
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332655578

Understanding Similarities and Differences in Software Development Practices

Across Domains

Conference Paper · May 2019

CITATIONS

0
READS

71

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Lab-soft View project

Information Systems Development with Pair Programming: An Academic Quasi-Experiment View project

Markos Viggiato

University of Alberta

9 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

Johnatan Oliveira

Federal University of Minas Gerais

14 PUBLICATIONS   56 CITATIONS   

SEE PROFILE

Eduardo Figueiredo

Federal University of Minas Gerais

119 PUBLICATIONS   2,102 CITATIONS   

SEE PROFILE

Pooyan Jamshidi

University of South Carolina

84 PUBLICATIONS   1,524 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Markos Viggiato on 25 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332655578_Understanding_Similarities_and_Differences_in_Software_Development_Practices_Across_Domains?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332655578_Understanding_Similarities_and_Differences_in_Software_Development_Practices_Across_Domains?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Lab-soft?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Information-Systems-Development-with-Pair-Programming-An-Academic-Quasi-Experiment?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markos_Viggiato?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markos_Viggiato?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Alberta?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markos_Viggiato?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johnatan_Oliveira?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johnatan_Oliveira?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal_University_of_Minas_Gerais?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johnatan_Oliveira?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Figueiredo5?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Figueiredo5?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal_University_of_Minas_Gerais?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Figueiredo5?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pooyan_Jamshidi?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pooyan_Jamshidi?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_South_Carolina?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pooyan_Jamshidi?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markos_Viggiato?enrichId=rgreq-13de9bf7114f71473a63fcd64800d76a-XXX&enrichSource=Y292ZXJQYWdlOzMzMjY1NTU3ODtBUzo3NTE2NDMzODk4NTc3OTNAMTU1NjIxNzE1NzU0MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Understanding Similarities and Differences in
Software Development Practices Across Domains

Markos Viggiato1, Johnatan Oliveira2, Eduardo Figueiredo2, Pooyan Jamshidi3, Christian Kästner4
1Dept. of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

2Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
3Computer Science and Engineering Department, University of South Carolina, Columbia, United States

4Institute for Software Research, Carnegie Mellon University, Pittsburgh, United States
viggiato@ualberta.ca, {johnatan.si, figueiredo}@dcc.ufmg.br, pjamshid@cse.sc.edu, kaestner@cs.cmu.edu

Abstract—Since software engineering is globalized and not a
homogeneous whole, we expect that development practices are
differently adopted across domains. However, little is known
about how practices are followed in different software domains
(e.g., healthcare, banking, and Oil and gas). In this paper, we
report the results of an exploratory and inductive research,
in which we seek differences and similarities regarding the
adoption of several widespread practices across 13 domains. We
interviewed 19 worldwide developers with experience in multiple
domains (i.e., cross-domain developers) from large multinational
companies, such as Facebook, Google, and Macy’s. We also run
a Web survey to confirm (or not) the interview results. Our
findings show that, in fact, different domains adopt practices
in a different fashion. We identified that continuous integration
practices are interrupted during important commerce periods
(e.g., Black Friday) in the financial domains. We also noticed the
company’s culture and policies strongly influence the adopted
practices, instead of the domain itself. Our study also has
important implications for global software engineering practices.
For instance, companies should provide targeted training for
their development teams and new interdisciplinary courses in
software engineering and other domains, such as healthcare, are
highly recommended.

Index Terms—Software Domains, Development Practices, In-
terview Study, Cross-domain Developers

I. INTRODUCTION

Software development practices play an important role
in the quality of the final software product [1, 2, 3, 4].
This subject has captured the attention from both academia
and practitioners [4]. In fact, several approaches have been
proposed aiming at providing ways for developers to follow
the best global practices in specific domains, such as de-
sign patterns [5], agile methodologies [6], and more recently
continuous integration and DevOps [7, 8, 9]. Furthermore,
some previous works have focused on the investigation of
a single practice [3, 10]. However, differences in domains’
characteristics have not been considered in many cases (such
as software development in industry and software engineering
education). Current investigation of widespread development
practices also considers software engineering as a homo-
geneous field, contrasting with previous findings, such as
indicated by Murphy-Hill et al. [11]:

In a larger sense, this work represents a step to-
wards understanding software development not as a
homogeneous whole, but instead as a rich tapestry

of varying practices involving diverse people across
diverse domains.

In this paper, we use practice as a general term to refer to
the way software is developed and its characteristics as well,
which includes not only the software development phase, but
also design, maintenance and evolution phases. For instance,
we may use practice to refer to a well-established software
development methodology (e.g., agile) or a specific way of
adopting continuous integration during software development.
Despite the relevance of global software development prac-
tices, there is little exploratory research aiming at charac-
terizing how these development practices are adopted across
domains and little is known regarding which practices are
applied (and how they are applied) in different software
domains.

Shedding light on how and which practices are adopted is
important for many reasons. First, practitioners will benefit
from our results as we provide insights about development
practices in software domains. For instance, this may be
helpful for professionals and companies that are migrating
to a new domain as they will be aware of the common
practices and their use in that domain. Companies can also
provide targeted training for their teams based on development
practices adopted in the domain of interest. For instance, e-
commerce companies do not uniformly use continuous inte-
gration practices throughout the year as they avoid releasing
code changes in periods of high amounts of sales. In such
case, developers should be instructed to only release code that
is critical for the business. Furthermore, new customized tools
may be developed targeting developers from specific domains
as there is a need for domain-aware tools [12]. Second, the
research community may also benefit from our study. Future
researches may gain more generalization, since the results for
one case (e.g., the investigation of a specific practice for one
domain) may generalize for other software domains. Finally,
software engineering education may take specific development
practices into account as different domains have different
development practices. For instance, a new branch of the
software engineering course focused on game development
may be suitable since this domain differs in many aspects from
non-game software development [11]. New interdisciplinary



courses should also be thought for specific domains [13].
Our goal in this paper is to understand how development

practices globally used by different companies differ in dif-
ferent software domains and whether there are specificities
in their use, i.e., we aim to verify whether developers from
different domains can adapt development practices to their
specific context. We hypothesize that some domains may have
similarities in the use of development practices and we also
believe some domains may adopt practices in such a specific
way that makes them very different from the others. However,
works so far have not focused on the differences of domains
regarding global development practices. In addition, previous
studies have not investigated the adoption of development
practices based on the perception of cross-domain developers,
as we do here. In this paper, we adopt an exploratory and
inductive research [14, 15, 16, 17] to seek for differences and
similarities of several practices across 13 domains. To guide
our study, we defined the following research questions:

• RQ1: Which development practices are similar across
domains?

• RQ2: Which development practices are specific to do-
main?

• RQ3: Which factors may impact the adoption of devel-
opment practices in different software domains?

To answer the research questions, we designed an ex-
ploratory, qualitative study in which we interviewed worldwide
cross-domain professionals who have worked in more than
one domain in the software industry. We argue (Section III)
that developers with experience in more than one domain
are capable of indicating differences in development practices
with more confidence. We conducted 19 semi-structured in-
terviews with developers from 13 software domains, such as
social networks, healthcare, banking, e-commerce and games.
Afterwards, we transcribed the recorded interviews looking
for interesting themes. We then validated interview findings
through a Web survey with developers around the world.
It is important to highlight that cross-domain developers
were difficult to be found and contacted, specially in some
domains (e.g., aviation), in which we believe developers are
highly specialized. In this paper, we do not present results
regarding domains in which we believe the saturation was not
reached. We briefly present interesting findings regarding those
domains in Section V-C and emphasize the need for further
investigation. We noted that 19 interviews were sufficient to
reach the theoretical saturation [14], similarly to previous
studies [11, 18, 19, 20]. For instance, when interviewing
the 7th e-commerce developer, all information provided by
the interviewee was known by interviewers as previous e-
commerce participants already provided them.

Our findings suggest many differences. For instance, e-
commerce developers usually avoid releasing code in periods
of the year when there is large financial transactions. This
means the interruption of continuous integration and con-
tinuous delivery practices within that domain. Furthermore,
healthcare developers mentioned that requirements elicitation

is easier in comparison to other domains as health profes-
sionals usually have a higher degree of education. However,
this result was not confirmed by the survey participants, that
mostly disagree with it (50%) or are neutral (10%). Although
this can be seen as a negative result, it is important to note
that negative or unexpected results may be found through
exploratory studies. We also found other interesting results,
such as the fact that social network domain does not have
dedicated test teams. Instead, developers test and fix bugs
themselves, using a code-owner approach.

The remainder of this paper is structured as follows. Sec-
tion II presents related works. Section III explains how we
designed our research. In Sections IV and V, we present the
results and discussions, respectively. Section VI shows threats
to validity and Section VII concludes the work and discusses
next steps.

II. RELATED WORK

Several studies have been proposed within the context
of software development practices [1, 2, 3] and software
domains [21, 22, 23, 13]. Regarding studies within the context
of software domains, Murphy-Hill et al. [11] presented a
study comparing game development to traditional software
development. The work indicated substantial differences be-
tween video game development and other software devel-
opment segments, such as the rare use of automated tests
in game development. Richardson et al. [13] noticed that
regulations and directives regarding medical device software
were not being taken into account, and unregulated software
was developed and used in healthcare organisations. This
was a result of not trained software engineers, who lacked
knowledge in regulations of software solutions for healthcare.
The authors recommended that healthcare software systems
should be developed by professional software engineers in
interdisciplinary teams with healthcare professionals. Russo
et al. [22] aimed at identifying some relevant concerns in
the Italian banking IT sector, through an investigation of the
opinions of several stakeholders. The authors identified 15
concerns, which were discussed in a framework inspired by
the ISO 25010 standard.

Segura et al. [21] explored the applicability of some of the
practices for variability management in software product lines
to an e-commerce website. The authors used a feature model
to represent the store input space and techniques for the auto-
mated analysis of feature models for the detection and repair of
inconsistent and missing configuration settings. Their findings
suggest that variability techniques could successfully address
many of the challenges found when developing e-commerce
websites. Other studies investigated development practices
without focusing on specific software domains. Wright and
Perry [2] reported the initial results of a study in which
the authors interviewed 4 practicing release engineers to
understand the faults and failures of release practices, how
companies recover from them and how to predict and avoid
the failures in the future. Their preliminary results indicate



that a more thorough process analysis and efforts at process
standardization are necessary.

Unlike all previous works discussed above, in this paper
we interview cross-domain professionals (i.e., developers who
have worked in more than one target domain) with the aim
of identifying development practices that are similar across
domains and practices that are particular to specific software
domains. To the best of our knowledge, this is the first
exploratory study to investigate development practices across
several domains by interviewing cross-domain developers. Our
work also can be seen as a complementary study to the
previous ones as we provide a more thorough insight of how
development practices are being used in industry across several
domains.

III. RESEARCH DESIGN

A. Software Domains

We selected a set of software domains for our study based
on previous works [22, 24, 13, 11], i.e. we selected domains
which were already subject of research and, therefore, we
believe they are well-known in the global software engi-
neering community and easily understandable by industry
professionals. Furthermore, we believe it is feasible to find
worldwide software developers who have worked in such
domains through our participant search procedure. Initially,
we selected the following 13 domains: accounting, aviation,
banking, business, e-commerce, educational, games, health-
care, mining, oil and gas, search engine, social network, and
stock market.

B. Methodology

We conduct a qualitative study to help us better understand
how global software development practices are used in differ-
ent software domains. We follow an inductive research strat-
egy, using a grounded, iterative approach to let development
practice patterns of usage emerge from the interviews [25, 17].
This means we do not have previous categories to classify
the use of development practices in different domains. To
achieve our goal, we conducted semi-structured interviews
with software professionals from industry with experience in
multiple domains. The research methodology is composed of
five stages: (i) participants selection in LinkedIn; (ii) interview
design; (iii) conduct of interviews; (iv) transcription analysis;
and (v) validation through a Web survey. The last stage was
executed to confirm (or not) the main findings for domains in
which we reached saturation. We noticed that 19 interviews
were sufficient to gather interesting information regarding the
adoption of development practices in different domains and
to reach the saturation in some domains. In fact, previous
interview studies performed a similar number of interviews,
such as Murphy-Hill et al. [11] (14 interviews), Stacey and
Nandhakumar [18] (20 interviews), Burger-Helmchen and
Cohendet [19] (8 interviews), and Dagenais and Robillard
[20] (22 interviews). We stopped conducting interviews as new
interviews with participants from the following domains were
not bringing new information: banking (with 6 interviews),

e-commerce (with 8 interviews), and healthcare (with 5 inter-
views). Therefore, in this paper, we focus on presenting results
from the aforementioned domains and we briefly indicate
interesting findings from domains in which we have not yet
reached the saturation (Section V-C), namely: oil and gas and
social networks.

C. Interview Process

Our interview process is iterative and we use the open
coding technique from grounded theory [14, 15, 26, 16]. The
interview phases are simultaneous, i.e., the stages overlap. For
instance, while conducting interviews with some participants,
we may also continuously select additional participants and
iteratively build the interview script according to the previous
interviews. Next, we describe each stage in detail.
Participants selection. We propose an innovative method
to select the interview participants, which is an important
contribution of our work. We selected only cross-domain
developers from global software industry, i.e., developers
who have worked in more than one software domain. This
selection criterion makes sure the developer has experienced
more than one domain and, therefore, can confidently state
the differences in the development practices’ adoption. Ta-
ble I presents information regarding the domains to which
participants belong and years of experience with software
development. We anonymously identify each participant by
using the letter P followed by an identifier number (e.g.,
P1, P2, and so on until P19). On average, the interviewees
have 11.7 years of professional experience and most holds at
least one postgraduate degree, including masters and doctorate.
Most of the interviewees currently work or have worked as
developers for large multinational companies, with thousands
of employees and whose services and products reach millions
of users, such as Facebook, Google, Macy’s, General Electric,
and Petrobras. In addition, the participants workplaces are
distributed around the world, such as participants who are
currently working in the United States, Canada and Brazil.
Some participants have experience in three or even four
domains and for such cases we decided to do the interview
with respect to the domains in which developers have the most
experience.To check that participants were in fact cross-domain, we
carefully and manually inspected their LinkedIn accounts and
we selected only developers who have worked in companies or
projects within the targeted domains. In addition, developers
should have at least 5 years of professional experience and 1
year of work within each domain. By following these criteria,
we believe participants’ statements are more confident regard-
ing similarities and differences in adopted practices, which
also brings more confidence to our results. We started with
an opportunistic selection through a search in our LinkedIn
contact lists. Furthermore, we implemented an algorithm to
automatically look for software developers from each domain
by performing text analysis on the developer LinkedIn. The
algorithm returns the developers’ name and LinkedIn account,
which were manually validated by two authors. This double-
checked procedure helps to ensure that all participants meet the



TABLE I
INTERVIEWEES INFORMATION.

Participant Experience (Years) Domain 1 Domain 2
P1 20 Banking Healthcare
P2 9 Accounting E-commerce
P3 8 E-commerce Social Network
P4 10 E-commerce Education
P5 12 Healthcare Oil and Gas
P6 10 E-commerce Search Engine
P7 16 Banking E-commerce
P8 9 Education Healthcare
P9 11 Accounting E-commerce
P10 25 Banking Mining
P11 7,5 Games Mining
P12 16 Banking Games
P13 5 Aviation Healthcare
P14 17 Banking Stock Market
P15 7 Healthcare Stock Market
P16 15 Business Stock Market
P17 8 Accounting Education
P18 8 Banking E-commerce
P19 10 Accounting E-commerce

defined selection criteria. We contacted developers by email
(when available anywhere online, such as on GitHub) or by
the LinkedIn InMail functionality. The process of selecting
candidates for the interviews took too long due to the manual
validations and mainly the difficulty of findings cross-domain
developers with experience in at least two domains. Finding
cross-domain developers is even harder in some specific
domains (e.g., aviation), as developers from these domains
are highly specialized and usually do not have experience in
other domain of our interest. We sent 62 emails to the cross-
domain developers we identified and validated in LinkedIn,
and we received confirmations from 24 developers. However,
5 developers declined later due to concerns regarding their
companies’ private information, even though we made it clear
all the process would be anonymized and we were trying to
understand general practices adopted. Thus, we interviewed
19 developers (response rate of 31%).
Interview design. To guide us during the interviews, we
iteratively developed an interview script, which is composed
of three main sections: background of the participant, gen-
eral questions regarding differences in use of the software
development practices, and specific questions regarding a set
of practices, such as software testing and DevOps practices.
Through the first section, we are interested in participants
academic and professional background, such as the bachelor’s
degree, the highest academic degree, and years of experience.
In the second section of the interview, we asked general
questions regarding differences in software domains. In this
part, we are interested in getting the participant’s perception
about the development practices in different domains without
biasing our specific questions. Finally, in the last section, we
asked specific questions about some development practices.
In this section of the interview, we focus on the topics not
mentioned by the interviewee in the second section in order
to cover all target development practices. Our questions cover
the following practices: releasing practices (e.g., regarding

the deadlines of product releasing), quality assurance (which
included test practices), code review practices, continuous in-
tegration and delivery, version control practices, and practices
related to the software architecture, such as whether the team
is aware and discusses architectural impacts caused by changes
in the system [27].
Conduct of the interviews. After the usual consent process
with each participant, we start the interview, planned to last
no more than 40 minutes. We observed this period was
sufficient to do a concise interview, since we could collect
all information we needed. We also recorded all interviews
with the consent of the participants. Most interviews were con-
ducted through a conversation on Skype. However, when the
participant was not available due to agenda incompatibility, we
sent out the interview by email, doing a follow-up whenever
necessary (e.g., to better understand some responses).
Interview transcription analysis. The last stage of the inter-
view process is the transcription and analysis of the interview
to extract all relevant information. Here we used the open
coding technique. The first author of the paper carefully
analyzed the transcriptions and came up with the most relevant
and groundbreaking topics stated by the interviewees, which
were discussed afterwards by all authors of the paper.

D. Survey Validation

To check whether practices mentioned by interviewees are
in fact broadly adopted by developers from each domain,
we designed an online survey. It is important to note that
we validated adopted practices only for software domains
in which we reached the saturation, which occurred for the
following domains: banking (6 interviewees), e-commerce (8
interviewees), and healthcare (5 interviewees). The survey is
composed of two main sections: background (common to all
surveys) and questions regarding a software domain (specific
to the survey of each domain). Through the first section,
we intended to collect information related to the participants
background such as education, software development experi-
ence and development experience within the specific domain.
The second section contains concise and objective statements
that present characteristics and adopted practices within the
domains, as indicated by the interviewees. In this section, the
survey participant is asked to indicate the agreement with the
statement through a Likert-type scale.

To find participants for the survey, we first mined global
software repositories related to the target domains from
GitHub in order to collect the names and emails from top-
committers. We used specific search strings to make sure
the repositories belong to the domains of our interest. To
retrieve repositories from the banking domain, we used bank,
and banking strings; for the e-commerce domain, we used
e-commerce, e-commerce and electronic commerce strings;
finally, for the healthcare domain, the following strings were
used: healthcare, and health. Then, the repositories were
manually validated to certify they are in fact software systems
and they really belong to the domain. Finally, we automatically
collected the name and email of top-committers (number of



commits greater than 100) from repositories so that we could
send the survey by email. We believe users with more than
100 commits have sufficient knowledge within the domain
and therefore are capable to answer our survey. With this
procedure, we do not aim to find an extensive list of systems
and committers. Instead, our goal is to find a representative
number of worldwide developers with a good knowledge in
the domain (top-committers) to answer our survey. We had
to discard a very large number of committers since they did
not meet our criteria of 100 commits and possibly were not
capable of confidently answering the survey. In addition to this
strategy, we searched for additional participants in LinkedIn
since GitHub does not contain many popular repositories
that meet our criteria (belonging to specific domains and
developers with more than 100 commits). We looked for
worldwide developers from the three domains within LinkedIn
and sent the survey by email. After sending 329 emails, we
received 37 complete responses from participants worldwide
(response rate of approximately 11%), being 12 for banking,
14 for e-commerce and 11 for healthcare.

IV. RESULTS

In this section, we report results from the interviews we
conducted. Note that we present interview quotes that are
supported by at least three interviewees from different com-
panies. In parallel, we report the percentages of agreement (or
disagreement) of survey participants regarding each practice
reported by interviewees. Figure 1 shows a summary of our
main results obtained from the interviews, which are discussed
in Sections IV-A, IV-B, and IV-C. Rectangles indicate do-
mains and ellipses indicate practices (e.g., continuous integra-
tion practices) or characteristics (e.g., interoperability). Arrows
indicate which domains are related to practices/characteristics
and arrow labels show how that practice/characteristic is
adopted in that domain (e.g., continuous integration is inter-
rupted in the banking domain) as reported by interviewees.

Table II presents an overview of the survey results for the
statements regarding characteristics and adopted practices in
each domain. The first column shows the statements presented
to participants. Each statement is identified by a unique label.
For instance, we use S1.B to identify the first statement of the
banking survey. The second column presents the Likert distri-
bution of the participants agreement regarding each statement.

A. Banking Domain
Continuous integration interruption. Interviewees from the
banking domain often mentioned they are more careful with
dates when financial transactions increase, mainly in the end
of the year and beginning of each month. As a contrast to
other domains, banking developers pointed out that in such
periods they do not release large code changes to the servers,
interrupting the continuous integration process in order to
avoid inserting bugs in the systems during critical periods.
They also stated that the priority is to fix bugs. Participant
P10 said the following quote (supported by P1, P7, and P12):

Most of the banks have a freeze period about 30 days
before the new year, when just emergency software
updates are allowed.

Besides Black Friday and new years period, participants
also mentioned that development is modified prior to salary
payments, when the traffic is usually high. Below, a quote from
P18 with support of P1 and P7 (note that salaries are paid in
the beginning of the month in the participant’s country, which
may not be the case for other locations):

We usually do not release large code changes to
the server in the first days of the month, just before
salary payments.

According to the banking survey, 58.3% of participants
agree with this practice (scores 4 and 5), while only 16.6%
disagree (scores 1 and 2). In addition, 25% of participants were
neutral (score 3). The survey responses indicate that developers
usually adopt this practice in banking development.
Moderated regulatory demands. Developers also high-
lighted that banking systems are regulated by legal demands
that come from the government, which is not common in other
software domains. Hence, one common practice is to change
the code to comply to a regulatory demand, such as stated by
P10 and supported by P1 and P4:

Most of the time was used to enhance an existing
feature, add a new one or comply to a regulatory
change.

According to the banking survey, 83.3% of participants
agree with this practice (scores 4 and 5), while only 16.7%
are neutral (score 3). No respondents disagrees. The responses
indicate that in fact the banking domain requires specific
changes (besides usual ones) to comply to regulatory demands.
Overly complex requirements. Another characteristic of
the banking domain is regarding requirements engineering
practices. Developers from banking often said that under-
standing what stakeholders really want may be difficult due
to the context where the system will operate, many times
requiring the understanding of financial terms. Participant P10
mentioned (supported by P14 and P18):

...it is hard to understand and put everything to-
gether because it involves abstract, complex, and
structured financial operations.

According to the banking survey, 83.4% of participants
agree with this practice (scores 4 and 5), while only 8.3% are
neutral (score 3) and 8.3% partially disagree (score 2). The re-
sponses strongly indicate the high complexity of requirements
elicitation in the banking domain.

B. E-commerce Domain
Continuous integration interruption. Similarly to the bank-
ing domain, e-commerce developers also adopt practices of
interrupting continuous integration, according to our intervie-
wees. However, in this case, software development is oriented
to commerce important dates, when the amount of sales in-
crease. In such periods, participants mentioned that the priority
is to fix bugs and give the best experience for users. Therefore,



Healthcare E-commerce

Banking

Regulatory
demands

Continuous
Integration

High frequency

Moderated frequency Interruption

Interruption

Requirements
Security and

privacy concerns

User experience

Data

Performance concern
Understanding of complex

financial operations

Interoperability

Difficult

Fig. 1. Main adopted practices in domains. Banking domain is moderately regulated and interrupt continuous integration process in important commerce
periods (e.g., Black Friday); e-commerce follows an user-centered development, focusing on non-functional requirements that provide a good user experience
and also interrupt continuous integration process; and healthcare is highly regulated, focuses on patient data privacy and security and requirements elicitation
may be easier than in other domains.

TABLE II
SURVEY RESULTS WITH PRESENTED STATEMENTS AND LIKERT-SCALE AGREEMENT DISTRIBUTION.

Banking

S1.B - Code changes are less frequently released in periods of the year when large financial transaction are performed.
S2.B - The banking segment is moderately regulated, many times requiring changes in the system to fulfill regulatory demands.
S3.B - Requirements elicitation is hard because it envolves the understanding of complex financial operations.

E-commerce

S1.E - Code changes are often not released in periods of high amount of sales, such as in Black Friday and Christmas.
S2.E - This segment focuses on user-centered non-functional requirements, such as usability, security and performance.
S3.E - Code is pushed into production with less frequency compared to other software segments.

Healthcare

S1.H - The healthcare segment is highly regulated, with frequent legal demands.
S2.H - Requirements elicitation is relatively easier compared to other segments
S3.H - Interoperability of systems from different workplaces is usually difficult.
S4.H - Privacy, reliability and security of patient data are major concerns in healthcare software.

developers may change their usual continuous integration
practices (i.e., they stop sending large changes to the servers)
aiming at focusing on the most important tasks, such as bug
fixing. A quote from P6 supported by P2, P4, P7 and P9:

We have code freezes a few weeks prior to holidays
seasons, when only critical or major bug fixes could
be introduced. A week prior to the holidays abso-
lutely no code was checked in unless critical to the
business.

According to the e-commerce survey, 83.4% of participants
agree with this practice (scores 4 and 5), while only 16.6%
disagree (scores 1 and 2). The high agreement percentage
suggests this practice is in fact widely adopted by e-commerce
developers.
Focus on user experience. According to e-commerce inter-
viewees, developers give a special attention to specific user-
centered non-functional requirements, mainly performance,
usability and security. According to them, the user-focused
development aims at providing the best user experience as
possible, since a low performance system may prevent the
user from concluding a purchase. E-commerce development
practices include stress tests to guarantee the system will
provide a good experience for users. P3 mentioned (supported

by P6, P18 and P19):
Performance is critical for user experience. We
have stress-test environments where the numbers
are pushed to limits (visits, users, transactions, and
many other metrics that could be extrapolated).

According to the e-commerce survey, 50% of participants
partially agree with this practice (score 4), while 50% are
neutral (score3). This may indicate that focusing on the user-
experience is a generic characteristic, being important in other
domains as well.
Less frequent continuous delivery. Finally, interviewees
also mentioned that continuous delivery is less frequent in
e-commerce development in comparison to other software
domains, since code changes are extensively tested before
being put into production. This happens to make sure no bug
would be inserted into the system, which could cause a bad
experience for the user and reduce the number of visitors of
the website. P6 stated (supported by P2 and P4):

We had less frequent pushes to production in e-
commerce domain due to extensive code change
tests.

According to the e-commerce survey, 41.6% of participants
disagree with this practice (scores 1 and 2), while 25% are



neutral (score3) and 33.3% partially agree (score 4). The high
percentage of disagreement and neutrality may indicate that
this practice is not commonly adopted in the e-commerce
domain and it may only reflect interviewees experience within
their companies. Looking at this results, we believe that less
frequent continuous delivery is strictly related to companies
policies and culture, as it may reflect the personal experience
of interviewees who mentioned that.

C. Healthcare Domain
Frequent regulatory demands. The healthcare domain is
a well-established and largely known software domain within
both academia and industry. This domain has peculiarities that
differ it from the others, such as the regulations that health
systems usually must follow [13, 28]. In fact, interviewees
from the healthcare domain corroborate with this belief. For
instance, they mentioned that when a legal demand arrives,
the developer team needs to focus on implementing this new
demand, giving it the highest priority. P5 stated (supported by
P1, P8 and P13):

Health domain is more regulated and oriented by
legal demands, which come with a preestablished
date.

According to the healthcare survey, 70% of respondents
agree (scores 4 and 5) with this characteristic. More specif-
ically, 60% completely agree with it, indicating that in fact
healthcare software is higly regulated. Scores 1, 2, and 3
received 10% of responses each.
Clearer requirements. Regarding the requirements engi-
neering practices, it is common believed that this phase of
the software development is really difficult and complex [1].
However, participants from the healthcare domain contradicted
this belief, claiming that requirements elicitation in healthcare
domain is not as difficult as in other domains, such as Oil and
Gas (pointed out by P5) and banking (stated by P10). As they
said, despite the common lack of time of health professionals,
the requirements in this domain are clearer due to the (usu-
ally) higher qualification of health professionals (e.g., medical
doctors). Therefore, such professionals can easily understand
and keep a conversation with IT professionals, making the
requirements elicitation relatively easier and clearer, as P5
mentioned (supported by P1 and P13):

Requirements are clearer in healthcare due to the
higher qualification of health professionals (medical
doctors).

According to the healthcare survey, 50% of respondents
disagree (scores 1 and 2) with this characteristic. In addition,
10% are neutral (score 3) and 40% agree (scores 4 and 5). This
agreement distribution indicates that requirements elicitation in
healthcare domain may be strictly dependent on the personal
experience of developers and the health companies for which
they have worked. Therefore, it may reflect a characteristic
of the companies’ policies and culture, instead of an intrinsic
characteristic of the healthcare domain itself. Furthermore, we
believe that age and maturity of companies strongly influence
requirement engineering practices, as older companies may

have acquired experience with requirements elicitation, mak-
ing it easier as indicated by interviewees.
Difficult interoperability. Interviewees from healthcare also
mentioned the difficult they usually face regarding interop-
erability practices of systems from different companies. For
instance, even though there are some standards, hospitals may
have surprisingly different information patterns, which difficult
the communication among them., as P5 mentioned (supported
by P1 and P8):

Although there are standards, hospitals, for example,
rarely switch information because they have different
information formats.

According to the healthcare survey, 70% of respondents
agree (scores 4 and 5) with this practice. In addition, 30%
are neutral (score 3). The responses indicate that in fact
interoperability is a challenge in the healthcare domain.
Data security and privacy concerns. Healthcare participants
often mentioned the importance of reliability, privacy and se-
curity regarding patient data. The whole development process
is concerned with the patient data, always trying to keep them
reliable in order to avoid possible serious consequences. For
instance, participant P5 stated (supported by P1, P13 and P15):

If I switch patient data, I can give wrong diagnoses
and indicate wrong medications.

According to the healthcare survey, 70% of respondents
agree (scores 4 and 5) with this practice, while 30% are
neutral (score 3). The responses suggest that developers in
fact consider data security and data privacy major concerns in
the healthcare software development process.

V. DISCUSSION

In this section, we discuss the results obtained from the
interviews and from the survey. It is important to note that
we answer the research questions based on practices and
characteristics from domains in which there was agreement
between the interviewees and the survey participants. This
gives more confidence to our conclusions as broader and more
diverse set of developers agree with that practice.

We noticed that both banking and e-commerce domains
share a common practice of interrupting the continuous inte-
gration process in periods of the year when the amount of sales
increase, such as Black Friday and new year. Furthermore,
regulatory demands are common in the banking and healthcare
domains, usually requiring efforts from the development team
to implement changes into the system to comply to regulatory
requirements.

Answering RQ1: We found two similarities of prac-
tices across domains. First, continuous integration prac-
tices are adopted in a similar way in the banking and e-
commerce domains, which suggests that other financial-
related domains may also follow this practice. Second,
regulatory-driven changes are common in the banking and
healthcare domains, which must adapt their workflow to
comply to regulatory demands.



Requirements elicitation in the banking domain is different
from the other domains we investigated, since an understand-
ing of complex financial operations is necessary to precisely
capture requirements needs. The healthcare domain is different
from other domains regarding interoperability. For instance,
many health companies may have different information pat-
terns, which may hinder information switching between com-
panies. Other domains (e.g., mining, banking, and oil and gas)
have widely used standards that ease information switching
whenever necessary.

Answering RQ2: We found two main practices specific
to domain. First, requirements engineering practices are
adopted in an unique way by the banking domain, involv-
ing the comprehension of complex financial operations.
Second, practices related to interoperability are more
difficult in the healthcare domain in comparison to others,
due to different standards used by health companies.

Through the third research question, we are interested in
capturing the main factors that can influence which devel-
opment practices the companies adopt. Based on our inter-
pretations of the interviews, we noticed that the company’s
policy and culture play an important role when deciding about
the software development process. Many times, the software
engineering team is required to follow specific practices due
to the company way of work. For instance, as we already
discussed, we identified that less frequent continuous deliv-
ery practices in e-commerce and requirements engineering
practices in healthcare resulted from companies’ policies and
culture. Furthermore, the age and maturity also have a strong
impact on adopted practices. We realized that companies may
change or adapt practices throughout the years, also as a
result of the emergence of new technologies and development
processes.

Answering RQ3: The companies’ policy and culture
are important factors that guide the development process,
therefore impacting the adopted practices. Moreover, age
and maturity also may influence the practices’ adoption
and their way of use.

A. Implications for Global Software Engineering Practices

In this section, we elaborate on the three main practical
implications our results can have based on the joint analysis
of the interview findings and the survey responses. First, com-
panies should provide targeted training for their employees,
not only software developers, but also training for people from
other positions (e.g., software architect and technology leader).
The training should focus on specific domains’ characteristics
and how development practices are adopted within the com-
pany’s domain(s).

Second, professionals should update themselves regarding
which and how practices are adopted in domains, specially
if they are looking for a new job. For instance, developers

who work (or intend to work) with banking software should
understand (at least basic) financial operations as this my
strongly aid the requirements elicitation.

Third, software engineering education professionals should
consider specificities of different software domains. We believe
new teaching approaches that consider the domain should
be developed. For instance, new specific undergraduate or
graduate courses may be interesting. Interdisciplinary courses
may also be a good idea, as Richardson et al. [13] recently
suggested an interdisciplinary course of software engineering
and healthcare.

B. Contrast with Current Beliefs

Our results give insights about characteristics and ways
global development practices are used in specific software
domains and some results may be surprising for many practi-
tioners or contradict the current common sense. In this section,
we present how our results are surprising or contrast with
current beliefs regarding development practices in software
domains.

Continuous integration may not always be a homogeneous
global software engineering practice in some domains. This
practice has emerged recently aiming at automating the compi-
lation, building and testing of code, with weekly and even daily
integration [29, 30, 31] and some studies have investigated
continuous integration flexibility, costs and benefits [32, 33].
Most developers keep adopting this practice based on how
everyone uses, but the academy has not investigated so far
whether there are differences in continuous integration usage.
Surprisingly, we identified that developers from banking and
e-commerce (i.e., financial domains) usually interrupt contin-
uous integration in critical commerce periods, such as Black
Friday, aiming at avoiding inserting subtle bugs in the systems,
which would be catastrophic for the company. We did not
identify this practice in the other domains we investigated at
all, suggesting it possibly is exclusive from financial domains.

C. Results for Other Domains

In this section, we present other interesting findings from the
interviews in which we did not reach the saturation. Therefore,
these results provide insights regarding some domains and we
emphasize the need for further investigation focusing on these
specific domains.
Releasing practices flexibility in Social Network and Search
Engine domains. Interviewees from social network and
search engine domains often mentioned the flexibility they
usually have regarding many aspects, such as the release
deadlines. We may expect that software development has
extremely strict deadlines of releasing a product, as indicated
by interviewees from banking and e-commerce domains. How-
ever, this seems not to be the rule for social network domain,
as participant P3 said:

...developers prioritize product and technology ex-
cellences. There is less pressure for the deadline
itself.



Participant P6 reported how developers are assigned to the
projects. We may expect developers are told what they need
to develop and they just do it. However, a common practice
in social network systems is that developers have the freedom
to choose the project and the feature they work on, as P6
mentioned:

I have complete freedom to choose what kind of
project I’m going to work on, what I want to do.

Although domains usually have a dedicated testing team,
such as in banking (stated by P1) and e-commerce (stated
by P7), interviewee P3 pointed out, as a contrast to other
domains, that tests are performed by the developers themselves
in the social network domain. More specifically, the developer
who implemented a feature, for example, is responsible for
testing it. This code-owner based approach has been adopted
only recently in systems with modern architectures, such as
microservices [34, 35]. Therefore, the adoption of this practice
may be a result of architectural decisions in this domain. A
quote from P3:

...there is no test team. The developer is responsible
for creating all integration, web-driven, and unit
tests.

Finally, we concluded that social network and search engine
domains are quite peculiar, presenting unexpected manage-
ment practices (decisions about the projects in which devel-
opers work and deadline policy) and test practices.
Automatic fault-recovery in Oil and Gas domain. The
participant from the oil and gas domain pointed out that this
domain must take into account the need for an automatic fault-
recovery module, which is present during the entire develop-
ment process, from the requirements until the delivery and
operation. In addition, the software system must be extremely
robust, given the environmental conditions of operations (e.g.,
an oil platform in the middle of the ocean). One of the reasons
behind these needs is that the systems remain physically
inaccessible for a long period of time, since professionals
do not have continuously access to the location where the
software is deployed, which is common in other domains (e.g.,
healthcare as pointed out by P13). Remote connections may
also be difficult given the location of the system. A quote from
P5:

Oil and Gas requires more robust and autonomous
solutions since the system is hard to reach for a long
time.

VI. LIMITATIONS AND THREATS TO VALIDITY

The study presented in this paper has some limitations that
could potentially threaten our results, as we explain next. First,
one may point a company from a domain we investigated
and may say the company does not adopt the practices as
we presented. However, our findings are based on interview
participants’ perceptions and their experience, and therefore
our results may not generalize to all companies, as each one
can adopt development practices based on its own culture and
policy. Note that, in this study, we focus on large companies,
such as Facebook, Google, Petrobras, and Macy’s. Therefore,

our results may not hold for small companies possibly with
informal software engineering processes. This kind of lim-
itation is characteristic of qualitative studies, as previously
studied [36, 37]. However, Flyvbjerg [38] demonstrated that
even individual cases (i.e., studies limited to one company)
contributed to discoveries in several fields, such as physics
and social sciences. Therefore, even within a limited context
of a few companies and participants, we believe our results can
impact how companies from the studied software domains can
adopt development practices.

Second, another limitation of our study is related to our
methodology for finding cross-domain developers. We rely on
a semi-automated search for interview participants, manually
validating LinkedIn profiles returned by an algorithm we
implemented. However, we may have misclassified devel-
opers as cross-domain (e.g., assigning a domain in which
the developer has never worked). This may have caused a
reduction in the response rate for the interview since there
would be wrong information regarding the domains in which
the developers we contacted have worked. To mitigate such
issue, we have performed a double check for each participant
before contacting.

Third, one may point that our interview results are based
only on participants personal experience. However, we se-
lected practitioners with a diverse background. This scenario
composed of several large companies and different work
locations bring more generalization to our results since we
believe that biases (e.g., from a specific sort of company or a
specific location) are attenuated. In addition, the Web survey
collected responses from developers worldwide wit different
backgrounds, which supports our interview results regarding
adopted practices within domains.

Finally, during the interviews, we asked questions about
specific development practices. One may argue that this is a
limiting factor and does not allow the interviewee to provide
information about a wider range of topics. However, in the last
section of the interview, the participant could talk about any
desired topic, including information not previously given.

VII. CONCLUSION AND NEXT STEPS

In this paper, we report the results of an exploratory
qualitative study in which we conducted 19 semi-structured
interviews with worldwide cross-domain developers who have
worked in several multinational companies from different
domains around the world. We also run a Web survey to
check whether development practices revealed by interviews
are widely adopted.

Our findings suggest that different domains in fact adopt
development practices in different manners. For instance,
financial domains interrupt the continuous integration process
in commerce critical periods (e.g., Black Friday), when the
amounts of sales sharply increase. The company’s culture and
policies also impact decisions about development practices,
as previously suggested by Bogart et al. [39]. We emphasize
the need for further investigation regarding practices and
domains’ characteristics in which there was disagreement



between interviewees and survey participants, such as the
less frequent continuous delivery in e-commerce systems and
clearer requirements practices in healthcare. It is important to
note that we do not claim our results should be universally
adopted by companies within the domains we investigated.
Instead, a careful analysis is recommended for each case. Here
we are providing insights that might possibly be adopted, given
their successful use in global software engineering industry
so far. As future work, we intend to conduct a series of
studies focusing on domains in which we did not reach the
saturation, but interesting information was collected, such as
for social networks and oil and gas domains. In addition,
highly specialized domains that potentially have interesting
practices need focused studies as well, such as aviation.

VIII. ACKNOWLEDGMENTS

This research was partially supported by Brazilian funding
agencies: CNPq (Grant 290136/2015-6 and 424340/2016-0),
CAPES, and FAPEMIG (Grant PPM-00651-17).

REFERENCES

[1] B. Yost, M. Coblenz, B. Myers, J. Sunshine, J. Aldrich,
S. Weber, M. Patron, M. Heeren, S. Krueger, and
M. Pfaff, “Software development practices, barriers in
the field and the relationship to software quality,” in 10th
Int’l Symposium on Empirical Software Engineering and
Measurement, 2016.

[2] H. K. Wright and D. E. Perry, “Release engineering prac-
tices and pitfalls,” in 34th Int’l Conference on Software
Engineering, 2012.

[3] P. Thongtanunam, S. McIntosh, A. E. Hassan, and
H. Iida, “Investigating code review practices in defective
files: An empirical study of the qt system,” in 12th
Working Conference on Mining Software Repositories,
2015.

[4] M. Stavnycha, H. Yin, and T. Römer, “A large-scale
survey on the effects of selected development practices
on software correctness,” in 2015 Int’l Conference on
Software and System Process, 2015, pp. 117–121.

[5] E. Gamma, Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[6] J. Highsmith and A. Cockburn, “Agile software devel-
opment: The business of innovation,” Computer, vol. 34,
no. 9, pp. 120–127, 2001.

[7] P. M. Duvall, S. Matyas, and A. Glover, Continuous
integration: improving software quality and reducing
risk. Pearson Education, 2007.

[8] B. Fitzgerald and K.-J. Stol, “Continuous software en-
gineering: A roadmap and agenda,” Journal of Systems
and Software, vol. 123, pp. 176–189, 2017.

[9] L. Chen, “Continuous delivery: Huge benefits, but chal-
lenges too,” IEEE Software, vol. 32, no. 2, pp. 50–54,
2015.

[10] S. Gregory, “How common is common enough in
requirements-engineering practice?” IEEE Software,
vol. 35, no. 3, pp. 20–23, 2018.

[11] E. Murphy-Hill, T. Zimmermann, and N. Nagappan,
“Cowboys, ankle sprains, and keepers of quality: How
is video game development different from software de-
velopment?” in 36th Int’l Conference on Software Engi-
neering, 2014.

[12] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo,
E. Cirilo, P. Jamshidi, and C. Kastner, “Evaluating
domain-specific metric thresholds: an empirical study,”
in Int’l Conference on Technical Debt, 2018.

[13] I. Richardson, L. Reid, and P. OLeary, “Healthcare sys-
tems quality: development and use,” in Int’l Workshop
on Software Engineering in Healthcare Systems, 2016.

[14] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory
in software engineering research: A critical review and
guidelines,” in 38th Int’l Conference on Software Engi-
neering, 2016.

[15] A. Strauss and J. M. Corbin, Basics of qualitative
research: Grounded theory procedures and techniques.
Sage Publications, Inc, 1990.

[16] B. G. Glaser and A. L. Strauss, Discovery of grounded
theory: Strategies for qualitative research. Routledge,
2017.

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in software engi-
neering. Springer Science & Business Media, 2012.

[18] P. Stacey and J. Nandhakumar, “A temporal perspective
of the computer game development process,” Information
Systems Journal, vol. 19, no. 5, pp. 479–497, 2009.

[19] T. Burger-Helmchen and P. Cohendet, “User communi-
ties and social software in the video game industry,” Long
Range Planning, vol. 44, no. 5-6, pp. 317–343, 2011.

[20] B. Dagenais and M. P. Robillard, “Creating and evolving
developer documentation: understanding the decisions of
open source contributors,” in 18th Int’l Symposium on
Foundations of Software Engineering, 2010.

[21] S. Segura, A. B. Sánchez, and A. Ruiz-Cortés, “Auto-
mated variability analysis and testing of an e-commerce
site.: an experience report,” in 29th Int’l Conference on
Automated software engineering, 2014.

[22] D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi,
“Software quality concerns in the italian bank sector: the
emergence of a meta-quality dimension,” in 39th Int’l
Conference on Software Engineering: Software Engineer-
ing in Practice Track, 2017.

[23] G. Fairbanks, K. Bierhoff, and D. D’Souza, “Software ar-
chitecture at a large financial firm,” in 21st symposium on
Object-oriented programming systems, languages, and
applications, 2006.

[24] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané,
D. Poshyvanyk, and Y.-G. Guéhéneuc, “Domain matters:
bringing further evidence of the relationships among
anti-patterns, application domains, and quality-related
metrics in java mobile apps,” in 22nd Int’l Conference
on Program Comprehension, 2014.

[25] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W.
Jones, D. C. Hoaglin, K. El Emam, and J. Rosen-



berg, “Preliminary guidelines for empirical research in
software engineering,” IEEE Transactions on software
engineering, vol. 28, no. 8, pp. 721–734, 2002.

[26] K. Charmaz and L. L. Belgrave, “Grounded theory,” The
Blackwell encyclopedia of sociology, 2007.

[27] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and
M. Harman, “Are developers aware of the architectural
impact of their changes?” in 32nd Int’l Conference on
Automated Software Engineering, 2017.

[28] K. Roed and G. Ellingsen, “Users as heterogeneous
engineers-the challenge of designing sustainable infor-
mation systems in health care,” in 44th Hawaii Int’l
Conference on System Sciences, 2011.

[29] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to contin-
uous integration in github,” in 10th Joint Meeting on
Foundations of Software Engineering, 2015.

[30] D. Ståhl and J. Bosch, “Modeling continuous integration
practice differences in industry software development,”
Journal of Systems and Software, vol. 87, pp. 48–59,
2014.

[31] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for
improving regression testing in continuous integration
development environments,” in 22nd Int’l Symposium on
Foundations of Software Engineering, 2014.

[32] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and
D. Dig, “Trade-offs in continuous integration: assurance,
security, and flexibility,” in 11th Joint Meeting on Foun-
dations of Software Engineering, 2017.

[33] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig,
“Usage, costs, and benefits of continuous integration
in open-source projects,” in 31st Int’l Conference on
Automated Software Engineering, 2016.

[34] P. Jamshidi, C. Pahl, N. C. Mendona, J. Lewis, and
S. Tilkov, “Microservices: The journey so far and chal-
lenges ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35,
May 2018.

[35] L. Prechelt, H. Schmeisky, and F. Zieris, “Quality ex-
perience: a grounded theory of successful agile projects
without dedicated testers,” in 38th Int’l Conference on
Software Engineering, 2016.

[36] A. Begel and T. Zimmermann, “Analyze this! 145 ques-
tions for data scientists in software engineering,” in 36th
Int’l Conference on Software Engineering, 2014.

[37] D. Lo, N. Nagappan, and T. Zimmermann, “How prac-
titioners perceive the relevance of software engineering
research,” in 10th Joint Meeting on Foundations of Soft-
ware Engineering, 2015, pp. 415–425.

[38] B. Flyvbjerg, “Five misunderstandings about case-study
research,” Qualitative inquiry, vol. 12, 2006.

[39] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How
to break an api: Cost negotiation and community values
in three software ecosystems,” in 24th Int’l Symposium
on Foundations of Software Engineering, 2016.

View publication statsView publication stats

https://www.researchgate.net/publication/332655578

