptedException {
25 (ts.syncObj) {
26 ts.syncObj.wait();

27 ts.requestTemp();

28 ...

29 }
30 }
31
32 measureTemp() {

33 (cont.ts.syncObj){

34 cont.ts.currentTemp();

35 cont.ts.syncObj.notify();

36 }

37 }

38 }

39 Container IContainer {

40 TempSensor v2 ts;

41 ...

42 }

 No Deadlock

+averageTemp()
+requestTemp
+syncObj

TempSensor

+currentTemp()
+requestTemp
+syncObj
TempSensor_v2

DSU

Figure 16. Deadlock prevention through shared synchronization objects.

To prevent deadlocks in multi-threaded applications such as sketched above, Gregersen proposes
the usage of special synchronization objects which could be shared beyond different class
versions [16]. Figure 16 shows how those synchronization objects could be applied to JAVADAPTOR.
Here class TempSensor gets an additional field syncObj of type Object, which, instead of the
TempSensor object itself, is used for synchronization (see Figure 16, Lines 6 and 14). If the
application must be updated and again the necessary method body redefinitions take effect for one
method (in our example for method measureTemp, see Figure 16, Lines 32 – 37) but not for the
other (i.e., method displayTemp, Figure 16, Lines 24 – 30), no deadlock occurs. This is, because
the outdated object (here of type TempSensor) and its up-to-date counterpart (in our example an
object of type TempSensor v2) share the same synchronization object (i.e., object syncObj).

7.2.2. State-Loss Prevention. Another shortcoming of our current JAVADAPTOR implementation
is, that it may cause program inconsistencies because of state losses. To illustrate the problem, we
use a slightly different version of our small weather station program to be updated at runtime (see

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

27

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 ts.tempUnit = "Celsius";

8 ...

9 }

10 }

11
12 measureTemp() {

13
14
15
16 ts.averageTemp();

17 }

18 }

19 TempDisplay {

20 TempSensor ts;

21 IContainer cont;

22 ...

23 displayTemp() {
24 () {
25 ts.tempUnit = "Celsius";

26 ...

27 }
28 }
29
30 measureTemp() {

31 (cont == || cont.upToDate()) {
32 cont = Container.mapState(ts));

33 }
34 cont.ts.currentTemp();

35 }

36 }

37 Container IContainer {

38 TempSensor v2 ts;

39 ...

40 }

DSU

+averageTemp()
+tempUnit
TempSensor

+currentTemp()
+tempUnit
TempSensor_v2

Figure 17. State losses because of dynamic software updates.

Figure 17). Here, we again have the situation that for one method (i.e., method measureTemp)
the necessary method body redefinition through Java HotSwap took effect, while the other method
(in our example method displayTemp) is still active on the stack with the old method body. Now
it could be the case, that the outdated method remains active on the stack while the state of the
referred outdated object (in our case the TempSensor object referred by ts) is already mapped
to an object of the new class version (here of type TempSensor v2), because another thread
executed the redefined method including the state mapping related code (see Figure 17, method
measureTemp, Lines 31 – 33). The problem is, that the still active outdated method may change
the state of the outdated referred object (such as sketched in Line 25 of Figure 17) and because the
state transfer already happened, those state changes would be lost on the new object.

What solves the problem depicted in Figure 17 is, to intercept the access to an outdated object and
to redirect this access to the corresponding up-to-date object. The challenge is, that the interception
and redirection of direct object accesses (such as depicted in Line 25 of Figure 17) is not possible,
because of the missing indirection between caller and callee required to hook into the access path.
The solution for this problem is delivered by Fowler [11] who argues that, compared to direct
accesses, getter and setter methods allow us to flexibly manage accesses to objects.

Figure 18 shows how we plan to use getter and setter methods to prevent state losses because
of redefinitions of active methods. Here, again method displayTemp scheduled for redefinition
is active on the stack (see Lines 43 – 48 of Figure 18), while the redefinition of method
measureTemp already took effect (Lines 50 – 56). Only difference to the example depicted in
Figure 17 is, that we now access all objects, especially the outdated object of type TempSensor
referenced by field ts, via getter and setter methods (e.g., see Line 45 of Figure 18). To redirect
object accesses from within outdated active methods to the up-to-date object, we redefine all
methods of old class versions (in our example method setTempUnit of old class version
TempSensor, Line 45) referenced by the outdated method as follows (see Lines 75 – 81, Figure
18). First of all, we check whether the state mapping already took place (Line 76), e.g., because of
the execution of an up-to-date method (such as in our example method measureTemp, see Lines
51 – 54). In case the state mapping is pending, we process the state mapping (Line 77). Next, we

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

28

39 TempDisplay {

40 TempSensor ts;

41 IContainer cont;

42 ...

43 displayTemp() {
44 () {
45 getTS().setTempUnit("Celsius");

46 ...

47 }
48 }
49
50 measureTemp() {

51 (getCont() == || getCont().upToDate()) {
52 setCont(Container.mapState(getTS()));

53 getTS().setNewTS(getCont().getTS());

54 }
55 getCont().getTS().currentTemp();

56 }

57
58
59 TempSensor getTS() {

60 ts;

61 }

62 ...

63 }

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 getTS().setTempUnit("Celsius");

8 ...

9 }

10 }

11
12 measureTemp() {

13
14
15
16
17 getTS().averageTemp();

18 }

19
20
21 TempSensor getTS() {

22 ts;

23 }

24 ...

25 }

DSU

64 Container IContainer {

65 TempSensor v2 ts;

66 ...

67
68 ...

69 }

70 TempSensor {

71 String tempUnit;

72 Object newTS;

73 ...

74
75 setTempUnit(String unit) {

76 (newTS == || newTS.upToDate()) {
77 //map state from -> up-to-date object

78 //assign up-to-date object to

79 }
80 ((TempSensor v2) newTS).setTempUnit(unit);

81 }

82 ...

83 }

26 TempSensor {

27 String tempUnit;

28 Object newTS;

29 ...

30
31 setTempUnit(String unit) {

32
33
34
35 tempUnit = unit;

36 }

37 ...

38 }

84 TempSensor_v2 {

85 ...

86
87 setTempUnit(String unit) {

88 tempUnit = unit;

89 }

90 ...

91 }

DSU

2

1

Figure 18. State-loss prevention.

couple the outdated and the up-to-date object by assigning the up-to-date object to a field of the
outdated object (Line 78). Note that the field refers to the same object as the applied container,
which ensures that outdated active method as well as up-to-date method access the same object.
Finally, we forward the method call to the method of the up-to-date object (Line 80). After this
is done, every access to a field of an outdated object from within an active outdated method (e.g.,
see Access 1, Figure 18) will be redirected to the corresponding up-to-date object (such as through
Access 2 shown in Figure 18) and no state will be lost.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

29

7.2.3. Handling of Binary-Incompatible Updates. So far, we discussed how getter and setter
methods in conjunction with redefinitions of methods of outdated class version can help us to
prevent state losses because of active methods scheduled for redefinition. But, getters, setters, and
redefinitions of old methods could do a lot more for us. Coming back to our motivating example,
where we are going to remove method averageTemp by method currentTemp and therefore
have to replace class TempSensor and update calling class TempDisplay, conflicts such as
depicted in Figure 19 can occur. As in the previous examples, method displayTemp to be
redefined is active on the stack with the old method body. What is the problem here is, that the
method continues to call method averageTemp even if this method is removed in new class
version TempSensor v2, which is referred to as a binary-incompatible update [14].

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 ts.averageTemp();

8 ...

9 }

10 }

11 }

12 TempDisplay {

13 TempSensor ts;

14 IContainer cont;

15 ...

16 displayTemp() {
17 () {
18 ts.averageTemp();

19 ...

20 }
21 }
22 }

35 Container IContainer {

36 TempSensor_v2 ts;

37 ...

38 }

DSU

+averageTemp()
TempSensor

+currentTemp()
TempSensor_v2

Figure 19. Binary-incompatible updates.

Currently, we allow caller related methods such as method displayTemp to refer to removed
methods, fields, or super types, which is no big deal as long as those accesses are read only and
thus do not result in program state changes. However, read only accesses may be the exception
and methods such as removed method averageTemp may alter the program state, which
possibly results in wrong program behavior (e.g., method averageTemp could overwrite the
temperature computed by up-to-date method currentTemp with average temperatures). To avoid
inconsistencies because of binary-incompatible updates, we must somehow invalidate accesses to
removed methods, fields, and super types.

Figure 20 shows how we intend to invalidate accesses to the removed elements. Just like for state-
loss prevention purposes, we redefine the methods within the old class versions. What is different
is that we do not add state mapping code and forward the calls to the up-to-date class version. We
simply remove the original method bodies and corresponding to whether the removed element is a
field or a method, throw NoSuchMethodError (such as in our example depicted in Figure 20,
Line 57) or NoSuchFieldError, which does not cause unwanted program state changes and
thus has no influence on the program’s consistency.

7.2.4. Reflection Support. We do not only focus on improved update speeds, thread-safe updates,
state-loss prevention, and the handling of binary-incompatible updates. Additionally, we are
working on solutions to overcome several problems the different versions of a class present in the
JVM may cause. The main issue to overcome is the limited support of our current JAVADAPTOR
implementation for reflective calls of reloaded (updated) classes. Under certain conditions those
calls may address old versions of a reloaded class and not the latest class version, which may result
in wrong program behavior. This would be for instance the case when the class object of the class

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

30

29 TempDisplay {

30 TempSensor ts;

31 IContainer cont;

32 ...

33 displayTemp() {
34 () {
35 getTS().averageTemp();

36 ...

37 }
38 }
39
40
41 TempSensor getTS() {

42 ts;

43 }

44 ...

45 }

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 getTS().averageTemp();

8 ...

9 }

10 }

11
12
13 TempSensor getTS() {

14 ts;

15 }

16 ...

17 }

DSU

46 Container IContainer {

47 TempSensor_v2 ts;

48 ...

49
50 ...

51 }

52 TempSensor {

53 String tempUnit;

54 Object newTS;

55 ...

56 averageTemp() {

57 NoSuchMethodError("Method Removed");

58 }

59
60
61 ...

62 }

18 TempSensor {

19 String tempUnit;

20 Object newTS;

21 ...

22 averageTemp() {

23
24 }

25
26
27 ...

28 }

DSU

1

Figure 20. Support for binary-incompatible updates.

to be reloaded was cached before the update. Each reflective call based on this cached class object
would access the old class version.

With our solutions for state-loss prevention and binary-incompatible updates, which basically
forward all requests (including the reflective ones) to the most recent version of a class/instance,
we already cover many different kinds of reflective requests. What the approaches not yet fully
cover are string-based reflective calls in combination with type checks (e.g., via instanceof).
Those calls could be supported with two different strategies. First, we could modify the Reflection
API in such way that it redirects even string-based reflective calls to the most recent class version.
Second, we could parse the .class files for occurrences of string-based reflective calls and change
the strings representing a class name to the up-to-date class name. However, further investigations
are necessary to find an optimal solution for the described problem.

7.3. Long-term Objectives

So far we discussed solutions for issues already solved by other DSU approaches such as Kim’s
proxy based DSU approach [23] and Javeleon [16]. What remains an open question to the
whole research community is, how to reliably (immediately) apply updates and fully ensure
program consistency beyond the updates. Gupta et al. state in [18] that the consistency problem
is undecidable. Nevertheless, a lot of related work exists facing the problem (see [47, 24, 42, 20,
30, 2, 22, 28, 49]). But, to our best knowledge, some approaches provide approximated solutions
only, whereas others are not applicable in real-world scenarios (e.g., due to the lack of tool support,
etc.) or may reject the scheduled update. That is, our big goal with JAVADAPTOR is to provide

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

31

an update mechanism which fully ensures program consistency, is useful in practice, and reliably
applies updates.

7.4. Discussion

When looking at the enhancements we are going to integrate into JAVADAPTOR, one may wonder
if those enhancements would compromise one of the contributions of JAVADAPTOR claimed in this
paper, e.g., its performance. Particularly, the system-wide usage of getter and setter methods (note
that the getters and setters have to be created for all class and instance fields of all classes including
the system classes of Java) would probably cause significant performance penalties. But, contrary to
expectations, first benchmark results show that this is virtually not the case, which is because of the
excellent optimization capabilities of the JVM and its just-in-time compiler (we found that the JVM
is able to optimize getter-and-setter-based field accesses to such an extent, that they are as fast as
direct field accesses). In addition, other DSU approaches such as Kim’s proxy based DSU approach
[23] and Javeleon [16], which base on lazy state mappings and use system-wide getter and setter
methods for similar purposes as we will do, show that those kinds of enhancements must not cause
significant performance drops. For instance Gregersen estimates in [17] the performance overhead
of Javeleon at moderate 15 %.

All in all, we are optimistic to provide a stable version of JAVADAPTOR with fast and thread-safe
updates, improved state-loss prevention, optimized handling of binary-incompatible updates, and
better support for reflective calls, soon. As already mentioned, preliminary results of experiments
with JAVADAPTOR prototypes suggest that the planned enhancements must not heavily compromise
the performance of the updated program. Another fact that makes us confident to fit JAVADAPTOR
with high quality solutions for the mentioned issues is, that we can (to some extent) build on
solutions of related DSU approaches (such as presented in [23] and [16]) facing similar problems.

8. CONCLUSION

Dynamic software updates are a often requested approach to update applications while improving
the user experience and avoiding down times. Furthermore, DSU supports the software developers
because they do not need to restart their applications to test the changed program parts.

However, different from dynamic languages, native DSU support for Java is severely limited.
Thus, approaches are needed that overcome Java’s limitations regarding dynamic software updates.
In Section 1 and 6, we argue that a DSU approach should provide flexible runtime program updates
without serious performance drops. Additionally, it should be platform independent and should
not dictate the program architecture. With JAVADAPTOR, we overcome Java’s limited runtime
update support and add the runtime update capabilities known from dynamic languages to Java.
Furthermore, JAVADAPTOR is (to our best knowledge) the first approach that fulfills all proposed
quality criteria: it is flexible, runs on every major (unmodified) JVM, performs well, and does
not dictate the architecture of the program. Conceptually, it combines schema changing class
replacements with class renaming and caller updates based on Java HotSwap with the help of
containers and proxies.

With different non-trivial case studies, we have demonstrated that JAVADAPTOR fits runtime
updates of real-world applications executed under real-world conditions. Nevertheless, there is
still space for improvements. Currently we are working on the integration of the improvements
to JAVADAPTOR described in Section 7, which tackle some issues of the current JAVADAPTOR
implementation. However, in the long run, we will focus on the development of solutions to be
integrated into JAVADAPTOR that fully ensure the program consistency in the presence of immediate
runtime updates, which is still not possible with any existing DSU approach applicable in practice.

ACKNOWLEDGEMENT

We would like to thank Shigeru Chiba for providing the invaluable bytecode modification tool Javassist.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

32

Furthermore, we thank Janet Feigenspan for calculating the statistical significance of our benchmark results.
Mario Pukall’s work is part of the RAMSES project†† which is funded by DFG (Project SA 465/31-2).
Kästner’s work is supported in part by the European Union (ERC grant ScalPL #203099).

REFERENCES

1. The OSGi Alliance. OSGi Service Platform Core Specification, December 2011. http://www.osgi.org/
Download/File?url=/download/r4v42/r4.core.pdf.

2. R. Bazzi, A., K. Makris, P. Nayeri, and J. Shen. Dynamic Software Updates: the State Mapping Problem. In
Proceedings of the International Workshop on Hot Topics in Software Upgrades, pages 7:1–7:2. ACM, 2009.

3. J. Bonér. What are the key issues for commercial AOP use: how does AspectWerkz address them? In Proceedings
of the International Conference on Aspect-Oriented Software Development, pages 1–2, 2004.

4. G. Bracha. Objects as Software Services, 2005. Invited talk at the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications.

5. W. Cazzola. SmartReflection: Efficient Introspection in Java. Journal of Object Technology, 3(11):117–132, 2004.
6. S. Chiba. Load-Time Structural Reflection in Java. In Proceedings of the European Conference on Object-Oriented

Programming, pages 313–336. Springer, 2000.
7. S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode Translators. In Proceedings of

the International Conference on Generative Programming and Component Engineering, pages 364 – 376. Springer,
2003.

8. Markus Dahm. Byte Code Engineering. In Java-Informations-Tage, pages 1 – 11. Springer-Verlag, 1999.
9. D. Dig and R. Johnson. How do APIs Evolve? A Story of Refactoring. Journal of Software Maintenance and

Evolution: Research and Practice, 18:83–107, 2006.
10. M. Dmitriev. Safe Class and Data Evolution in Large and Long-Lived Java Applications. PhD thesis, University

of Glasgow, 2001.
11. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 2006.
12. B. Fulgham and I. Gouy. The Computer Language Benchmarks Game, December 2011. http://shootout.

alioth.debian.org/.
13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstraction and Reuse of Object-Oriented

Design. Addison-Wesley, 2004.
14. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd Edition). Addison-Wesley,

2005.
15. S. Götz and M. Pukall. On Performance of Delegation in Java. In Proceedings of the International Workshop on

Hot Topics in Software Upgrades, pages 1–6. ACM, 2009.
16. A. R. Gregersen. Extending Netbeans with Dynamic Update of Active Modules. PhD thesis, University of Southern

Denmark, 2010.
17. A. R. Gregersen and B. N. Jørgensen. Run-time Phenomena in Dynamic Software Updating: Causes and Effects.

In Proceedings of the Workshop on Principles of Software Evolution and ERCIM Workshop on Software Evolution,
pages 6–15. ACM, 2011.

18. D. Gupta, P. Jalote, and G. Barua. A Formal Framework for On-line Software Version Change. IEEE Transactions
on Software Engineering, 22(2):120–131, 1996.

19. Michael Haupt. Virtual Machine Support for Aspect-Oriented Programming Languages. PhD thesis, Software
Technology Group, Darmstadt University of Technology, 2006.

20. M. Hicks and S. Nettles. Dynamic Software Updating. ACM Transactions on Programming Languages and
Systems, 27(6):1049–1096, 2005.

21. J. Kabanov. JRebel Tool Demo. In Proceedings of the Workshop on Bytecode Semantics, pages 1–6, 2010.
22. F. Karablieh and R. A. Bazzi. Heterogeneous Checkpointing for Multithreaded Applications. In Proceedings of

the Symposium on Reliable Distributed Systems, pages 140–149. IEEE, 2002.
23. D. K. Kim. Applying Dynamic Software Updates to Computationally-Intensive Applications. PhD thesis, Virginia

Polytechnic Institute and State University, 2009.
24. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change Management. IEEE Transactions

on Software Engineering, 16(11):1293 –1306, 1990.
25. S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine. In Proceedings of the Conference

on Object-Oriented Programming, Systems, Languages, and Applications, pages 36 – 44. ACM, 1998.
26. H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object-Oriented Systems. In

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
214–223. ACM, 1986.

27. T. Lindholm and F. Yellin. The Java Virtual Machine Specification – Second Edition. Prentice Hall, 1999.
28. K. Makris. Whole-Program Dynamic Software Updating. PhD thesis, Arizona State University, 2009.
29. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime Support for Type-safe dynamic Java Classes.

In Proceedings of the European Conference on Object-Oriented Programming, pages 337 – 361. Springer, 2000.
30. Y. Murarka, U. Bellur, and R. K. Joshi. Safety Analysis for Dynamic Update of Object Oriented Programs. In

Proceedings of the Asia Pacific Software Engineering Conference, pages 225–232. IEEE, 2006.
31. A. Nicoara, G. Alonso, and T. Roscoe. Controlled, Systematic, and Efficient Code Replacement for Running Java

Programs. In Proceedings of the EuroSys Conference, pages 233–246, 2008.

††http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ramses/index.htm

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.osgi.org/Download/File?url=/download/r4v42/r4.core.pdf
http://www.osgi.org/Download/File?url=/download/r4v42/r4.core.pdf
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ramses/index.htm

33

32. W. F. Opdyke and R. E. Johnson. Refactoring: An Aid in Designing Application Frameworks and Evolving Object-
Oriented Systems. In Proceedings of the Symposium on Object-Oriented Programming Emphasizing Practical
Applications, pages 145 – 161. ACM, 1990.

33. Oracle. BEA WebLogic Server Using FastSwap to Minimize Redeployment, December 2011. http:
//download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.
pdf.

34. Oracle. Java Platform Debugger Architecture, December 2011. http://download.oracle.com/javase/
6/docs/technotes/guides/jpda/.

35. Oracle. Java Virtual Machine Tool Interface Version 1.2, December 2011. http://download.oracle.com/
javase/6/docs/platform/jvmti/jvmti.html.

36. A. Orso, A. Rao, and M. Harrold. A Technique for Dynamic Updating of Java Software. In Proceedings of the
International Conference on Software Maintenance, pages 649–658. IEEE, 2002.

37. R. Pawlak, L. Duchien, G. Florin, and L. Seinturier. Dynamic Wrappers: Handling the Composition Issue with
JAC. In Proceedings of the Conference on Technology of Object-Oriented Languages and Systems, pages 56–65.
IEEE, 2001.

38. M. Pukall, A. Grebhahn, R. Schröter, C. Kästner, W. Cazzola, and S. Götz. JavAdaptor: Unrestricted Dynamic
Software Updates for Java. In Proceedings of the International Conference on Software Engineering, pages 989–
991. ACM, 2011.

39. M. Pukall, C. Kästner, and G. Saake. Towards Unanticipated Runtime Adaptation of Java Applications. In
Proceedings of the Asia-Pacific Software Engineering Conference, pages 85–92. IEEE, 2008.

40. T. Ritzau and J. Andersson. Dynamic Deployment of Java Applications. In Proceedings of Java for Embedded
Systems Workshop, pages 1–9, 2000.

41. Y. Sato, S. f, and M. Tatsubori. A Selective, Just-in-Time Aspect Weaver. In Proceedings of the International
Conference on Generative Programming and Component Engineering, pages 189 – 208, 2003.

42. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis: Safe and Flexible Dynamic Software
Updating. In Proceedings of the ACM Conference on Principles of Programming Languages, pages 183–194. ACM,
2005.

43. S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic Software Updates: A VM-Centric Approach. In
Proceedings of the Conference on Programming Language Design and Implementation, pages 1–12. ACM, 2009.

44. Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral reflection: spatial and temporal
selection of reification. In Proceedings of the Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 27–46, 2003.

45. E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Nørregaard Jørgensen. Dynamic and Selective
Combination of Extensions in Component-Based Applications. In Proceedings of the International Conference
on Software Engineering, pages 233–242. IEEE, 2001.

46. W. Vanderperren and D. Suvee. Optimizing JAsCo dynamic AOP through HotSwap and Jutta. In Proceedings of
the AOSD Workshop on Dynamic Aspects, pages 120–134, 2004.

47. Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Tranquility: A Low Disruptive Alternative to Quiescence
for Ensuring Safe Dynamic Updates. IEEE Transactions on Software Engineering, 33(12):856 –868, 2007.

48. B. Venners. Inside the Java 2 Virtual Machine. Computing McGraw-Hill., 2000.
49. T. Würthinger. Dynamic Code Evolution for Java. PhD thesis, Johannes Kepler University Linz, 2011.
50. S. Zhang and L. Huang. Type-Safe Dynamic Update Transaction. In Proceedings of the Computer Software and

Applications Conference, pages 335–340. IEEE, 2007.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

http://download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.pdf
http://download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.pdf
http://download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.pdf
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html

	1 Introduction
	2 Motivating Example
	3 The Java Virtual Machine
	4 Dynamic Software Updates via JavAdaptor
	4.1 Tool Description and Demonstration
	4.2 Class Reloading
	4.3 Caller-Side Updates
	4.3.1 Caller Detection.
	4.3.2 Callee Class Instantiation.
	4.3.3 Callee-Side State Mapping.
	4.3.4 Reference Updates.
	4.3.5 Concurrent Updates of Multiple Classes.

	5 Evaluation
	5.1 HyperSQL
	5.2 Refactorings
	5.3 Performance
	5.4 Update Speed

	6 Related Work and Comparison
	6.1 Customized Java Virtual Machines
	6.2 Customized Class Loaders
	6.3 Wrappers
	6.4 JavAdaptor

	7 Enhancements and Optimizations
	7.1 Update-Speed Improvements
	7.2 Solutions Towards Consistent Program Updates
	7.2.1 Thread-safe Updates.
	7.2.2 State-Loss Prevention.
	7.2.3 Handling of Binary-Incompatible Updates.
	7.2.4 Reflection Support.

	7.3 Long-term Objectives
	7.4 Discussion

	8 Conclusion

