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Abstract
In highly configurable systems, features may interact un-
expectedly and produce faulty behavior. Those faults are
not easily identified from the analysis of each feature sepa-
rately, especially when feature specifications are missing. We
propose VarXplorer, a dynamic and iterative approach to de-
tect suspicious interactions. It provides information on how
features impact the control and data flow of the program.
VarXplorer supports developers with a graph that visualizes
this information, mainly showing suppress and require re-
lations between features. To evaluate whether VarXplorer
helps improve the performance of identifying suspicious in-
teractions, we perform a controlled study with 24 subjects.
We find that with our proposed feature-interaction graphs,
participants are able to identify suspicious interactions more
than 3 times faster compared to the state-of-the-art tool.

CCS Concepts • Software and its engineering → Fea-
ture interaction; Reusability; •General and reference→
Experimentation;
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1 Introduction
A feature describes a unit of functionality of a software sys-
tem that satisfies a requirement [2]. Highly configurable
systems can be composed by selecting features from a set
of thousands of features (aka. configuration options) [39, 51].
For example, the Linux kernel has more than 15,000 con-
figurable options [30, 42]. This large set of options may be
combined in different ways, and developers must guarantee
that all valid combinations work properly. The interaction
among features is a common problem in highly configurable
systems, which may result in unexpected behavior that is not
easily deduced from the analysis of each feature separately
[3, 45]. A system may behave as expected most of the time,
but it may present unexpected and problematic interactions
only under specific feature combinations.

Determining the influence of feature interactions on a sys-
tem’s behavior is challenging. Anticipating and specifying all
likely consequences of each potential feature interactionmay
not be possible, mainly due to the fact that (i) the number of
configurations and feature interactions grows exponentially
in relation to the number of features [19]; (ii) the behavior
of some interactions may be unknown and unpredictable
in advance [3]; and (iii) human effort is required, but peo-
ple usually do not like writing specifications. To address
these challenges, recent analyses focus on detecting feature
interaction bugs from global specifications. Those are spec-
ifications that all configurations of a configurable system
need to fulfill, such as requiring the system to not crash [49].
Usually, these approaches check global specifications based
on systematic sampling [25, 27, 46], combinatorial interac-
tion testing [18, 31, 38], model checking [5, 15, 17, 28, 50], or
variational execution [9, 26, 33, 36, 52].

However, the problem is that features may interact in
many ways, for example by triggering events that enable
other features, having control over the same variables, and
enforcing conditions that suppress other features [8]. Addi-
tionally, although some faults lead directly to crashes (e.g.,
conflicting function names [36]), others may cause more
subtle problems. For instance, in the simplified WordPress
example of Listing 1, the options weather and smiley interact
in an unintended way, although they do not crash the system.
When they are used together in the same system, the temper-
ature is not shown and the system presents an unexpected
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output: instead of replacing the "[:weather:]" tag with the cur-
rent temperature (e.g., 70°F), it is rewritten to "[:weather,".

Since specifications at the feature level are usually missing,
the above mentioned approaches may not detect all incorrect
system behavior, especially bugs not covered by global speci-
fications and bugs that do not result in a crash or other easily
observable behavior. Instead of upfront specifications, we
propose to inspect feature interactions as they are detected
and incrementally classify them as intended or problematic.
We present feature-interaction graphs to facilitate the iden-
tification of unintended interactions. A feature-interaction
graph is a concise visualization that shows all pairwise in-
teractions observed in an execution, presenting the relation-
ships that a pair of features may hold. Hence, we provide an
inspection process that helps developers to distinguish in-
tended interactions from interactions that may lead to bugs.

To detect feature interactions in a test execution (without
knowing whether they are benign), we use the variational in-
terpreter VarexJ [33, 36]. It performs variational execution to
simultaneously execute all system configurations equivalent
to aligning the traces of executing all configurations sepa-
rately. An interaction is represented as a control-flow or state
difference in the system that depends on two or more options.

Towards the identification of problematic interactions, we
recently proposed VarXplorer [44], an iterative and inter-
active analysis that inspects feature interactions from the
variational execution generated by VarexJ. Figure 1 shows
an overview of the approach: given a configurable system
and a set of test cases, it detects interactions and provides an
incremental analysis of the relationship among features, il-
lustrated through a feature-interaction graph. Relationships
provide details on how features interact to support devel-
opers in identifying unintended interactions. In addition to
feature interaction relationships, the graph shows additional
indicators, such as the suppression of one feature by another,
that are identified through analyzing control and data flow
interactions. The feature-interaction graph is presented to
developers for manual inspection where they can use the
presented information to determine, and specify, intended
versus forbidden interactions. The graph is then refined as
more test cases are run, while also taking into account the
documented interaction specifications. Unlike global and
feature-based specifications, interaction specifications do
not specify the behavior of the system or feature. Instead,
they help developers focus only on potential bugs by auto-
matically removing benign interactions from the graph.
In general, VarXplorer [44]: (i) determines the relation-

ships between features and presents two classes of inter-
actions, namely suppress and require interactions; (ii) im-
plements feature-interaction graphs, a concise visual repre-
sentation of feature interactions identified at runtime using
variational execution; (iii) proposes a feature interaction spec-
ification language to allow and forbid interactions on data
and control flow; and (iv) presents an iterative and interactive

Figure 1. Feature interaction detection with VarXplorer.

approach to refine feature-interaction graphs using feature
interaction specifications.
In this paper, we contribute an empirical evaluation of

feature-interaction graphs to determine if they do help de-
velopers identify problematic interactions. We conduct a
controlled experiment with 24 participants from different
universities and companies. Wemeasure the effort to identify
a buggy interaction based on the information provided by
the feature-interaction graph. We also perform an in-depth
qualitative analysis based on video and audio recordings,
and post-treatment interviews. The results show that partici-
pants using VarXplorer outperformed participants using the
state-of-the-art tool. They are at least 3 times faster when
using VarXplorer to identify suspicious interactions. From
the qualitative analysis, we also identify and discuss 5 ob-
servations, including how the feature relationships support
identifying bugs.

In summary, we make the following contributions:

1. A user study showing that feature-interaction graphs
improve the efficiency of understanding feature inter-
actions compared to the state of the art.

2. An in-depth qualitative analysis showing advantages
of the graph components towards the detection of
suspicious interactions.

3. An Eclipse plug-in to generate feature interaction speci-
fications and remove interactions that do not represent
a bug, allowing the developer to focus only on suspi-
cious cases.

2 How Does a Feature Interact?
A software product can be seen as a configuration of fea-
tures1 that need to be composed together without violating
their particular requirements. On the one hand, it is rela-
tively simple to specify the behavior of a feature in isolation.
On the other hand, specifying and detecting interactions

1Henceforth, we use the term feature to refer to any configuration option,
module, or component in a configurable system.
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Listing 1. Simplified WordPress example [33].
1 boolean STATISTICS , SMILEY , WEATHER , FAHRENHEIT ,SECURE_LOGIN ;
2
3 void c r ea t eHtml ( S t r i n g c ) {
4 c = wpGetContent ( ) ;
5 if (SMILEY )
6 c = c . r e p l a c e ( " : ] " , g e t Sm i l ey ( " : ] " ) ) ;
7 if (WEATHER ) {
8 S t r i n g weather = getWeather ( ) ;
9 c = c . r e p l a c e ( " [ : weather : ] " , weather ) ;
10 }
11 if (STATISTICS ) {
12 int t ime = ge tCurrentT ime ( ) ;
13 p r i n t S t a t i s t i c s ( t ime ) ;
14 }
15 }
16
17 S t r i n g getWeather ( ) {
18 float t empa ra tu r e = 3 0 ;
19 if (FAHRENHEIT )
20 return ( t empe ra tu r e ∗ 1 . 8 + 3 2 ) + "˝F " ;
21 return t empe ra tu r e + "˝C" ;
22 }

among features may not be a straightforward task. The fea-
ture interaction problem has been a challenging subject for
decades [13].
A feature interaction is observed when the combined be-

havior of two or more features differs from the individual
behaviors of both features [16, 22, 53]. In a pair of features
that interact, a feature might enable, require, overwrite vari-
ables, or even block the effect of another feature.
Next, we present more details on feature interactions,

types, and detection strategies available on literature. Be-
sides, we give an overview of our approach and how we de-
tect interaction without specifications, previously presented
in [44].

2.1 Feature Interactions
In general, a feature interaction can be classified in terms
of its behavior: intended interaction and unexpected inter-
action. Intended interaction corresponds to a desired and
upfront predicted behavior. However, many interactions can-
not be identified in early phases of the software development;
they usually result in unexpected behavior. In configurable
systems, benign and problematic interactions are different
types of unexpected interactions [45]. Although unexpected,
a portion of the interactions may pose no risk to the system,
features might be combined together to deliver useful and
benign functions. Conversely, problematic interactions are
harmful and may inject faults to a system behavior.

In Listing 1, we show a code snippet modeled after Word-
Press. For this example, the current temperature is presented
(in either Celsius or Fahrenheit) from the benign interac-
tion between the features weather and fahrenheit. On the
other hand, when the features smiley and weather interact,
the system displays an incorrect output because smiley in-
correctly replaces part of the weather variable. As a result,
the system unexpectedly shows an HTML tag instead of the
current temperature. Hence, weather loses its effect, which
is to show the temperature.

Classifying interactions as benign or problematic is not a
straightforward task. It requires detecting the unexpected
interaction, which often only appears in specific test cases
of one or a small set of product variants.2 One strategy to
detect interactions is to provide specifications for all variants.
However, this does not scale due to the large number of possi-
ble system configurations [39, 51]. Alternatively, specifying
each single feature may require less effort. A feature-based
specification describes the behavior of a feature in isolation
without any explicit reference to other features [49].

In a different strategy, developers write specifications that
must hold for all configurations. Global specifications repre-
sent a common way to reduce the effort of creating specifica-
tions for individual features. A typical example corresponds
to a requirement that fulfills certain functional requirements
in all configurations. However, global and feature-based
specifications cannot describe interactions, or distinguish
intended from unintended interactions. Besides that, specifi-
cations are usually rare in practice.
In our work, we approach the challenge of identifying

feature interactions without upfront existing specifications.
Although there are many studies to detect and resolve faults
caused by feature interaction problems [5, 9, 15, 17, 18, 25–
28, 31, 33, 36, 38, 46, 50, 52], identifying unexpected feature
interactions that do not lead to a crash, but that cause faulty
behavior (such as, the problematic interaction between the
features smiley and weather in Listing 1), remains an open
challenge.

2.2 On Detecting Feature Interactions without
Specifications

Feature interactions can be detected by comparing the exe-
cutions of all system configurations. Variational execution is
an efficient method to compare executions [9, 26, 33, 36, 52].
It is able to share redundancies among executions, which
significantly reduces the total number of executions [37]. In
this paper, we use the variational interpreter VarexJ [33]: it is
a dynamic analysis for Java that tracks interactions on data
and control flow during execution. VarexJ provides all inter-
actions on data and control flow for a single test case in all
configurations. It also identifies the presence conditions that
add or change any functionality during the execution. Pres-
ence conditions are propositional expressions over options
that determine when a specific code artifact is executed [35].
In Figure 1, we present an overview of our process to

incrementally analyze feature interactions, proposed pre-
viously [44]. Given a configurable system, we execute test
cases (system inputs) looking for feature interactions. The
developer then explores which interactions are problematic.
We support them in the process with a feature interaction
graph, a concise representation of all (pairwise) interactions

2A variant can be referred as a configuration, i.e., a system composed of
different feature combinations [22].
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among features. Based on the variational execution of a sys-
tem, the graph provides a visualization of which features
interact, and presents their relationships and data context.

Indicating which features interact (raw interactions) does
not provide sufficient insights for the developer to identify
whether a certain interaction is benign or represents a bug.
To understand the relationship between features, we investi-
gate the relation of a feature to the others, such as suppress-
ing or requiring. In addition, interaction relationships may
be associated with the data context of the interaction (e.g.,
the variables involved in the relation). The different values
that a given variable may assume can be a signal that some-
thing wrong occurred. Highlighting the variables involved
might help developers to identify problematic interactions.
Our interaction detection process is incremental in the

sense that, based on user inspection, the graph is automati-
cally refined by removing interactions previously indicated
as benign by the developers. This refinement is supported
through a feature interaction specification language and en-
sures: (i) that the user does not see benign interactions again
in future iterations (i.e., for other test cases); and (ii) that any
newly detected unintended interactions are flagged in the
future. The goal is to incrementally remove intended inter-
actions to focus on unintended interactions. To make speci-
fications easy to create, developers can mark interactions as
either allowed or forbidden in the graph [44]. For complete-
ness, we next present our interaction detection, more details
can be found in our recent workshop paper [44].

2.2.1 Interaction Detection
In the interaction detection process, we identify and analyze
all pairs of features that interact in a system. The input of
the detection is the information gathered after executing a
test case (presence conditions and variables), and the output
is the interaction graph presenting all the interactions.

The creation process of the interaction graph has two ma-
jor steps: pairwise detection and relationship analysis. First,
we identify the pairs of features that interact and create a
basic interaction graph. Then, we perform the relationship
analysis and refine the basic graph with additional informa-
tion about the relationship between features, including the
underlying variables they affect, to produce the complete
interaction graph.

Pairwise Detection. For pairwise detection, we collect a set
PCwith all the presence conditions that occur in the data and
control flow of the program. Control flow conditions are path
conditions (possible ways an execution can go), and data flow
conditions are formed by the conditions on each variable.
From PC, we identify all pairs of features that interact by
finding features that occur together in the same condition.
Given a pair of features (f1, f2), we assume that there is an
interaction between f1 and f2 if there is at least one presence
condition p P PC in which f1 and f2 occur simultaneously

Figure 2. Basic feature-interaction graph for WordPress.

as literals in p:

f ▶ p :“ f occurs as literal in p (1)

I “ tpf1, f2q | p P PC^ pf1 ▶ pq ^ pf2 ▶ pqu (2)
From Equation 1 and 2, we are able to collect all pairwise in-
teractions. We use them to create the basic feature-interaction
graph, a simple visualization of all interactions. For ex-
ample, our running example has five features: SMILEY (S),
STATISTICS (T), WEATHER (W), FAHRENHEIT (F), and SECURE
LOGIN (L). Based on the above equations, we identified three
pairs of interactions Iwp “ tpF ,W q, pS, F q, pS,W qu in the
entire set of presence conditions PCwp , as follows3:

PCwp “ tS,␣S,W ,␣W ,T ,␣T ,W ^ F ,W ^␣F ,

W ^ F ^␣S,W ^␣F ^␣S,␣S ^␣W u

Figure 2 shows the basic graph for our running example,
illustrating the interactions in Iwp . Although the program
of Listing 1 contains five features, only three of them in-
teract with each other: F, W, and S. The other two are non-
interacting features; they either do not interact with any
other feature during system execution or are not executed in
any configuration related to the current test case. Although
the basic graph shows which features interact with each
other, it does not provide enough insight on how features
interact. We further investigate pairs of features to deter-
mine relationships that further describe the interaction. To
support users in identifying problematic interactions, we
also analyze the variables involved.

Relationship Analysis. We provide two complementary
analyses to inspect each pair to determine the effect of a fea-
ture on the other: PC-based analysis and data-based analysis.
In the former, we explore presence conditions on control and
data flow to identify which relation a feature may have over
the other (i.e., either suppress or require other features). The
latter is responsible for investigating variables that are con-
trolled by more than one feature. Thus, we identify feature
relationships exclusive to variables. For example, a feature
f1 may not present an overall suppression on the feature f2,
but f1 may suppress f2 in relation to a given variable.
A feature effect specifies under which conditions a given

feature has an effect on the execution. If a feature f1 has
no effect, then the selection of f1 never adds or changes
any functionality that was not present before [35]. In the
basic graph of Figure 2, the dashed feature L is not active
3Iwp : interactions for theWordPress (wp) example. PCwp : set of all presence
conditions for the wp.
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and, therefore, L has no effect in the WordPress execution.
Inactive features never have an effect. For the other features,
we investigate each presence condition to detect the effect
one feature may have on the other.
The feature effect is given by analyzing the effect of a

given feature on the set of presence conditions. Formally, we
say the effect of f on a condition p is given as the function
Upf ,pq, as follows4:

Upf ,pq “ pf Ð Trueq ‘ pf Ð Falseq (3)

A feature f has no effect on p if enabling (f as True) or
disabling (f as False), does not affect the value of p, then f
does not have an effect on selecting the corresponding code
fragment under the condition p. Otherwise, a feature f has
an effect on p when enabling and disabling the feature in p
leads to different result at least for one configuration, which
means that different code fragments are executed. Based on
the feature effect, we identified two types of relationships,
suppresses and requires, as follows:

Definition 1. Let f1 and f2 be the two features of an interac-
tion pair. We say that f1 suppresses f2 when the suppressed
feature f2 has no effect if the feature f1 is selected.

Definition 2. A feature f1 requires feature f2 when f1 has
an effect only if the feature f2 is selected.

Formally, we say f1 suppresses f2 with presence conditions
PC iff the result of the implication f2 ùñ ␣Upf1,PCq is
a tautology. Otherwise, we say f1 requires f2 iff the result
of ␣f1 ùñ ␣Upf2,PCq is a tautology. For example, the
effect of the feature FAHRENHEIT (F ) on the WordPress ex-
ecution results in UpF ,PCwpq “W , that is, feature F only
has an effect iffW is selected. Thus, F requiresW in order to
have an effect on the system (i.e., ␣W ùñ ␣UpF ,PCwpq

is a tautology). This behavior can be observed in Listing 1:
Line 20 is only executed when the decision in Line 7 is true,
which calls the method getWeather() in Line 8. Then, we see
that F is a sub-feature ofW . From the domain knowledge,
we know that this is an intended cooperation in terms of a
require relationship between those two features.
In contrast, if F would only have an effect iff ␣W , then

W would suppress F (i.e., F would be blocked byW , which
would be a bug). We perform the same analysis for each
pair of interaction to determine the effects of features in a
pair. This analysis identifies all cases of suppress and require
relationships between features, which may support the user
to find faulty behaviors.
To further explore additional relationships between fea-

tures, we complement the flow analysis with a data analysis.
Features that do not directly interact on the system flow may
still interact by controlling the same variables. Conditional
variables are those in which the values depend on more than
one feature. Unexpected data values may reveal bugs from
4Feature effect is also known as unique existential quantification [35].

Figure 3. VarXPlorer screenshot of the Wordpress graph.

unintended interactions on variables. This analysis supports
developers in a low-level inspection. For example, from the
relationship analysis, we found that S suppresses F in data
(variable c). Thus, when both F and S are selected, the vari-
able c is not overwritten by F . This case may be an example
of a bug because wrong information is displayed to the user.
Instead of seeing the current temperature, users see the tag
"[:weather,".
For completeness, our detection strategy should be com-

plemented with a larger iterative process of detecting and
documenting evaluated interactions. We described such a
process as well as described a corresponding specification
language in prior work [43, 44]. In a nutshell, the feature
interaction specification language helps developers to either
allow or forbid interactions in a configurable system [44]. For
example, guided by the visualization provided by Figure 3,
the user can automatically allow the benign data interaction
between F andW for the variables c and weather. Thus, the
intended interaction will not be shown again in the analysis
of future test cases. Conversely, for the other two interactions
of the WordPress example (S-W and S-F ), one of the features
in each interaction is being suppressed by the other. In case
of bugs, the user may want to fix the problem directly in the
code and also mark those interactions as suspicious in the
graph, by means of the forbid specification, as Figure 3 shows.

3 Experimental Evaluation
We performed a controlled experiment to understand how
feature interaction graphs help users identify suspicious in-
teractions. We investigate and compare the ability of users
to identify problematic interactions with and without VarX-
plorer, in a setting with different tasks and systems. We are
interested in the time spent to detect suspicious interactions
and in the perception of the participants about the tool.

3.1 Research Questions
We investigate the usefulness of interaction graphs as a
strategy to identify feature interaction bugs in programs.
VarXplorer is an Eclipse plug-in that abstracts from multiple
executions to show feature relationships. To the best of our
knowledge, there is currently no comparable tool that is able
to detect suspicious interactions based on a dynamic analysis
of relationships between features, without specifications.
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One possible baseline could be to compare VarXplorer
with a traditional source-code inspection or the standard
Eclipse debugger. However, we assume that inspecting the
code to detect interactions is hard, slow, and possibly a te-
dious work. On the other hand, the standard debugger is a
general-purpose tool that is not specifically designed with
feature interactions in mind. Recent work already shows that
Varviz, an Eclipse plug-in that provides a variability aware
execution trace of the code, outperforms the standard de-
bugger for comprehension tasks involving interactions [32].
Based on such previous findings, we compare VarXplorer to
the current state-of-the-art tool in this area, Varviz.

We aim to answer the following main question: Does VarX-
plorer help developers to identify suspicious feature interac-
tions?, which we split into two concrete research questions:

‚ RQ1: Does VarXplorer improve the performance of
identifying suspicious interactions compared to Varviz?

‚ RQ2: How does the interaction graph presented by
VarXplorer help understand the suspicious interac-
tions in a program?

RQ1 is related to the effort required to identify suspicious
interactions. We measured the time spent to detect interac-
tions in two setups: using VarXplorer and Varviz. For each
tool, we created two tasks for two different systems. We
measured how long participants take to identify and under-
stand a suspicious/buggy interaction from the information
provided by (i) the graph generated with VarXplorer; versus
(ii) the execution trace created by Varviz.

To answer RQ2, we analyze what information helps par-
ticipants understand and identify suspicious interactions. In
addition, we want to know how the graph components (rela-
tionships, variables arrows, and colors) can help developers
with the detection of buggy interactions.

3.2 Experiment Overview
We designed our experiment as a within-subjects study. For
this design, the same group of participants receives more
than one treatment [23]. In this way, all participants perform
tasks using both tools, VarXplorer and Varviz. The tools are
the treatments of our experiment.
Within-subjects designs have greater statistical power

than between-subjects designs: we need fewer participants in
the study to find statistically significant effects, because each
participant is tested under all treatments. Within-subjects
designs also represent a good strategy when it is difficult to
recruit participants [20].
The experiment consists of two tasks: participants first

start with one tool and they have to identify interactions in
a given system. After finishing the first task, they start the
activities with the second tool and another system. For each
tool, they use a different task to reduce learning effects.
While the participants are working on the tasks, we ask

them to verbalize their thoughts and tell us what they are

doing (think-aloud protocol [11]). When necessary, we also
ask them why they are doing a particular activity. The think-
aloud protocol makes the process as explicit as possible dur-
ing the tasks, because it captures preference and performance
data simultaneously, rather than waiting until the experi-
ments finishes to ask all the questions. In addition, we record
the screen and audio to collect supporting data for analyzing
the time and strategy used by participants to find interac-
tions. We run the experiment for one participant at a time.
We complement the above setup with a pre-survey and

a post-interview. Before the experiment, we ask them to
answer an online pre-survey, which we used to collect back-
ground data about their experience, mainly with Java and
the Eclipse IDE.5 We create balanced groups of participants
based on their experience. For the post-interview, we asked
two questions: (1) which tool is easier to understand a feature
interaction? and (2) what makes this tool easier in compar-
ison to the other one? We triangulate the gathered answers
with the data we obtain from the think-aloud protocol.

3.3 Pilot study
Before the main experiment, we conducted two pilot studies
with 8 graduate students from two universities in different
countries. We used the pilot study results to determine the
amount of time needed to execute our tasks. This allowed us
to estimate and plan the number of participants we needed
in the main study. We found a large effect size between the
participants who used VarXplorer (3 min on average) versus
the ones who used Varviz (13 min on average), which sug-
gests that we do not need a large group of participants. The
pilot study also allowed us to assess whether the participants
could properly understand the subject systems and the tasks
they should perform, as well as to train the researcher who
overlooked the experiment. We do not consider the results
of the pilot in our analysis.

3.4 Participants
After the pilot, we recruited 24 participants (excluding pilots).
To recruit them, we sent emails to professors in two univer-
sities, from different computer fields, to suggest ex-students
(developers) and current students.

We received 24 emails from three different profiles: under-
grad students, graduate students, and professional develop-
ers. Furthermore, some of the students are also developers.
The participants experience regarding Java and Eclipse IDE
varied from few months to more than 10 years.

Table 1 shows the participants involved in the experiment:
7 undergrad students (Un), 9 master students (M), 4 PhD. stu-
dents (PhD), and 7 developers (Dev). The students are from
two different universities (U1 and U2) and the developers

5It is a Google Form available at: https://goo.gl/forms/F4a6e7K0agpLp0Hv2
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Table 1. Participants

Partic. Institution Position Group Exp. (years)
1 U1 M 1 >= 5 and <10
2 U1 PhD 1 >= 10
3 U2 Un & dev 1 >= 1 and <5
4 U1 M 1 <1
5 U1 PhD 1 >= 1 and <5
6 U2 Un 1 >= 1 and <5
7 U1 PhD 2 >= 10
8 U1 M & dev 2 >= 5 and <10
9 U1 Un 2 >= 1 and <5
10 C1 Dev 2 >= 1 and <5
11 U1 M 2 >= 1 and <5
12 U1 M 2 >= 1 and <5
13 U1 M 3 >= 5 and <10
14 C2 Dev 3 >= 10
15 U1 M 3 >= 5 and <10
16 C3 Dev 3 >= 1 and <5
17 U1 Un 3 >= 1 and <5
18 U1 Un 3 >= 1 and <5
19 U1 M 4 >= 5 and <10
20 U1 M 4 >= 1 and <5
21 U2 Un & dev 4 >= 1 and <5
22 C4 Dev 4 >= 5 and <10
23 U1 Un 4 >= 1 and <5
24 U1 PhD 4 >= 10

work in four different companies (C1, C2, C3, and C4). Ac-
cording to our design, we created four groups with a similar
background distribution of participants.

3.5 Experimental Material and Tasks
We used two product lines as the evaluation material: Eleva-
tor and Telephone.
The elevator system has been proposed by Plath and

Ryan [40]. It is an extensible elevator model whose features
are designed to highly interact. For example, the elevator
needs to stop if it is empty or priority service for a special
floor is activated. Although this system has only 1046 LOC
and 6 features, it is hard to understand the impact of its
features due to the interactions. Furthermore, it has been fre-
quently used in the literature [4, 6, 10]. We used the Elevator
Java version from the SPL2go repository.6
The telephone system has been widely discussed in the

literature due to the Feature Interaction Detection Contest
that was held in 1998 and 2000 [21]. The contest aimed to
compare various methods and tools for detecting feature
interactions. To enable a comparison, the objective was to
detect interactions among a given set of features for a given
telephone system. The telephone system was designed to
present many interactions. Based on the specification from
the contest, we created a Java implementation for the tele-
phone system. We implemented 6 features and 1005 LOC.

We design two tasks, one for each system. The tasks were
designed to be similar in size, number of features, and time to
be executed. The pilots served to align them. In general, we
asked the participants to use the tool given to them (either
VarXplorer or Varviz) to identify suspicious interactions on
the systems for a given test case. The tasks were designed to

6http://spl2go.cs.ovgu.de

Figure 4. Latin Square to our treatments.

present just one suspicious interaction for each system and
a couple of benign interactions. We provide the participants
with the description of each feature in the target system, test
case scenario documentation, and the system’s source code.7
From those artifacts, they get the domain knowledge about
the systems. Thus, the participant role in the experiment is
to identify the problematic interaction in each system. We
next describe the details of the two tasks.

Task 1. According to the features specification of the ele-
vator system, when the elevator has two thirds of the maxi-
mumweight, it should not attend to calls until it delivers pas-
sengers, making the weight be less than two thirds. However,
because of a problematic interaction between two features
(Executive Floor and Two Thirds Full), the elevator goes to
pick a passenger up even though it has already achieved two
thirds of the capacity, which forces the elevator to not close
the door until someone leaves it. In this situation, the feature
Executive Floor is blocking the execution of the feature Two
Thirds Full. In this task, the participants should figure out
that this interaction leads the system to a wrong behavior.
They have to identify the suspicious interaction using either
Varviz or VarXplorer, depending on the group they were
assigned. We request them to identify the problem, but we
do not require them to fix the problem in the source code.

Task 2. The contest instructions describe all the feature
specifications [16], such as: (i) Call Forward on Busy, all calls
to the subscribing line are redirected to a predetermined
number when the line is busy; and (ii) Call Waiting, allows
the subscriber to be noticed that another party (incoming
call) is trying to reach his number while her line is busy.
However, when the line is already busy and another number
is trying to reach that line, because of a precedence in the
implementation, the telephone system is always forwarding
the call, even if the person wants to put the incoming call
on waiting. Again, one feature has its behavior suppressed
by another and the participants should identify that this is
the suspicious interaction, by using one of the two tools.

3.6 Design
The tool used during the experiment represents an indepen-
dent variable with two levels, VarXplorer and Varviz. We also
distinguish participants related to the systems they use: Ele-
vator system and Telephone system. Furthermore, to analyze
the performance of the tools (RQ1), we measured the time

7The documentation and tasks description is available at
https://goo.gl/57XwtQ
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spent by participants to find the suspicious interaction in
each system. Time is a dependent variable of our evaluation.

Latin Square Design. Since participants perform two
tasks, one followed by the other, there can be problems of
carryover effects. Thus, each measurement may depend not
only upon the treatment given but also on the preceding
treatment [20]. To avoid those kind of effects, we use a Latin
Square design [14]. It represents a method of placing treat-
ments so that they appear in a balanced fashion within a
square block. Latin Square is an useful design where the
experimenter desires to control variation in two different
directions. In this way, treatments should appear once in
each row and column.
In addition to the standard Latin Square, we use three

strategies to avoid learning effects: (i) we have every treat-
ment preceding every other treatment the same number of
times (counterbalanced Latin Squares); (ii) we change the
order participants use the tools; and (iii) participants do not
repeat the same tool or the same system in different tasks.

Figure 4 was inspired by the Latin Square to show the dis-
tribution of the population to our experiment. The columns
are labelled with the two subject systems (Elevator and
Telephone). The rows correspond to the developers. The 4
squares (cells) contain the two treatments (Varviz and VarX-
plorer). Then, we allocated one group of participants to each
cell. Based on this design, each participant received the two
treatments listed in a given row for the two subject system
listed in the corresponding columns.
Clearly, we can only have a participant looking for in-

teractions in a given program once, otherwise there would
be a learning effect on subsequent attempts. Following the
strategies of our design, participants are using different tools
and systems for each task and they have never used neither
the tools nor the systems before the experiment. Moreover,
since we permute the order in which they perform the ac-
tivities, we create 4 groups, as Figure 4 shows. We balanced
the groups based on the participants experience. The order
of each group is described as follows:

‚ Group 1: first Varviz-Elevator, then VarXplorer-
Telephone

‚ Group 2: first Varviz-Telephone, then VarXplorer-
Elevator

‚ Group 3: first VarXplorer-Telephone, then Varviz-
Elevator

‚ Group 4: first VarXplorer-Elevator, then Varviz-
Telephone

3.7 Procedure and Execution
Before the participants receive their tasks, we first intro-
duced the experiment with a tutorial about feature interac-
tions. The tutorial took 10 minutes on average. Then, each
participant had two tasks to accomplish, with descriptions
and instructions provided for each task.

Figure 5. Time results for the tools

Before each task, we conducted a warm-up section to in-
troduce the tool (either Varviz or VarXplorer) using a third
system, themockWordPress shown on Listing 1). For the first
warm-up, we give them Eclipse with the first tool (depending
on the participant group), the mock WordPress source code,
and a list of features. At this point, they have to identify
the suspicious interaction in WordPress using the tool given
to them. During this warm-up, we answer their questions
about the tool. After that, we give them the first experiment
task corresponding to that tool, which includes again the
Eclipse with the tool, the experiment system source code
(either Elevator or Telephone) and the list of features. Those
steps correspond to the first part of the experiment.
The second part starts when the participants finish the

first task. Hence, we perform a second warm-up with the
second tool and WordPress, where they again have to iden-
tify a suspicious interaction. After they finish the warm-up
with the second tool, they start to perform the second ex-
periment task, which consists of identifying the suspicious
interaction in the second tool and the second system (either
Elevator or Telephone). The experiment finishes when they
have performed both tasks. As final step, we conduct the
post-experiment interview. Each participant took on average
1 hour to complete the experiment. Thus, we approximately
had 24 hours of audio and screen recording to analyze.

To provide the same environment to each participant and
avoid having to install and configure Java and Eclipse pa-
rameters, we used the same laptop for all participants in the
experiment. Each group received two versions of Eclipse,
one version with the Varviz installed and the other one with
VarXplorer, with two programs in the workspace, the warm-
up program (WordPress) and the experiment program (either
Elevator or Telephone). Thus, each Eclipse installation cor-
responds to a cell of our Latin Square design, and we could
make sure they would use the right tool in the right system.

3.8 Data Analysis
For the statistic analysis of our data, we conducted an anal-
ysis of variance using a between-subjects ANOVA. It is a
parametric test for determining whether significant differ-
ences occur in an experiment containing two or more condi-
tions. ANOVA has three assumptions: the dependent variable
measures normally distributed interval, the population has
homogeneous variance, and each cell (Latin Square cell, in
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Figure 6. Time results grouping tools and systems. E: Eleva-
tor; X: VarXplorer; Z: Varviz; T: Telephone.

our case) contains an independent sample [23]. We used the
Shapiro-Wilk normality test, the Bartlett test of homogeneity
of variances, and the Tukey HSD test to test the multiple com-
parisons of means. We conventionally reject our hypothesis
when p-value ă 0.05.

For the qualitative analysis, we watched the videos and
listened to the audios (including experiment and post-
interview) looking for commonalities and differences in the
way participants execute the tasks and their perception about
the tools. We transcribed participants answers and infor-
mally generated codes to passages of the data which are
relevant to understand participants difficulties and meaning-
ful differences about the two tools used.

4 Results and Discussion
This section presents the results of our experiment and dis-
cusses the implications. We next present both statistical and
qualitative analysis to answer our research questions.

4.1 RQ1: Does VarXplorer Improve Performance of
Identifying Suspicious Interactions Compared
to Varviz?

Participants using VarXplorer outperformed participants us-
ing Varviz with respect to the average task time.8 On average,
participants accomplished their tasks 3.06 times faster using
VarXplorer. The participants that used VarXplorer took an
average of 3 min to perform the task, while the others that
used Varviz had an average of 9 minutes. All the participants
were able to identify the suspicious interaction in both tasks,
which is why we compare time and not also correctness.
Figure 5 graphically shows the time results.

Statistic Analysis of Performance. We used ANOVA
to statistically evaluate the tools. The difference between
the average times to perform the study tasks with each tool
proved to be statistically significant. Based on the ANOVA
test, we rejected the null hypothesis (p-value ă 2e-16) that
the distribution of the population is homogeneous. Thus,
VarXplorer reduces developer effort to identify suspicious
interactions in both tasks, elevator and telephone system.

Figure 6 shows the results for our 4 groups. For both sys-
tems, there is a significant effect size between Varviz and
8The time measured for the participants is available at https://goo.gl/JhtDEj
and the R script is at: https://goo.gl/rmWv7L

VarXplorer tasks. The subject systems had similar perfor-
mance times, and regardless of system, VarXplorer was faster.

Test of assumptions. The ANOVA test requires two as-
sumptions of the underlying data: normal distribution and
homogeneous data. Our statistical tests show that our data
is normally distributed (p-value = 0.4447), but is not homoge-
nous (p-value = 0.0015). However, the heterogeneity of the
data does not affect the results of ANOVA, since the groups
have the same size [23], 24 measures each.9 Figures 5 and
6 also show that the data presents a large effect size, such
that violating the assumption is unlikely going to change
the decision of rejecting the null hypothesis.

Analysis of Order Influence. Even though we designed
our experiment to avoid learning effects and tool/system
order influence, we still performed the ANOVA test on the
groups to check whether the order presented an influence.
For the systems group, the data from the order of the

systems are not different, i.e., the order of the systems does
not statistically influence the results (p-value = 0.803). For the
tools groups, it presents a large effect size between the groups
that used VarXplorer against the Varviz groups. According to
the ANOVA test, we get statistically significant evidence that
our groups have different averages (p-value ă 2e-16). Thus,
the order of the systems does not matter to the evaluation.
In order to analyze the interactions in the tools order

group, we performed a Tukey HSD test [23]. We saw a small
learning effect when Varviz is used after Varxplorer (p-value
= 0.0378). This situation occurs because the participants learn
from VarXplorer graphs: they learn about relationships be-
tween features and start to explicitly look for them in the
Varviz trace. Although the systems presented a small differ-
ence, this situation does not significantly affect the analysis
of variance: this effect is tiny compared to the overall effect
size. The fastest Varviz time is still significantly slower than
the slowest VarXplorer time.

RQ1: The results confirmed that participants using
VarXplorer identify feature interactions at least 3 times
faster compared to participants using Varviz.

4.2 RQ2: How does the Interaction Graph Presented
by VarXplorer Help Understand the Suspicious
Interactions in a Program?

We analyzed the videos (audio and the screen recordings)
of all participants to know how feature-interaction graphs
help understand feature interactions. We watched the videos
to find common activities that the participants performed
during the tasks, besides comparing the findings with the
interviews answers. Thus, we could compare the participants

9To confirm our analysis, we also performed non-parametric tests with
Kruskal andWilcox. For both tests, we rejected the null hypothesis, affirming
that our results are robust.

48

https://goo.gl/JhtDEj
https://goo.gl/rmWv7L


GPCE ’18, November 5–6, 2018, Boston, MA, USA L. R. Soares, J. Meinicke, S. Nadi, C. Kästner, E. S. Almeida

perception with the activities performed in the tasks.

Observation 1: The explicit type of relationship for a pair of
features guides the analysis and decreases the analysis time.

VarXplorer represents an alternative to detect interactions
with no need to debug the code. The require and suppress
relationships graphically represented as colored arrows in
the graph caught the attention of the participants to what
is happening with a given pair of features. In a debugging
tool, such as Varviz, subjects need to follow the execution
flow step by step to interpret what is going on in the system
based on methods and variables calls, for example. During
the survey performed after the experiment, P20 (see Table 1)
affirmed: “VarXplorer is simpler and easier because it shows,
in addition to the interactions, the relationships”. Along the
same lines, P13 said: “The colors of the arrows in VarXplorer
serve as an alert to me to investigate whether the interactions
are correct or not”.
Participants also talked about partial relationships. For

example, when a feature suppresses the other of changing a
specific variable. Partial relationships affect just one or some
variables (also called conditional variables, but not all the
behavior of a given feature. A program usually has many
variables, which may assume many values to different in-
teractions. Looking for conditional variables is a hard task.
VarXplorer makes this process faster to show the influence
of a relationship on variables, interaction-dependent vari-
ables. For instance, P14 stated: “I don’t need to look for the
variables which may be problematic, the VarXplorer graph
already brings this information to me.”

Observation 2: To use VarXplorer, you might not need to
know details of the implementation, or even the programming
language used.

The VarXplorer graph only presents interaction informa-
tion, without showing other unrelated details, such as control
flow paths, methods and classes names, non-related variables,
and variables values. Any person that has knowledge about
the system requirements and the feature specifications may
be able to judge whether the features behave as expected,
based on the relationships presented in the graph. For ex-
ample, P21 said: “VarXplorer is more objective in showing
the interactions. I do not need to worry about low level of the
system, such as methods, classes, components, and all the pos-
sible ways the program can go to realize that an interaction is
suspicious.”
We observed that participants become convinced an in-

teraction is suspicious based on the perception they have of
the features description of the system. Figure 7 shows that
just two of the participants looked at the source code. They
looked at it during the Varviz tasks to see how some features
were implemented. In this way, VarXplorer can be used by

different profiles in a development team (e.g., engineers, man-
agers, testers, and developers), even those that do not know
details about the system. P8, who is a developer affirmed: “I
even do not need to know the programming language or how
the code is implemented, any person from our team can use
the graph to understand what is going on in the system”.

Observation 3: VarXplorer also shows non-interacting fea-
tures and no-effect features, which might be indicatives of
bugs.

Besides interactions, VarXplorer also shows features that
do not interact with any other feature (non-interacting fea-
tures). In cases where developers know that a given feature
should interact, this information can alert them that some-
thing may have happened, leading the feature to not interact
with anyone else.

The same occurs with features that are not called in the
execution (no-effect features): if we run a test case that a
given feature should be executed, and it is not, it is a case
to be investigated. This information about non-interacting
features and no-effect features is not explicit in Varviz, while
VarXplorer graphically represents them. Non-interacting fea-
tures are shown in the trace because they have effect and
are part of the execution, but no-effect features are not rep-
resented. This information was perceived as useful by some
participants, as P16 stated: “VarXplorer shows me features
that have no effect or do not interact, while this information is
hidden in Varviz”.

Observation 4: Understanding interactions in Varviz takes
longer than finding out where they are located in the trace.

Varviz tests all the combinations of features and captures
control and data flow of a given test case. Since the trace
shows more information than the graph, we suspected that
the time to identifying a suspicious interaction (find where
in the trace the features are interacting together) would be
longer than to properly understand the interaction (tell us if
the interaction is either OK or suspicious).

Furthermore, participants complained about the time spent
to find an interaction in the Varviz trace. For example, P5 said:
“I see how the trace works, but it is not clear to me where I should
take a look at to find interactions”. Another one, P7, also stated:
“Varviz presents everything together, a mix of information. It
shows more things than I need to understand the interaction.”

However, we observed that most of the time was spent on
properly understanding the interactions, which in practice
consists in comprehending Boolean logic expressions related
to the suspicious interactions present in the trace. Figure 7
shows the execution of the tasks for the 24 participants. For
most of them, the time related to understand an interaction
with Varviz took twice as long than identifying it in the trace.
Still, we believe we cannot generalize this particular result
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(a) Varviz Tasks

(b) VarXplorer Tasks

Figure 7. Time spent on performing the tasks to Varviz and
VarXplorer.

to other interactions or even other systems, because the sus-
picious interactions of our tasks was placed in the first third
part of the trace, coincidentally. Thus, since the participants
started to analyze the trace from the beginning, we believe
that the time to identify an interaction is more related to the
moment it is called in the execution.

Observation 5:VarXplorer and Varviz complement each other.

VarXplorer has been discussed as faster and easier to iden-
tify and understand an interaction than Varviz. Although
Varviz also shows interactions, it has a different purpose. It
was designed for understanding faults and program compre-
hension tasks that involve understanding differences among
similar executions [32]. For instance, P3 reported: “I can use
the graph to get an overview on the features that interact, and
then I can use the trace to understand the details, see the value
of the variables and the flow of execution.”

We observed that Varviz is a valuable strategy to be used
after detecting the interactions with VarXplorer. Varviz can
be used instead of a standard debugger to look for the cause
of an interaction bug. Both tools are Eclipse plug-ins and we
believe they may can complement each other in practice.

RQ2: The results confirm that the relationships graph-
ically represented as arrows and colors in VarXplorer
make the developer work easier and faster. Also, VarX-
plorer only shows conditional variables, which reduces
the amount of information shown to developers.

4.3 Threats to Validity
We applied our approach to small programs due to the bound-
aries of an in-lab study; our results may not generalize to
larger programs in the wild. However, given that our ap-
proach was clearly helpful even in small programs, we argue
that is likely helpful for larger systems as it is nearly impos-
sible to detect behavioral interactions without specifications
or without specialized tool support [34].

We did not compare our tool with a standard debugger as
baseline, as we believe that the task without specialized tool
support (e.g., Varviz) would be too difficult and slow for an
in-lab study. Thus, a direct comparison with Varviz, which
is specialized to graphically show the execution, is more
practical than to compare with a standard debugger. Varviz,
at least, shows what happens in the execution when features
interact (the trace shows all the possible paths), while us-
ing the debugger the developer has no clue where to start
looking for interactions. Given that VarXplorer was shown
to be significantly faster than Varviz with a large effect size,
and that Varviz was shown to outperform the standard de-
buggger [32], we speculate that comparing VarXplorer to
the standard debugger would have produced an even larger
effect size.
We used 24 participants in our study of which several

where students without former experience on interactions
(i.e., beginners for this kind of analysis). Experienced pro-
grammers for such kind of analysis will perform better for
the tasks proposed. However, also experienced programmers
will benefit from our tool support as VarXplorer provides
them essential information that helps to understand and de-
tect feature interactions. In addition, we used a think-aloud
protocol to gain qualitative insights, which may influence
the performance of the participants. However, we argue that
the influences are similar across the groups and that the dif-
ferences among the tools are large enough that this influence
can be neglected.

5 Related Work
Instead of variability-aware execution, some approaches
have performed static analysis to detect interactions [1, 12,
29]. However, despite recent advances, static analysis of sys-
tems with high accuracy remains challenging [7, 29]. In con-
trast, we use a dynamic analysis, variational execution, which
is able to analyze large software [33, 36, 52]. Others aim to ex-
ecute configurations separately, and use symbolic execution
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to identify interaction problems [17, 24]. Reisner et al. mea-
sured the effect of interactions only on control flow using
symbolic execution [41], whereas we analyze both control
and data flow.
Delta debugging approaches systematically narrow the

state difference between a passing run and a failing run [47,
48, 54]. For example, Zeller [54] isolated cause-effect chains
for failures. Sumner et al. [47, 48] improved Zeller’s work
and provided an automatic debugger to precisely align two
executions. Conversely, our approach explains differences
among many executions. Unlike Delta debuggers, Varviz
dynamically tests different executions [32]. However, as far
as we know, no work provides explicit information about
the relation between features, as we do with suppress and
require relationships.

Several approaches work with feature-based specifications
to detect interactions. Li et. al [28] present a model checking
approach to detect interactions automatically given a group
of feature specifications. The approach tests CTL (compu-
tation tree logic) properties of features to identify cases in
which the specification is violated. Apel et. al [5] also pro-
pose a technique to verify whether specifications hold across
system configurations. To perform this verification, specifi-
cations for intended interactions may be needed, and each
feature requires a formal specification of its behavior.
With feature-based specifications, interaction faults can

be detected when a feature specification is violated in a con-
figuration. In practice, nevertheless, it is uncommon to create
specifications for all features. In general, approaches based
on feature specifications present two main drawbacks: (1)
from the whole set of features, it is not clear which combina-
tions of features need to be verified and (2) verification tools
need precise specifications to check against, information that
developers are often reluctant to prepare.

Global specifications only describe properties for all con-
figuration systems, and can thus not describe nuances of
intended and unintended interactions to recognize if they
affect feature behavior. Generally, it is difficult to find bugs
caused by unintended interactions without any specifica-
tion. Thus, despite their disadvantages, global specifications
provide a convenient way of detecting interactions. For that
reason, many studies base their approaches on that kind of
specifications and focus on exploring the configuration space,
such as systematic sampling [25, 27, 46], combinatorial inter-
action testing [18, 31, 38], model checking [5, 15, 17, 28, 50],
and variational execution [9, 26, 33, 36, 52].

6 Concluding Remarks
We propose VarXplorer, a dynamic approach to identify fea-
ture interactions without any previous system or feature
specification. From a configurable system, it creates feature-
interaction graphs as a representation of all pairwise in-
teractions between features, besides showing relationships

and the interaction-dependent variables. We conducted a
controlled experiment to evaluate how interaction graphs
help identify suspicious feature interactions in highly config-
urable systems. We used two of the most common systems in
the literature designed to containmany interactions, Elevator
and Telephone. Then, we compared VarXplorer with another
tool, Varviz, and we found that VarXplorer is on average 3
times faster than Varviz. In future work, we aim to study
how to scale VarXplorer to large systems through slicing,
where we can control the software and stop the execution
on predetermined stop points.
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