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Abstract

Software-product-line engineering is an effi-
cient means to generate a family of program vari-
ants for a domain from a single code base. How-
ever, because of the potentially high number of
possible program variants, it is difficult to test them
all and ensure properties like type safety for the
entire product line. We present a product-line–
aware type system that can type check an entire
software product line without generating each vari-
ant in isolation. Specifically, we extend the Feath-
erweight Java calculus with feature annotations
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for product-line development and prove formally
that all program variants generated from a well-
typed product line are well-typed. Furthermore, we
present a solution to the problem of typing mu-
tually exclusive features. We discuss how results
from our formalization helped implementing our
own product-line tool CIDE for full Java and report
of experience with detecting type errors in four ex-
isting software-product-line implementations.
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1 Introduction

Software-product-line engineering is an efficient means to
create a family of related programs for a domain [Bass
et al., 1998; Pohl et al., 2005]. Instead of implementing
each program from scratch, product-line engineering fa-
cilitates reuse by modeling a domain with features (in-
crements in functionality relevant for stakeholders) and
generating program variants from common assets [Kang
et al., 1990; Bass et al., 1998; Czarnecki and Eisenecker,
2000]. Hence, from a common code base, we can gen-
erate different variants that are tailored to specific usage
scenarios. Product-line engineering is typically split into
two phases: domain engineering (development of a com-
mon code base) and application engineering (variant gen-
eration reusing the common code base) [Czarnecki and
Eisenecker, 2000; Bass et al., 1998; Pohl et al., 2005].

Although the flexibility of software product lines
to generate different tailored variants is an important
strength [Bass et al., 1998; Pohl et al., 2005], it comes at a
price of increased complexity. Instead of a single program,
developers implement potentially millions of variants in
parallel. To ensure correctness, testing a single program is
no longer sufficient; out of millions of variants, errors may
occur in few variants that offer a certain feature or feature
combination [Pohl et al., 2005; Thaker et al., 2007; Czar-
necki and Pietroszek, 2006; Batory and Geraci, 1997]. As



some variants are never or rarely generated (e.g., only
late after initial development when a new customer re-
quests such a variant), potential errors may go undetected
for a long time, until they are expensive to fix. A brute force
strategy of generating, compiling, and testing all variants
is not feasible for most product lines due to the high num-
ber of potential variants; therefore, novel approaches are
needed that check the entire product line during domain
engineering instead of checking each individual variant in
isolation during application engineering.

There are many different approaches to implement
variability in software product lines. Here, we focus on a
simple mechanism, which is very common in industry: De-
velopers annotate code fragments inside a common code
base, for example, using #ifdef statements or similar di-
rectives; to generate a variant, annotated code fragments
are removed from the common code base, depending on
a stakeholder’s feature selection. Support for annotations
(a.k.a. conditional compilation) is available in many en-
vironments or languages such as C, C#, Visual Basic,
Pascal, Fortran, and Erlang, and Java ME; when not sup-
ported natively, it can be added with lightweight tools.

We present a product-line–aware type system that
statically and efficiently detects type errors in annotation-
based product-line implementations. Type errors are a
class of common errors that can be detected statically
in many languages, typically during compilation. Product-



line implementations are especially prone to type errors,
such as dangling method invocations, because variant
generation may conditionally remove code. In contrast to
conventional product-line approaches that generate and
check variants in isolation during application engineering,
a product-line–aware type system detects type errors in
the entire software product line in a single pass already
during domain engineering.

As goals, we want our type system to be both sound
and practical. We formalize the type system for a subset of
Java on top of the Featherweight Java calculus [Igarashi
et al., 2001] and provide a solution for the problem of
type checking alternative (mutually exclusive) features.
We guarantee that a well-typed software product line
produces only well-typed variants (generation preserves
typing) and prove this property with the proof assistant
Coq.1 We deliberately design a backward compatible so-
lution that does not introduce new language constructs
but can reuse existing tool infrastructures and can be ap-
plied to existing source code. Based on our formaliza-
tion and gained insights, we implemented a type sys-
tem for full Java on top of our annotation-based product-
line tool CIDE (as extensions to existing type checks in
Eclipse). In three case studies, we found that a product-
line–aware type system can efficiently detect errors in ex-

1http://www.lix.polytechnique.fr/coq/



isting product-line implementations. In all three analyzed
product lines, which were developed using #ifdef direc-
tives by others (between 4 600 and 45 000 lines of code),
CIDE found type errors that occur only when a variant with
a specific feature combination is generated.

Our type-checking approach is part of a bigger en-
deavor to detect various kinds of errors in product lines
as early as possible. It builds on top of our prior efforts to
prevent syntax errors with disciplined annotations in our
tool CIDE [Kästner et al., 2008, 2009b] and is inspired
by prior work on type checking entire product lines [Czar-
necki and Pietroszek, 2006; Thaker et al., 2007; Huang
et al., 2005, 2007; Delaware et al., 2009; Apel et al., 2010]
(see Sec. 9).

This paper is a revised and extended version of [Käst-
ner and Apel, 2008]. We make the following contributions
(of which only the second was made in [Kästner and Apel,
2008]):

• We provide an overview of typing problems and
discuss design goals for practical application and
reuse of existing tool infrastructures.

• We formalize a product-line–aware type system
and a variant generation mechanism on top of
Featherweight Java.

• We provide a solution to the problem of typing alter-



native features.

• We proof soundness (generation preserves typing).

• We implement type checks for full Java in CIDE and
conduct a series of case studies to evaluate practi-
cality and efficiency of the type system.



2 Software-Product-Line Implemen-
tation

The idea behind software-product-line engineering is to
analyze an entire domain and document commonalities
and variabilities of different programs of that domain.
Then, instead of implementing a single program, develop-
ers implement common artifacts from which they can gen-
erate different program variants. For example, in the do-
main of embedded database systems, different program
variants are needed depending on different usage sce-
narios: in some embedded systems transactions are re-
quired, in others recovery is needed, others are read-only,
and only some need support for ad-hoc queries.

There are many approaches to implement software
product lines, ranging from simple ad-hoc mechanisms to
sophisticated architectures and specialized languages. In
practice, developers often use simple tools such as the C
preprocessor to implement variability. In a common code
base, developers annotate code fragments with #ifdef X
and #endif directives or similar constructs, in which X rep-
resents a feature such as transactions. Based on a feature
selection provided as configuration file or command line
parameters, developers can later include or exclude the
annotated code fragments during variant generation.

Beyond languages that support some form of annota-



tions natively, such as C, C#, and Pascal, there are sev-
eral independent, partly configurable preprocessors such
as GPP,2 GNU M4,3 or the preprocessors included in the
Version Editor [Atkins et al., 2002]. Also the commercial
product-line tools pure::variants [Beuche et al., 2004] and
Gears [Krueger, 2002] provide their own preprocessors.

In literature, annotation-based approaches are heav-
ily criticized as summarized in the claim “#ifdef consid-
ered harmful” [Spencer and Collyer, 1992] and in the col-
loquial term “#ifdef hell” [Lohmann et al., 2006]. Numer-
ous studies discuss the negative effect of preprocessor
usage on code quality and maintainability [Spencer and
Collyer, 1992; Krone and Snelting, 1994; Favre, 1997;
Ernst et al., 2002]. Despite this criticism, practitioners
implement many software product lines with preproces-
sors. Examples are HP’s product line Owen for printer
firmware [Pearse and Oman, 1997], Danfoss’ product line
of frequency converters [Jepsen and Beuche, 2009], the
NASA’s product line of flight control systems [Ganesan
et al., 2009], and the Linux kernel [Tartler et al., 2009; She
et al., 2010].

In academia, however, annotation-based approaches
received little attention. Instead, academics typically rec-
ommend to limit or entirely abandon their use and to
implement software product lines with “modern” imple-

2http://www.nothingisreal.com/gpp/
3http://www.gnu.org/software/m4/



mentation techniques that encapsulate features in some
form of modules (such as components [Szyperski, 1997],
frameworks [Johnson and Foote, 1988], feature mod-
ules [Prehofer, 1997; Batory et al., 2004], aspects [Kicza-
les et al., 1997], and others).

Nevertheless, adoption of modern implementation
techniques in practice is slow, and we expect that
annotation-based product-line implementation will domi-
nate practice at least in the mid-term future. We even dis-
cuss that (with some improvement, disciplined usage, and
tool support) annotation-based approaches can be con-
sidered as viable long-term alternative to module-based
approaches [Kästner et al., 2008; Kästner and Apel,
2009]; however that discussion is outside the scope of
this paper. Here, we provide a type system for annotation-
based implementations intended for current and at least
mid-term practical use.



3 Type Errors in Software Product
Lines

Before we start with a formal discussion of our type sys-
tem, we provide a quick overview of product-line devel-
opment using annotations, different type errors that can
occur, and desirable properties of the type system that we
want to guarantee. We provide examples of annotations
that result in ill-typed program variants, which are simpli-
fied for conciseness almost to the edge of triviality, but
which stem from earlier experience in developing product
lines for embedded database applications [Kästner et al.,
2007]. Our examples are written in Java and variability
is implemented with the well-known syntax of the C pre-
processor;4 however, the same problems occur in other
languages and when using other forms of annotations.

Method invocation As a first example, consider the fol-
lowing code fragment of a class Storage used by another
class Database.

4For the sake of concise examples, we use a slightly relaxed notation
of the C preprocessor throughout this paper. First, we allow #ifdef in-
structions inside a line, instead of breaking the source code into multiple
lines. Second, we allow boolean operators in the condition as “#ifdef X
∧ Y ” and “#ifdef X ∨ Y ” as alternative to nested #ifdef directives or “#if
defined(X) || defined(Y)”.



1 class Database {
2 void insert(Object key, Object data, Txn txn) {
3 storage.set(key, data, txn.getLock());
4 }
5 }
6 class Storage {
7 #ifdef WRITE
8 boolean set(Object key, Object data, Lock l) {...}
9 #endif

10 }

In a read-only database variant, setting values in the
storage class is not supported, so the according code
is annotated to be removed unless a feature WRITE is
selected (#ifdef ). Although this code is well-typed for
all variants that actually select the feature WRITE, the
method invocation of set in Line 3 (underlined) cannot
be resolved in variants in which WRITE is not selected.
In these cases, the method invocation remains but the
corresponding method declaration is removed. If read-
only databases are not generated during development,
this error may go undetected. In some cases, it may be
detected only after development, when a customer ac-
tually requests a variant without WRITE. To type check
the entire product line, we need to make sure that the
method invocation can reach a method declaration in ev-
ery variant in which the invocation itself is present. One
of many possible solutions to eliminate the error in our
example is to annotate the insert method with WRITE as
well.



Referencing types There are numerous similar type er-
rors, for example, when an entire class is annotated as in
the example below. If a database without transactions is
generated, compilation will fail because the parameter’s
type Txn (underlined) cannot be resolved. Similar type er-
rors can occur when the class is referenced as return type
or as supertype, when new objects are instantiated, and
in several other cases.

1 class Database {
2 void insert(Object key, Object data, Txn txn) {
3 storage.set(key, data, txn.getLock()); }
4 }
5 #ifdef TRANSACTIONS
6 class Txn { ... }
7 #endif

Parameters To fix the previous error, we could anno-
tate the parameter txn of the method insert as well, as
shown below, such that in database variants without trans-
actions insert has a different signature. To avoid a prob-
lem when accessing the local variable txn, we annotate
the invocation ‘txn.getLock()’. If a database without trans-
actions is generated, typing this variant still fails, because
the method invocation ‘storage.set(...)’ has only two pa-
rameters, but the method declaration expects three.



1 class Database {
2 void insert(Object key, Object data
3 #ifdef TRANSACTIONS, Txn txn #endif ) {
4 storage.set(key, data
5 #ifdef TRANSACTIONS, txn.getLock() #endif );
6 }
7 }
8 class Storage {
9 boolean set(Object key, Object data, Lock l) {...}

10 }

Again, there are different solutions to make all variants
in this example well-typed: we can annotate the lock pa-
rameter of set (and all occurrences in the method’s body
not shown here), or we can overload the method declara-
tion of set. Either way, when type checking the entire prod-
uct line, we must make sure that the provided parameters
match the expected formal parameters in all variants.

Feature model and alternative features The previous
examples were relatively simple because they contained
only annotations with a single optional feature. However,
a software product line can have hundreds of features
and not all combinations of features may make sense.
For example, transactions are not necessary in a read-
only database; therefore, we do not need to consider a
variant with TRANSACTION but without WRITE during type
checking. Furthermore, two features like PERSISTENT and
IN-MEMORY for data storage can be alternative (mutually
exclusive); every variant must select one of them but not



both at the same time. Even more complex constraints like
‘feature A can be selected only when B or C but not D are
selected’ occur in practice [Mendonça et al., 2009; Thüm
et al., 2009].

Features and their relationships in product lines are
described in a feature model (also known as variability
model). There are different forms of how to describe fea-
ture models; a common form is a feature diagram [Kang
et al., 1990; Czarnecki and Eisenecker, 2000], but it is also
possible to enumerate all allowed variants, or use logics
to describe constraints on the feature selection [Batory,
2005; Benavides et al., 2005; Schobbens et al., 2006].
Based on a feature model, we can decide which feature
combinations are valid and can be used to generate a
variant. When type checking a software product line, we
need to consider all valid variants.

The following code sample shows a code fragment
which is only well-typed if we know (a) that PERSISTENT

and IN-MEMORY are mutually exclusive (otherwise a vari-
ant with both features would be ill-typed because class
Storage would contain two methods with the same sig-
nature) and (b) that WRITE can only be selected if either
PERSISTENT or IN-MEMORY is selected (otherwise an ill-
typed variant could be generated with a method invoca-
tion of set but no according declaration). This example
illustrates that we need to consider complex constraints
between features for type checking product lines.



1 class Database {
2 #ifdef WRITE
3 void insert(Object key, Object data, Txn txn) {
4 storage.set(key, data, txn.getLock()); }
5 #endif
6 }
7 class Storage {
8 #ifdef PERSISTENT
9 boolean set(Object key, Object data, Lock lock) {

10 return /* implementation A */;
11 }
12 #endif
13 #ifdef INMEMORY
14 boolean set(Object key, Object data, Lock lock) {
15 return /* implementation B */;
16 }
17 #endif
18 }



4 Desired Properties of the Type
System

Overall there are two properties that we want to ensure
with a type system for software product lines: generation
preserves typing and backward compatibility. The first is
the necessary core of this paper and the second is funda-
mental design decision targeted at better tool support as
we will explain.

Generation preserves typing: We want to guarantee
that every variant which we can generate from a well-
typed product line is well-typed. If a product line allows
ill-typed variants, we want an error message upfront dur-
ing domain engineering, without actually generating every
single variant. We call a product line well-typed if all vari-
ants it can generate are well-typed. This is the main goal
we want to achieve with our type system.

Backward compatibility: We want that a product line
that we strip of all its annotations is a well-typed program
(not necessarily a variant with reasonable runtime se-
mantics). For our work with Java, this implies two things:
(a) our type system is an extension of Java’s type system
and not a replacement, and (b) we do not introduce new
language constructs, because this would be no longer be
a Java program. This desired property may appear arbi-
trary but has a rationale from a tool developer’s perspec-



tive. As soon as we introduce a new keyword, or just allow
multiple methods with the same name as in the previous
code example, existing tool infrastructures can no longer
be used and must be rewritten. For example, this prob-
lem was experienced by the AJDT and Scala teams that
provided commercial-quality Eclipse plug-ins for AspectJ
and Scala. Because AspectJ and Scala extend the Java
syntax, the existing editors with syntax highlighting, out-
line views, navigation, and code completion could not be
reused, but the entire tool infrastructure had to be rewrit-
ten (often through ‘coping and editing’) [Chapman, 2006;
McDirmid and Odersky, 2006]. On the other hand, adopt-
ing a new language for product lines without adequate tool
support is difficult for developers who are used to the com-
fort of modern IDEs. Therefore, we design a mechanism
and enforce certain restrictions, so that our type system
is backward compatible. For example, we do not directly
support an implementation as in the previous example,
but require a different encoding of alternative features,
which we discuss in Section 6.

Backward compatibility is not necessary and can be
discussed controversially. On the one hand, if we drop
backward compatibility, we can build a more expressive
language, especially regarding alternative features. On
the other hand, if we retain backward compatibility and
design a type system as extension, we can leave the ex-
isting type checker and tool infrastructure as is, and just



add the additional conditions on top. In fact, in a parallel
line of work, we designed a different product-line–aware
type system FFJPL that drops backward compatibility, in-
troduces new language constructs, and supports alterna-
tive features directly [Apel et al., 2010]. The type system
is very expressive, but also very complex. Its applicabil-
ity and ability to scale to realistic product-line implemen-
tations has not been shown yet. From our perspective
backward compatibility is desirable; it influenced many of
our design decisions, which we discuss in the respective
sections. We focus on type systems that can be used for
industrial-size product-line development and demonstrate
the suitability in four case studies in Section 8.



5 Colored Featherweight Java (CFJ)

With Colored Featherweight Java (CFJ), we introduce a
calculus of a language and type system for software prod-
uct lines. We designed CFJ for a subset of Java on top of
disciplined annotations. It fulfills both desired properties:
generation preserves typing and backward compatibility.
(The calculus is named colored due to a peculiarity of our
product-line tool CIDE, which uses background colors to
represent annotations.)

We decided to provide a formalization and proof for
both properties, after an initial implementation of our
type system for Java. We soon found that our imple-
mentation was unsound: We could not give a guaran-
tee and sometimes generated ill-typed variants from a
product-line that our implementation had considered well
typed, because we forgot some checks. We found sim-
ilar problems in other product-line–aware type systems
(see Sec. 9). At the same time, a formalization of our
type checks for the entire Java language is not feasible
because of Java’s complexity and rather informal, textual
specification (688 pages!) [Gosling et al., 2005]. Instead,
we formalize product-line–aware type checking mecha-
nism for Featherweight Java (FJ), a subset of Java, and
describe how we implemented and extended it toward full
Java and other languages in Section 7.



5.1 Featherweight Java

FJ is a minimal functional subset of Java for which typ-
ing and evaluation are specified formally and proved to be
sound with the FJ calculus [Igarashi et al., 2001; Pierce,
2002]. It was designed to be compact; its syntax, typing
judgments and operational semantics fit on a single sheet
of paper. FJ strips Java of many advanced features such
as interfaces, abstract classes, inner classes, and even
assignments, while retaining the core features of Java typ-
ing. There is a direct correspondence between FJ and a
purely functional core of Java, such that every FJ program
is literally an executable Java program.

The motivation behind FJ was to experiment with for-
mal extensions of Java, while focusing only on the core
typing features and neglecting many special cases that
would require a larger calculus, without raising substan-
tially different typing issues. Because of its simplicity even
proofs for significant extensions remain manageable. For
the same reasons, we chose FJ over other formalized
Java subsets such as Classic Java [Flatt et al., 1998],
Javalight [Nipkow and von Oheimb, 1998], or Lightweight
Java [Strniša et al., 2007].

We do not repeat the FJ calculus; however, its mecha-
nisms will become clear from our formalization as we high-
light our modifications and repeat unmodified rules.



5.2 Syntax and Annotations

First, we describe CFJ’s syntax and how feature annota-
tions are introduced in the calculus. For CFJ, we use the
original FJ syntax without casts, as shown in Figure 1.5 As
in FJ, we use the following notational conventions: x de-
notes a list of elements x1 x2 . . .xn. In conditions of type
rules, relations and operations on lists are applied to all
entries; for example, f (x) = y is short for

(
f (x1) = y

)
∧(

f (x2) = y
)
∧ . . .∧

(
f (xn) = y

)
and f (x) = g(y) is short

for
(

f (x1) = g(y1)
)
∧
(

f (x2) = g(y2)
)
∧ . . .∧

(
f (xn) =

g(yn)
)
. Finally, also as in FJ, we require elements of lists

to be named uniquely; for example, there may not be two
methods with the same name in a class.

As in FJ, a class table CT maps each class’ name to
its declaration and has the sanity conditions: (a) CT (C) =

5An earlier version of our type system included casts [Kästner and
Apel, 2008]. Although casts were essential in the original Feather-
weight Java publication for the discussion about parametric polymor-
phism [Igarashi et al., 2001], casts do not add anything new for type
checking product lines. We decided to remove casts to streamline pre-
sentation and proofs.

We make slight modifications to the notation in [Igarashi et al., 2001]:
We use C f instead of C f to emphasize that it is a list of pairs rather
than a pair of lists; the same for C x and this.f=f. Note that this.f=f is
one syntactic expression and not a relation between two. Additionally,
although it is technically not a syntax rule in FJ, we explicitly introduce
the program P into the syntax for symmetry in the generation process
and proofs later.



P ::=(L, t) program/product line
L ::=class C extends C { C f; K M } class declaration
K ::=C(C f) { super(f); this.f=f; } constructor decl.
M::=C m(C x) { return t; } method declaration
t ::= terms:

x variable
t.f field access
t.m(t) method invocation
new C(t) object creation

Figure 1: CFJ syntax

class C... for every C ∈ dom(CT ); (b) Object /∈ dom(CT );
(c) for every class name C (except Object) appearing any-
where in CT , we have C∈ dom(CT ); and (d) there are no
cycles in the subtype relation (see below) induced by CT .

Next, we need to define which code fragments can
be annotated and how. There are different ways to model
annotations, for example, we could introduce #ifdef and
#endif statements into CFJ’s syntax. In fact, the C prepro-
cessor works on plain text without considering the under-
lying language. Nevertheless, for type checking, we need
a higher level of abstraction; we are interested in annota-
tions of code elements such as classes, methods, terms,
or parameters. Therefore, we use a different solution: In-
dependent of their actual storage, we provide an external



mapping of code elements to features.
In our formalization, we manage annotations using an

annotation table AT that maps each code fragment to an
annotation, similar to the class table CT which maps a
class name to the corresponding declaration. There are
different ways to present annotations to the developer; in
the simplest case we can use contemporary preproces-
sors directives: We parse textual annotations like #ifdef
of some surface syntax into the annotation table and re-
move them from the product line’s code base during type
checking.

Next, we need to decide what code fragments
can be annotated. The C preprocessor can language-
independently annotate arbitrary tokens, even just the
class keyword of a class declaration or its constructor.
This makes such preprocessors prone to syntax errors
that must be fixed before type checking [Kästner et al.,
2009b]. Therefore, we map annotations only to code ele-
ments that can be removed without invalidating the syn-
tax, in line with our prior work on disciplined annota-
tions [Kästner et al., 2008, 2009b]; we simply disallow to
annotate in isolation the class keyword or other fragments
that could cause syntax errors when removed. In CFJ, dis-
ciplined annotations are (printed bold in Fig. 1) elements
of the class list (L), of field and parameter lists (C f and
C x), method lists (M), term lists (t), super call parameter
lists (f), or field assignments (this.f=f). When filling the an-



notation table from a preprocessor, we have to make sure
that annotations map only to these code elements and re-
ject all other annotations.

The annotation table is used the following way: AT (L)
returns the annotation of a class declaration, AT (C f) re-
turns the annotation of a field, AT (C x) returns the anno-
tation of a parameter, AT (M) returns the annotation of a
method, AT (t) returns the annotation of a term, AT (f) and
AT (this.f=f) return annotations of parameters and field ini-
tializations inside the constructor. Furthermore, we use
AT (C) as syntactic sugar for AT (CT (C)) to look up anno-
tations of a class from its name. Note that AT maps anno-
tations from code elements (e.g., identified by their loca-
tion) to annotations, not from names as CT does. For ex-
ample, AT can map two methods foo in different classes
to different annotations; in this case, the result of AT (foo)
depends on which declaration of foo is referenced. The
annotation table is equivalent to introducing annotations
into the syntax (which we actually did for our formalization
in Coq), but makes the formalization easier to read and
is closer to our implementation, in which we avoided to
extend the syntax to achieve backward compatibility.

5.3 Reasoning about Annotations

So far, we did not discuss the nature of feature annota-
tions and the feature model. As illustrated in our exam-



ples in Section 3, we are interested in reachability con-
ditions like the following: ‘whenever code fragment a is
present, then also code fragment b is present’. (We use
the metavariables a and b to refer to arbitrary annotatable
code fragments.) Reachability is necessary, for example,
to check whether a method invocation always references
a method declaration, in all variants in that the invocation
is present. To determine reachability between code ele-
ments a and b, we have to consider the annotations of a
and b and the constraints of the feature model. Therefore,
we need to define what kind of annotations are possible
and how they are evaluated using a feature model.

A feature model describes a set of features and their
constraints. A feature selection F is a subset of all fea-
tures and considered valid if the selection fulfills all con-
straints described in the model. In some formalisms, fea-
tures can additionally have numeric or textual attributes.
For example a feature model may specify that “feature A
is mutually exclusive with feature B and A additionally re-
quires that the attribute x of feature C is larger than 10”.
There are many different ways to describe feature models,
for example, simply enumerating all valid feature combina-
tions, using graphical feature diagrams [Kang et al., 1990;
Czarnecki and Eisenecker, 2000], or using logics to de-
scribe constraints on the feature selection [Batory, 2005;
Benavides et al., 2005; Schobbens et al., 2006].

Based on features defined in a feature model, different



kinds of annotations can decide when to include a code
fragment for a feature selection F :

1. In Thaker’s safe composition approach [Thaker
et al., 2007], each code fragment is (implicitly) an-
notated with exactly one feature; a code fragment
is removed if the annotated feature is not selected
in F .

2. In our prototype CIDE, by default, each code frag-
ment can be annotated by one feature or a set of
features. This is equivalent to #ifdef directives and
nested #ifdef directives of the C preprocessor. For
a feature selection F , an annotated code fragment
is removed if one of the annotated features is not
selected in F .

3. In fmp2rsm [Czarnecki and Pietroszek, 2006] and
some preprocessors such as Antenna, arbitrary
propositions such as ‘(A or B) and not C’ can be
annotated. An annotated code fragment is removed
if the formula evaluates to false for the feature as-
signment from F .

4. Some tools additionally support features with at-
tributes and annotations can reason about at-
tributes (e.g., include code fragment only if text at-
tribute title is not “default” or if numerical attribute



max-weight < 10). Examples are the C preproces-
sor (#if directive) and the commercial product-line
tool pure::variants [Beuche et al., 2004]. Again, the
code fragment is removed if the expression eval-
uates to false given a feature selection (with at-
tributes).

In our implementation, we use propositional formulas
for feature models and for annotations, but in our formal-
ization, we abstract from concrete formalisms. AT (a) gen-
erally returns some expression that evaluates to false for
a variant with feature selection F (i.e., eval(AT (a),F) =
false) when the code fragment a should be removed, while
each tool has to provide some (decidable) implementation
of eval. The empty annotation always evaluates to true,
thus elements without annotations are never removed.
Throughout this paper, we use the term ‘a code fragment
is present’ for “the code fragment’s annotation evaluates
to true, therefore the element is not removed in the given
variant(s)”.

We can now define reachability (denoted as →) be-
tween a and b as logical implication in the ordinary sense
between AT (a) and AT (b): “whenever AT (a) evaluates
to true then also AT (b) must evaluate to true”:

AT (a)→ AT (b) ::= ∀F ∈ valid feature selections :
eval(AT (a),F)⇒ eval(AT (b),F)



In other words, the variants in which code fragment a is
included are a subset of (or are the same as) the vari-
ants in which code fragment b is included. Bi-implication
(AT (a)↔ AT (b)) is defined analogously.

A naive approach of determining reachability by iter-
ating over all valid selections does not scale, since there
could be millions of valid variants. Still, there are several
ways to evaluate the reachability formula efficiently using
a SAT solver, a constraint-satisfaction-problem solver, or
satisfiability-modulo-theories solvers, depending on how
valid feature models, feature selections, and annotations
are specified. In the common case that constraints be-
tween features can be represented by a propositional
formula CFM (e.g., most feature models can be trans-
formed directly into propositional formulas [Batory, 2005;
Thüm et al., 2009]), and when all annotations can be
transformed into propositional formulas (which is possi-
ble in most tools), then we can automatically evaluate
AT (a)→AT (b) with a SAT solver as described by Thaker
et al. [2007]: If the formula ¬(CFM ⇒ (AT (a)⇒ AT (b)))
is not satisfiable then b is always reachable from a. For
technical details how to reason about feature models and
annotations using a SAT solver, see [Batory, 2005; Thaker
et al., 2007]. As Mendonça et al. [2009] and Thüm et al.
[2009] have shown, reasoning about feature models with
SAT solvers is tractable for even very large feature mod-
els.



5.4 Annotation Rules

Before we model annotation checks formally as exten-
sions in CFJ’s typing judgments and prove them com-
plete, we first introduce informally the annotation rules
that are to be checked. In general, we need to check code
fragments that reference other code fragments. The code
fragments – references and targets – must be annotated
such that the target is always reachable from the refer-
ence. Otherwise, dangling references that typically result
in ill-typed programs can occur. We have identified checks
for thirteen different pairs of references and targets:6

(L.1) A class L can extend only a class that is reachable.

(L.2) A field C f can have only a type C of a class L that
is reachable.

(K.1) A super constructor call (i) can pass only those pa-
rameters that are bound to constructor parameters
and (ii) must pass exactly the parameters expected
by the super constructor.

(K.2) A field assignment this.f=f in a constructor can (i)
access only present fields C f in the same class and

6The names reference the according productions in CFJ’s syntax in
Figure 1. For example, K.1 is the first check that addresses the construc-
tor.



(ii) assign only values that are bound to constructor
parameters.

(K.3) A constructor parameter C f can have only a type
C of a class L that is reachable.

(M.1) A method declaration C m(C x) { return t; } can have
only a return type C of a class L that is reachable.

(M.2) A method declaration overriding another method
declaration must have the same signature in all
variants in which both are present.

(M.3) A method declaration parameter C x can have only
a type C of a class L that is reachable.

(T.1) A variable x must be bound to a reachable param-
eter C x of its enclosing method.

(T.2) A field access t.f can access only a field C f that
is reachable in the enclosing class or its super-
classes.

(T.3) A method invocation t.m(t) (i) can invoke only a
method M that is reachable and (ii) must pass ex-
actly the parameters t expected by this method.

(T.4) An object creation new C(t) (i) can create only ob-
jects from a class L that is reachable and (ii) must



pass exactly the parameters t expected by the tar-
get’s constructor.

Furthermore, there are some rules that deal with the
removal process of children from their parent element. For
example, if a class is removed also all methods therein
must be removed, if a method is removed also its param-
eters and its term must be removed. These rules seem
obvious and are actually enforced in #ifdef -like prepro-
cessors by nesting annotations. However, when formaliz-
ing the calculus with arbitrary annotations, we either have
to always take all parent annotations into considerations,
or we have to make these rules explicit for all elements
that can be annotated. We decide for the latter because it
provides more flexibility for future extensions.

(SL.1) A field is present only when the enclosing class is
reachable.

(SL.2) A method is present only when the enclosing
class is reachable.

(SK.1) A constructor parameter is present only when the
enclosing class is reachable.

(SK.2) A super constructor invocation parameter is
present only when the enclosing class is reach-
able.



(SK.3) A field assignment in a constructor is present only
when the enclosing class is reachable.

(SM.1) A method parameter is present only when the en-
closing method is reachable.

(ST.1) A method invocation parameter is present only
when the enclosing term is reachable.

(ST.2) An object creation parameter is present only
when the enclosing term is reachable.

In the remainder of this section, we highlight changes
compared to the original FJ calculus for the annotation
rules (L.1–T.5) in light gray and changes for the subtree
rules (SL.1–ST.2) in darker gray.

5.5 Typing

5.5.1 Subtyping

CFJ’s subtyping relation <:, shown in Figure 2, is identical
to FJ’s. Though we could check the annotation rule (L.1)
here, we decided to postpone this check to FJ’s typing
judgments instead (see T-CLASS).

5.5.2 Auxiliary Functions

As in FJ, we need some auxiliary definitions for the typing
judgments shown in Figure 3. Although we try to perform



C<: C
C <: D D <: E

C <: E
class C extends D { . . . }

C <: D

Figure 2: CFJ subtyping.

most annotation checks in the typing judgments, there are
cases in which already the auxiliary functions – that are
used in FJ to recursively look up fields or methods across
the inheritance hierarchy – need to evaluate annotations.
We use A as a metavariable for annotations and use • to
denote an empty sequence.

Field lookup First, a fields determines all fields of a
class C including fields inherited from superclasses. In
CFJ, the function fields is identical to the one in FJ. Anno-
tations on fields are checked later in the typing judgments.

Method lookup Second, similar to the field lookup, the
mtype finds methods with a given name m in a class C or
its superclasses.7 In contrast to fields, the method lookup
needs to be adapted because of the possibility of method

7For technical reasons, we return the entire parameter list B x instead
only their types, so that we can later (in rule T-INVK) reason about anno-
tations on parameters.



Field lookup fields(C) = C f

fields(Object) = •

CT (C)=class C extends D { C f; K M } fields(D)=D g
fields(C)=D g,C f

Method lookup mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M } M = B m(B x) { return t; } M ∈M A → AT (M)

mtype(m,C,A)=B x→B

CT (C) = class C extends D { C f; K M } M = B m(B x) { return t; } M ∈M ¬(A → AT (M))

mtype(m,C,A) = mtype(m,D,A ∧¬AT (M))

CT (C) = class C extends D { C f; K M } m is not defined in M
mtype(m,C,A)=mtype(m,D,A)

Overriding override(m,C,C x→C0,A)

override(m,Object,C x→C0,A)

CT (C) = class C extends D { D f; K M }
override(m,D,C x→C0,A) M = B0 m(B g) { return t; }

M ∈M implies C = B and C0 = B0 and (A ∧AT (M))→ (AT (C x)↔ AT (B g))
override(m,C,C x→C0,A)

Figure 3: CFJ auxiliary functions.



overriding (in contrast to overshadowing fields, which is
not allowed in FJ [Igarashi et al., 2001]). Thus, it could be
possible that a method m in class C is not always reach-
able for a given annotation A , but another method m in
a superclass of C is. Therefore, we cannot check annota-
tions only in the typing judgments but have to adapt the
auxiliary function mtype as shown in Figure 3.

In FJ, there are two possible cases, either the method
is found in class C, then its signature is returned, or the
method is not found, then the search proceeds to the
superclass. In CFJ, we additionally have to distinguish
whether found method is always reachable or not. Reach-
ability is checked against a given annotation that is pro-
vided as a parameter A (i.e., A → AT (M)). In case it is
not always reachable, the search is continued in the su-
perclass for the remaining variants with a reduced anno-
tation (A∧¬AT (M)). Note that auxiliary function override,
as described below, checks that all these methods have
compatible signatures; here, we check overridden meth-
ods only regarding reachability.

Overriding Finally, the third auxiliary function override
checks valid method overriding in FJ. In the presence of
annotations, checking valid overriding is trickier than ex-
pected. We need to ensure that the return type and pa-
rameter types match in every variant in which two meth-
ods with the same name appear in the inheritance hier-



archy of a class. This is complicated, because we allow
developers to annotate both methods and their parame-
ters.

Method overriding is the first and most important
rule for which considerations regarding the desired back-
ward compatibility – every CFJ product-line implementa-
tion stripped of its annotation should be a well-typed FJ
program – have influenced design decisions. We describe
our solution fulfilling this property first and discuss possi-
ble alternatives later.

Our function override works in the following way: for
a given method m with annotation A and type C→C0,
we iterate over all superclasses until we reach Object.
Whenever we find a method in a superclass with the
same name, we perform the two checks. First, for back-
ward compatibility, the return type and all parameter types
must match independent of any annotation (C0 = B0
and C = B); this implies also that both methods have
the same number of parameters. Second, for (M.2), in
all variants in which both methods are present (i.e., for
which both A and AT (M) both evaluate to true) the an-
notations on parameters must be equivalent (formalized
as
(
A ∧AT (M)

)
→
(
AT (C f)↔ AT (B g)

)
). Taking both

checks into account, we define the auxiliary function over-
ride as shown in Figure 3.

Due to our design decision for backward compatibility,
our override function does not allow different signatures



of a method in mutually exclusive features. For example,
although the following code fragment generates only well-
typed variants given that features X and Y are mutually
exclusive, it is rejected by our override function.8

1 class D extends E { #ifdef X C f(C x) {...} #endif }
2 class C extends D { C f(#ifdef Y D y, #endif C x){...}}

Different typing judgments would be possible that drop
backward compatibility in exchange for increased ex-
pressiveness. In such case, we would need to check
valid overriding only when two methods can occur in the
same variant. Since we pursue backward compatibility,
we keep our simpler version of override. For developers
this restricted expressiveness is not limiting since simple
workarounds can be used; in the code example above, we
could add a parameter D y to the first method declaration
and annotate it such that it is never present in any variant
(e.g., ‘#if 0’).

5.5.3 Typing Judgments

For term typing and well-formedness rules, we revisit each
typing judgment in FJ and adapt it for CFJ to incorporate
annotations as shown in Figure 4. For brevity, we discuss
only changes compared to FJ.9

8We leave out the constructor for conciseness in this example.
9Technically, it is possible to separate the CFJ type system into two

parts: the original FJ type system and an extension for reachability



Term typing Γ ` t : C
x : C with A ′ ∈ Γ A → A ′

A ;Γ ` x : C
(T-VAR)

A ;Γ ` t0 : C0 fields(C0) = C f A → AT (Ci fi)

A ;Γ ` t0.fi : Ci
(T-FIELD)

A ;Γ ` t0 : C0 mtype(m,C0,A) = D y→C AT (t);Γ ` t : C C <: D
A →

(
AT (t)↔ AT (D y)

)
AT (t)→ A

A ;Γ ` t0.m(t) : C
(T-INVK)

fields(C) = D f AT (t);Γ ` t : C C <: D
A → AT (C) A →

(
AT (t)↔ AT (D f)

)
AT (t)→ A

A ;Γ ` new C(t) : C
(T-NEW)

Method typing M OK in C

M = C0 m(C x) { return t0; } AT (M) = A A → AT (C0) AT (C x)→ AT (C)
CT (C) = class C extends D { . . . } override(m,D,C→C0,A)

Γ = x : C with AT (C x), this : C with AT (C) A ;Γ ` t0 : E0 E0 <: C0
AT (C x)→ A

M OK in C
(T-METHOD)

Class typing L OK

K = C(D g, C f
′
) { super(g′); this.f=f; } M OK in C fields(D) = D g′′

C f = C f
′

D g = D g′′ g = g′

AT (C) = A A → AT (D) AT (C f)↔ AT (this.f=f) AT (C f)↔ AT (C f
′
)

A →
(
AT (D g)↔ AT (D g′′)

)
AT (D g)↔ AT (g′) AT (C f)→ AT (C)

AT (C f)→ A AT (M)→ A AT (D g)→ A
class C extends D { C f; K M } OK

(T-CLASS)

Product-line typing P OK

L OK ;` t : C

(L, t) OK
(T-SPL)

Figure 4: CFJ typing.



For all typing judgments for terms, we need an en-
vironment that is extended by annotations. The environ-
ment Γ is a finite mapping from variables to pairs of a
type and an annotation written x : C with A . Additionally,
the current annotation A is stored as environment. For the
outermost term in a method, the current annotation is the
annotation of a method (see T-METHOD); for inner terms,
the current annotation may differ because parameters can
be annotated individually (see T-INVK and T-NEW). The
typing judgment for terms has the form A ;Γ ` t : C and
reads “in the environment Γ with annotation A , term t has
the type C”.

When typing a variable (T-VAR), we need to ensure
that the variable is reachable in all variants in which x is
accessed. This means that we check reachability between
the current annotation of the variable access A and the
annotation A ′ of the parameter (or this) passed through
the environment Γ from T-METHOD.

For typing field accesses (T-FIELD), we require that
the target field declaration is reachable (T.2). Therefore,
we check reachability between the current annotation A
and the annotation of the target field (AT (Ci fi)). The typ-

checks on annotations. Such separation would follow our implementa-
tion and the idea behind backward compatibility. However, separated
reachability checks replicate and adjust many mechanisms from FJ; it
would almost double the length of the calculus. We present the shorter,
integrated description of the CFJ type system instead.



ing judgment for classes (see T-CLASS) ensures that the
class corresponding to each field’s type (Ci) is reachable
(L.2).

For typing method invocations (T-INVK), we similarly
check that a target method is present (T.3i) using the fil-
tering of mtype. Parameters in method invocations can be
annotated individually, so we need to check that the in-
vocation parameters match the expected parameters of
the method declaration in every variant (T.3ii). We use
the same mechanism A → (AT (t) ↔ AT (D y)) as for
the override function (with the same implications for back-
ward compatibility). Actually, in the presence of method
overriding, there can be different target methods in dif-
ferent variants; mtype ensures that always at least one
of these methods is available, and override (called in T-
METHOD) ensures that overriding methods have compat-
ible type signatures and compatible annotations on pa-
rameters. Furthermore, when typing a parameter, the an-
notation context is set to the annotation of this parame-
ter (AT (ti);Γ ` ti : Ci). Finally, the subtree rule (ST.1) is
checked: There must not be a variant in which the invoca-
tion is removed but not its parameter (AT (t)→ A).

Typing an object creation term (T-NEW) is similar to
typing a method invocation. First, the target class must
be present (T.4i), which is checked explicitly with A →
AT (C). Additionally for rule (T.4ii), we ensure that the pro-
vided parameters match the expected constructor param-



eters in every variant (A → (AT (t)↔ AT (D f))). Finally,
the subtree rule (ST.2) is checked.

The typing judgment for method declarations (T-
METHOD) has the form M OK in C and reads “method
declaration M is well-formed, when it occurs in class C”.
We make several extensions shown in Figure 4: First, we
check valid overriding in all variants (M.2) by passing the
method’s annotation to auxiliary function override. Sec-
ond, we check that the class corresponding to the return
type and all parameters of the method (C0 and C) are
reachable (M.1, M.3).10 Third, we provide the annotations
of parameters in the type context to be checked in T-VAR

later (T.1), and use the current annotation of the method A
as annotation context. Finally, we check the subtree rule
(SM.1).

The typing judgment for class declarations (T-CLASS)
has the form L OK. At first, it appears very complex be-
cause it covers many annotation rules, but each rule by
itself is simple. To distinguish the occurrences of g as
constructor parameters, super invocation parameters, and
fields of the superclass – which can all have different an-
notations – we distinguish g, g′ and g′′ but still assume
that all g’s are named the same (g = g′ = g′′). The same
for C f that is used both for fields and constructor param-
eters (C f = C f

′
). First, rule (L.1) checks that the super-

10Thüm proved that the check A → AT (C0) is actually redun-
dant [Thüm, 2010]. Still, we leave it for readability.



class is always reachable (A → AT (D)); thus, from ev-
ery reachable class, we can reach all its superclasses.
Second, rule (K.1) specifies that the super-constructor
call receives exactly those parameters from the construc-
tor’s parameter list that are defined as fields in the su-
perclass in all variants (AT (D g) ↔ AT (g′) and A →
(AT (D g)↔ AT (D g′′))). Third, rule (K.2) specifies that
the remaining constructor parameters match the field as-
signments and that those match the fields declared in the
class (AT (C f)↔ AT (this.f=f) and AT (C f)↔ AT (C f

′
)).

Fourth, we check that the class corresponding to the type
of each field in this class is reachable when the field
is reachable (AT (C f) → AT (C)), which indirectly cov-
ers rules (L.2) and (K.3). Fifth, subtree rules for fields,
methods and constructor parameters (SL.1–2, SK.1–3)
are checked.

Finally, we are able to define when a software product
line is well-typed (T-SPL): A software product line is well-
typed if all of its classes are well-formed and the typing
judgment returns a type for the start term t (provided an
empty environment with an empty annotation, written as
“;` t : C”).

5.6 Variant Generation

Although technically possible, we do not execute prod-
uct lines written in CFJ directly. Thus, there are no eval-



uation rules for CFJ, and it is not possible or neces-
sary to prove type soundness with the standard theorems
progress and preservation [Wright and Felleisen, 1994].
Instead, with a valid feature selection, we generate a tai-
lored FJ programs by removing certain annotated code
fragments. The resulting FJ program can be evaluated
with FJ’s evaluation rules (see [Igarashi et al., 2001]). For
FJ, type soundness has already been proved [Igarashi
et al., 2001]. Hence, we describe the variant generation
mechanism and subsequently prove that generation pre-
serves typing in Section 5.7.

To generate a program variant, we define a function
variant that takes a CFJ product line P and a feature se-
lection F as input and returns an FJ program. The func-
tion variant descends recursively through the code of the
product line and applies a function remove to all code frag-
ments that can be annotated. The function remove eval-
uates possible annotations (as described in Section 5.3):
those code fragments, for which the annotation evaluates
to false are removed, all other code fragments remain in
the code.11

11Since we describe annotations externally, we do not have to remove
annotations explicitly during generation. Furthermore, in an implemen-
tation for a concrete language, remove must address the tokens used
to separate list items (especially commas between parameters). In our
tool CIDE, remove is implemented using transformations of the abstract
syntax tree [Kästner et al., 2009b].



We define the generation rules (bottom-up) in Fig-
ures 5 and 6. For brevity, we write variant(a,F) as [[a]]
and remove(a,F) as 〈〈a〉〉 (we omit parameter F in the
short form, because it is only propagated without modifi-
cation).



remove(a,F), short 〈〈a〉〉

remove(a,F) =

{
a1,remove(a2 . . .an,F) if eval(AT (a1),F)
remove(a2 . . .an,F) else

remove(•,F) = •

Figure 5: CFJ variant generation with remove and variant.



variant(a,F), short [[a]]

[[x]] = x (G.1)

[[t.f]] = [[t]].f (G.2)

[[t.m(t)]] = [[t]].m([[〈〈t〉〉]]) (G.3)

[[new C(t)]] = new C([[〈〈t〉〉]]) (G.4)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]];} (G.5)

[[C(C f) {super(f); this.f=f;}]] = C(〈〈C f〉〉) {super(〈〈f〉〉); 〈〈this.f=f;〉〉} (G.6)

[[class C extends D { C f; K M }]] = class C extends D { 〈〈C f〉〉; [[K]] [[〈〈M〉〉]] }
(G.7)

[[(L, t)]] = ([[〈〈L〉〉]], [[t]]) (G.8)

Figure 6: CFJ variant generation with remove and variant.



5.7 Properties of CFJ

In Section 4, we discussed two desired properties: back-
ward compatibility and generation preserves typing. With
the presented type system and variant generation rules,
we can now prove both properties for CFJ. Backward
compatibility is straightforward to prove. Generation pre-
serves typing is more complex, so we performed the proof
with the proof assistant Coq; for brevity, here, we describe
only the theorem and proof strategy.12

Theorem 5.1 (Backward compatibility). Every well-typed
CFJ product line stripped of the feature model and all an-
notations (without removing any code fragments) is a well-
typed FJ program.

Proof. CFJ has the same syntax as FJ. For stripping an-
notations, we assume that all annotations evaluate to true
for all variants (i.e., ∀F ∀a : eval(AT (a),F); called empty
annotation). Now, we can prove that with empty annota-
tions, the type systems of FJ and CFJ are equivalent: All
reachability checks are always fulfilled; mtype in CFJ and
FJ are equivalent considering that CFJ’s override ensures
the same method signature for all methods with the same
name in a class hierarchy; and the remaining differences

12Proof script available at http://fosd.de/cfj/; Thüm’s Master’s
Thesis [Thüm, 2010] contains a detailed description of the proof, its
structure, and its strategies.



are straightforward to prove to be equivalent as well.

Theorem 5.2 (Generation preserves typing). Every vari-
ant that is generated from a well-typed software product
line P with a valid feature selection F is a well-typed FJ
program.

Strategy. We prove the theorem by induction on the struc-
ture of CFJ product lines, that is, induction over all possi-
ble CFJ class tables and all possible CFJ terms. Using
induction, we recursively iterate over all elements of the
CFJ class table (classes, methods, fields, parameter lists
and terms) and the start term. For every CFJ element,
if well-typed, we do an induction over the variant genera-
tion rules to determine all possibly generated FJ elements
and prove that they are well-typed according to the FJ
type system.13 The proof that the generated element is
a well-typed FJ element is specific for each different kind
of element (e.g., class or method invocation). Generally
speaking, we use the CFJ typing rules (including reacha-
bility conditions) and the variant generation mechanism to
prove that all code elements needed to type a generated

13In line with FJ, to support Java’s mutually recursive types, we as-
sume a fixed CFJ class table. For the same reason, we also assume
that the feature selection is fixed so that variant generation produces a
unique, fixed FJ class table. Still, since the proof covers arbitrary CFJ
class tables and arbitrary feature selections, it holds for all CFJ product
lines and all feature selections.



FJ element (e.g., referenced classes or methods) are part
of the generated FJ program.

To illustrate the proof mechanism, consider the follow-
ing example for the smallest element: an access to a vari-
able. Variant generation for variables (G.1) is independent
of the feature selection F and just returns this variable.
Still, we have to prove that any generated FJ variable ac-
cess is well-typed according to FJ’s typing rules. FJ’s typ-
ing rule T-VAR for variable access requires two conditions:
(1) the provided environment Γ must not contain dupli-
cates, and (2) the environment must contain the analyzed
variable. For both conditions, we need to consider the FJ
environment, which is formed by the enclosing generated
method. Hence, we have to consider variant generation
for methods, in which parameters can be removed (G.5).
We can prove both conditions of FJ’s T-VAR using induc-
tion on the environment:

1. CFJ’s type system forbids duplicates in parameter
lists (cf. Sec. 5.2); thus, it forbids duplicates in the
CFJ environment; variant generation can only re-
move entries (cf. Fig. 5 and 6); hence, all parameter
lists generated from well-typed CFJ product lines
are duplicate free.

2. The generated variable always occurs in the FJ
environment. This can be proved as follows: The
variable access has been generated from a well-



typed CFJ product line. In the well-typed CFJ prod-
uct line, CFJ’s T-VAR ensures that the variable oc-
curs in the CFJ environment A ;Γ and that A→A ′,
in which A ′ is the annotation of the corresponding
CFJ method parameter. Additionally, we know that
eval(A ,F) is true, because otherwise we would not
have reached the current point (G.1) of variant gen-
eration (variant generation would have stopped in
G.3, G.4, G.7, or G.8). Consequently, reachability
A → A ′ implies that eval(A ′,F) is also true, so
the parameter is not removed during variant gen-
eration; it is part of the FJ environment.

The proofs for other elements follows a similar pattern.
They are often more complex, because more context in-
formation (other classes, methods, and fields) has to be
considered. For example, due to overriding, a method in-
vocation can point to different methods in different FJ vari-
ants; hence, the proof considers information from auxil-
iary function overriding in T-Method, which ensures that
overriding methods always have compatible signatures.
Nevertheless, the general proof pattern is the same: in-
duction over well-typed CFJ elements and variant gen-
eration rules, proving that each generated FJ element is
well-typed with information from the induction steps (and
often induction over other elements). The entire proof is
available as a script for Coq (see above).



A third interesting property of CFJ’s type system is
completeness: Given a software product line P and given
that all valid feature selections F yield well-typed FJ pro-
grams according to Theorem 5.2, is P well-typed accord-
ing to the CFJ typing judgments? Unfortunately, this prop-
erty does not hold due to backward compatibility. It is pos-
sible to find an ill-typed CFJ product line, of which only
well-typed variants are generated; for an example con-
sider the discussion about different parameters in Sec-
tion 5.5.2. That is, due to our decision for backward com-
patibility, CFJ is stricter than actually necessary. Never-
theless, as discussed before, we decided to enforce these
restrictions for the benefit of tool developers. Still, with
tests and our case studies (see Section 8), we confirm
that CFJ is not too strict for practical applications.



6 Alternative Features

Our tool CIDE has its roots in decomposing legacy ap-
plications. In the formalization of CFJ, these roots are
visible. It is possible to make code fragments optional
and to express annotations like either FeatureA or Fea-
tureB must be selected. However, in CFJ it is difficult to
have two alternative (mutually exclusive) implementations
of the same class or method, similar to the persistent vs.
in-memory storage example in Section 3. Since we want
CFJ to be backward compatible, we cannot simply allow
multiple classes or members with the same name (and
signature) because this is not supported by FJ (and Java).
Nevertheless, alternative features are used in software
product lines, when a common implementation expects
to reach exactly one (of multiple alternative) implementa-
tions of a class or method. Thus, for product-line develop-
ment in general, we need to provide a way to implement
and type check alternative features.

Alternative features may influence the implementation
in different locations:

1. Alternative Classes. Depending on the feature se-
lection, there may be entirely alternative imple-
mentations of a class. Different implementations
may contain different methods, common methods,
or different implementations of the same method.



They may even have nothing in common except the
class’s name, as long as both classes are anno-
tated to be mutually exclusive.

2. Alternative Members. There can be different meth-
ods with the same name, but different bodies, pa-
rameters, and return types. Thus, depending on the
feature selection, a method may be implemented
differently, even with different signatures.

3. Alternative Terms. There can be different imple-
mentations of a method body, or alternative terms
passed as parameters of a method invocation de-
pending on the feature selection. Thus, it is also
necessary to discuss alternative implementations
of a term, not only of classes or methods.

6.1 Reduction to Alternative Terms

There are different strategies how to deal with alternative
features (in CFJ and in practice). One useful strategy is
to reduce alternative implementations to alternatives at
the term level (respectively at statement level in Java).
For CFJ, the reduction proceeds in two steps – merging
classes and merging members – and can be done by the
developer or be automated by a tool (limitations of these
steps are written in square brackets and discussed sub-
sequently):



• Merging classes. When there are two or more clas-
ses with the same name [and same superclass, see
below] but different implementations and annota-
tions, they can be all merged into one class. The
new class is annotated with a disjunction of all indi-
vidual annotations (A1 ∨A2 ∨ . . .∨An), so that it
is present in a variant if any of the original clas-
ses would be present. All members from the orig-
inal classes are moved into the merged class and
keep their annotations (the subtree rules (SL.1) and
(SL.2) are automatically fulfilled). This step reduces
alternative classes to alternative methods in a sin-
gle merged class.

• Merging members. When there are two or more
methods with the same name [and return type,
see below] in a single class declaration, they can
be merged to a single method annotated with a
disjunction of all previous annotations. Parameters
also are merged and annotated with a disjunction of
all previous annotations of each parameter. If their
bodies are not the same, we need a way to rep-
resent alternative terms inside this method. Anal-
ogously, multiple fields with the same name [and
type, see below] can be merged. This way, we re-
duce alternative methods to alternative terms.



In Figure 7, we show this reduction for an extended ex-
ample of the persistent vs. in-memory storage from Sec-
tion 3. We reduce two alternative implementations of the
class Database to a single class and two alternative im-
plementations of method set with different parameters to
a single method with alternative terms.

The reduction to alternative terms is limited regard-
ing superclasses, return types, and field types. That is, if
two alternative classes with the same name do not have
the same superclass, if two methods with the same name
do not have the same return type, or if two fields with
the same name do not have the same type, they can-
not always be merged. We can either accept this limi-
tation and disallow the three problematic cases, or we
can search for mechanisms that support alternative imple-
mentations beyond alternative terms. To retain backward
compatibility and since such cases are rare in practice
(usually alternative implementations of a class still pro-
vide a common interface), we accept the limitation and
suggest workarounds instead of new language features
such as multiple inheritance. A simple workaround, which
works for all three problems, is to rename classes, meth-
ods, or fields with fresh names. By renaming the target
declarations, variability is again propagated to alternative
terms where depending on the feature selection either of
the now distinguishable methods is invoked, either of the
fields is accessed, or either classes is instantiated. For



1 class Database { ... }
2 #ifdef PERSISTENT
3 class Storage {
4 boolean save() { /* impl. A */ }
5 boolean clear() { /* impl. B */ }
6 boolean set(Object key, Object data, Lock lock) {
7 return /* impl. C */; }
8 }
9 #endif

10 #ifdef INMEMORY
11 class Storage {
12 boolean clear() { /* impl. B */ }
13 boolean set(Object key, Object data) {
14 return /* impl. D */; }
15 }
16 #endif

⇓
1 class Database { ... }
2 #ifdef PERSISTENT ∨ INMEMORY
3 class Storage {
4 #ifdef PERSISTENT
5 boolean save() { /* impl. A */ }
6 #endif
7 boolean clear() { /* impl. B */ }
8 boolean set(Object key, Object data
9 #ifdef PERSISTENT, Lock lock#endif) {

10 return #ifdef PERSISTENT/* impl. C */#endif
11 #ifdef INMEMORY/* impl. D */#endif;
12 }
13 }
14 #endif

Figure 7: Reducing alternative classes and alternative
methods to alternative terms



CFJ and our implementation for Java, we prefer to ac-
cept this limitation – enforcing constant superclasses, re-
turn types, and field types in all alternative implementa-
tions of a class method or field – and use the renaming
workaround (which can even be automated) for all other
cases, instead of complicating the type system. Never-
theless, other solutions without these limitations but with
more complex typing judgments are possible, see Sec-
tion 9.

6.2 Handling Alternative Terms

So far, we reduced the problem of alternative implemen-
tations to alternative terms (in CFJ) or alternative state-
ments (in Java and many other languages). Now, we have
to make sure that parser and type checker understand al-
ternative terms/statements and check them accordingly.

In CFJ, the situation is especially problematic, since
every method must contain exactly one return statement
(i.e., a single term). We must make sure that in every vari-
ant exactly one (not none, not multiple) of these terms re-
mains. For CFJ, we discuss three solutions; although the
first two have significant drawbacks, we briefly summarize
all three here:

• Method overriding. Without changes to the CFJ cal-
culus, we found only one way to implement alter-



1 class Storage1 extends Object {
2 #ifdef A1 boolean set() {return /*impl.1 */;} #endif
3 }
4 class Storage2 extends Storage1 {
5 #ifdef A2 boolean set() {return /*impl.2 */;} #endif
6 }
7 //...
8 class Storage extends Storagen−1 {
9 #ifdef An boolean set() {return /*impl.n */;} #endif

10 }

Figure 8: Implementing alternative return terms with
method overriding.

native terms. The basic idea is to create an artifi-
cial superclass for each alternative term and use
method overriding to provide different terms in dif-
ferent classes as illustrated in Figure 8. In such
implementation, the target method has a different
annotation in each subclass, and in a generated
variant only one of these methods remains (aux-
iliary function mtype ensures that always at least
one of these methods is present). Although this ap-
proach can be used without modification of CFJ and
is backward compatible to FJ, it has the drawback of
significantly obfuscating the source code with boil-
erplate code.

• New language constructs. A whole group of solu-



tions for alternative terms becomes available once
we drop backward compatibility and decide to
change the syntax or typing judgments of CFJ.
For example, we could simply allow two methods
with the same name or a method with two re-
turn statements and adjust the syntax and typing
judgments to ensure that at most one of them re-
mains in a generated variant. Another solution is
to introduce new language constructs which al-
low refinements of classes or methods. That is,
we could integrate language mechanisms such
as mixins [Bracha and Cook, 1990; Flatt et al.,
1998], class refinements [Batory et al., 2004; Apel
et al., 2008], aspects [Kiczales et al., 1997], class-
boxes [Bergel et al., 2005], traits [Ducasse et al.,
2006], hyperslices [Tarr et al., 1999], and others.
These approaches are interesting when designing
a completely new language – in fact, in a different
line of research, we designed a product-line–aware
type system for class refinements [Apel et al., 2010]
– however in this work, we prefer a backward com-
patible solution that is easier to adopt in practice.

• Metaexpressions. Czarnecki and Antkiewicz [2005]
suggested metaexpressions as a mechanism to
support alternative values in a software product
line of UML models. In their setting, they did not



have the opportunity to change the syntax of UML
but sought for another way to express alterna-
tives. Metaexpressions are annotations, stored sep-
arately, which specify one or more alternative val-
ues for a language construct like the name of an
UML association. This means, instead of changing
the syntax, alternatives are specified externally by
a tool. Then, the generation mechanism does not
only remove code fragments for which annotations
evaluate to false, but it can also replaces those el-
ements with a metaexpression by their according
value. The key difference to additional language
constructs is that alternatives are specified exter-
nally on a tool level, but still checked by the type
system (like the annotation table).

For full Java and many other languages, there are
simpler solutions because these languages support mul-
tiple statements inside a method, so the desired back-
ward compatibility does not impose so many restrictions.
Having two statements in a method with alternative an-
notations is still backward compatible. In Java, only re-
turn statements are problematic, because of Java’s un-
reachable code detection (code after a return statement
results in a compiler error). Still, simple workarounds are
possible, for example, we can rewrite the persistent vs. in-
memory example from Section 3 as shown in Figure 9. In



1 class Database { ... }
2 class Storage {
3 boolean set(Object key, Object data, Lock lock) {
4 boolean result;
5 #ifdef PERSISTENT
6 result = /* implementation A */
7 #endif
8 #ifdef INMEMORY
9 result = /* implementation B */

10 #endif
11 return result;
12 }
13 }
14 }

Figure 9: Rewritten example of alternative return state-
ments.

our experience with Java, all alternative features can be
reduced to alternative statements and implemented with-
out language extensions using such rewrites.

Despite the practical solution in full Java, we take a
closer and formal look at metaexpressions for CFJ, to ex-
plore a solution for Featherweight Java and for potential
other languages in which it is not possible to use state-
ments as described above.



6.3 Metaexpressions

We describe metaexpressions with an external meta-
expression table MXT, similar to the annotation table AT.
Like annotations, we could introduce metaexpressions in
the language’s syntax, but we prefer to leave CFJ’s syntax
unmodified for backward compatibility.

The metaexpression table provides a list of alterna-
tives for each term (again able to distinguish between mul-
tiple terms with the same name; e.g., identified by loca-
tion); if a term does not have alternatives, MXT returns
the empty list. We use the following notation to access
alternatives and a specific alternative entry:

MXT (t) = t1, t2, ..., tn

MXT (t, i) = ti

Each of the alternatives can be annotated the usual way.
Additionally, for inner terms of an alternative, the meta-
expression table may provide alternatives again; as san-
ity condition, we only require that there are not cycles in
the metaexpression table. In Figure 10, we illustrate how
metaexpressions may be represented in a source-code
editor for full Java: The user selects a code fragment and
can provide alternative code fragments including annota-
tions for these alternatives. Note that this solution is en-
tirely backward compatible; instead of introducing a lan-



Figure 10: Editor for metaexpressions: In a code fragment
of an product line of graph data structures, we select the
entire body of a method and invoke the metaexpression
editor from the context menu. In this editor, we specify al-
ternative implementations to the selected code fragment.

guage construct, we provide alternatives externally with
tool support.

During variant generation, for each term, we look up
whether the term has alternatives; if it has and the anno-
tation of an alternative evaluates to true, we replace the
term by this alternative. Alternatives are ordered; in case
annotations of multiple alternatives evaluate to true, the
first is chosen. Regarding term typing, we need to ensure
that all alternatives have the same type as (or a subtype
of) the original term’s type; that is, we ensure that alterna-



tives are always substitutable for the original term.

6.3.1 Typing

To describe variant generation and typing formally, we
have to make a number of changes to the calculus. Dur-
ing term typing, every time we derive the type of a term
(A ,Γ ` t : C) we have to consider potential alternatives.
We therefore introduce a metaexpression-aware typing
judgment written as A ,Γ `mx t : C; it reads “in the envi-
ronment Γ with the current annotation A , term t and all its
alternatives have a type that is a subtype of C”. Optionally,
we may also report a warning or an error, if annotations
of two or more alternative terms evaluate to true in the
same variant, although the variant-generation mechanism
already ensures that exactly one term is present in every
variant.

The new typing judgment checks the original term t
as before, but additionally determines the type of all alter-
natives as shown in Figure 11 (first judgment). The judg-
ment returns the type that is the most-specific supertype
of all alternatives (smallest upper bound, determined with
function sub with standard semantics). Finally, we have to
adjust the typing judgments T-FIELD, T-INVK, T-NEW, T-
METHOD, and T-SPL to use `mx instead of `, as shown
in Figure 11.

The type system with metaexpressions is stricter than



the original type system of CFJ, because we always type
check the original statement, but additionally also check
alternatives. Alternatives can make the type of a term less
specific (in the worst case, when all alternatives have un-
related types, the term has the least-specific type Object).

The choice that the term of a type with alternatives is
the most specific supertype of all alternatives’ types was
a deliberate design decision. It provides the same expres-
siveness as the implementation pattern in Figures 8 and
9. Beyond that, we could allow that a term can have al-
ternative types depending on the feature selection (the
metaexpression-aware typing judgment would return a list
of types). However, alternative types depending on the
feature selection would make type checking more com-
plex and slower, and could lead to a combinatorial explo-
sion of different alternatives. Alternative types can propa-
gate through the entire type derivation process, for exam-
ple x.f can have alternative types when x has alternative
types. Furthermore, when a term can have one of many
types, type errors become difficult to understand for users.
We have explored this path and its consequences on com-
plexity in an different product-line type system FFJPL [Apel
et al., 2010] as we discuss in Section 9. Here, we set-
tle with the slightly less expressive, but simpler solution,
which, in our opinion, is easier to handle for developers.



A ;Γ ` t : C0 A ;Γ `MXT (t,1) : C1 . . . A ;Γ `MXT (t,n) : Cn
A ;Γ`mxt:sub(C0,C1,...,Cn)

C1<:C0 C2<:C0 ... Cn<:C0

sub(C0,C)=C0

CT (C0) = class C0 extends D ¬
(
C1 <: C0 C2 <: C0 . . . Cn <: C0

)
sub(C0,C)=sub(D,C)

A ;Γ `mx t0 : C0 fields(C0) = C f A → AT (Ci fi)

A ;Γ ` t0.fi : Ci
(T-FIELD)

A ;Γ `mx t0 : C0 mtype(m,C0,A) = D y→C AT (t);Γ `mx t : C C <: D
A →

(
AT (t)↔ AT (D y)

)
AT (t)→ A

A ;Γ ` t0.m(t) : C
(T-INVK)

fields(C) = D f AT (t);Γ `mx t : C C <: D
A → AT (C) A →

(
AT (t)↔ AT (D f)

)
AT (t)→ A

A ;Γ ` new C(t) : C
(T-NEW)

M = C0 m(C x) { return t0; } AT (M) = A A → AT (C0) AT (C x)→ AT (C)
CT (C) = class C extends D { . . . } override(m,D,C→C0,A)

Γ = x : C with AT (C x), this : C with AT (C) A ;Γ `mx t0 : E0 E0 <: C0
AT (C x)→ A

M OK in C
(T-METHOD)

L OK ;`mx t : C

(L, t) OK
(T-SPL)

Figure 11: CFJ typing with metaexpressions (changes
only).



[[t]]mx =


[[MXT (t,1)]] if eval(AT (MXT (t,1)),F)
[[MXT (t,2)]] else if eval(AT (MXT (t,2)),F)
. . .
[[MXT (t,n)]] else if eval(AT (MXT (t,n)),F)
[[t]] else

[[t.f]] = [[t]]mx.f

[[t.m(t)]] = [[t]]mx.m(〈〈[[t]]mx〉〉)
[[new C(t)]] = new C(〈〈[[t]]mx〉〉)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]]mx;}

[[(L, t)]] = ([[〈〈L〉〉]], [[t]]mx)

Figure 12: CFJ variant generation with metaexpressions
(changes only).



6.3.2 Variant Generation

The variant generation mechanism is changed similarly to
the type system. In addition to the function variant(a,F)
(short [[a]]), we need a metaexpression-aware func-
tion for terms variantmx(t,F) (short [[t]]mx). The function
variantmx replaces the original term by the first alterna-
tive of which the annotation evaluates to true; if there is
no alternative or all annotations of alternatives evaluate to
false, the original term remains. Again, as for term typ-
ing, we need to adjust a number of variant generation
rules (G.2, G.3, G.4, G.5, and G.8) to use the new vari-
ant function. We show the new function variantmx and the
changed generation rules in Figure 12.

6.3.3 Properties

Both properties backward compatibility and generation
preserves typing still hold. Backward compatibility is ob-
vious, because we did not change the syntax and be-
cause the type system behaves just as the original CFJ
type system when the metaexpression table is empty.
Also generation preserves typing holds; the intuition is
that `mx checks all alternatives that can be generated
by variantmx. Again, we formalized our extensions and
proved the theorem generation preserves typing with the



proof assistant Coq.14

6.4 Summary

There are many different possibilities how alternative fea-
tures can be implemented and type checked in a product
line. Merging alternative classes and methods is not nec-
essary but reduces the difficulty of finding mechanisms for
implementation and type checking to alternative terms. In
full Java, in which a method can contain a list of state-
ments, we can now use alternative statements without
further extensions. In FJ, we are more constrained be-
cause each method contains only a single return state-
ment. While already without modifications of CFJ method
overriding can be used as a ‘hack’, we prefer a dedi-
cated extension of the type system. There are many novel
language constructs we could introduce – mixins, as-
pects, traits, and many more – but these require significant
changes to syntax and type system and are not backward
compatible to FJ (and Java). To achieve backward com-
patibility to keep existing tool support, we introduce and
type check metaexpressions as originally suggested for
UML models by Czarnecki and Antkiewicz [2005]. Meta-
expressions are added using an external metaexpression
table and are backward compatible to Java in the sense

14Proof script available at http://fosd.de/cfj/



that a metaexpression can always be added and type
checked on top of an existing program. The main chal-
lenge remains to find an appropriate visualization for the
editor that can convey the metaexpression concept to de-
velopers, potentially even including nested metaexpres-
sions. However, a proper visualization is outside the scope
of this paper.



7 Beyond Featherweight Java (Im-
plementation)

Our formalization is based on Featherweight Java be-
cause it allows proving the feasibility of a product-line–
aware type system in a confined setting. Nevertheless, for
a practical application, a product-line–aware type system
should be provided for full Java or other languages. Our
experience with CFJ guides the way for a more general
implementation in our product-line tool CIDE.

CIDE is an Eclipse plug-in for product-line develop-
ment. After specifying features in a feature model, a de-
veloper can assign annotations to code fragments. CIDE
follows a model of disciplined annotations, in which an-
notations have to align with the underlying structure as
outlined in Section 5.2. CIDE represents annotations vi-
sually with background colors and provides various forms
of additional tool support [Kästner et al., 2008], which are
beyond the scope of this paper.

The formalization shows that backward compatibility
is possible; we only have to add additional reachability
checks between pairs (or triples or quadruples) of code
fragments and their annotations. At a practical level, to
achieve language independence (or at least extensibility
toward new languages), we implemented a framework for
product-line–aware type checking in CIDE that provides a



general mechanism to iterate over a project, check reach-
ability conditions, and report errors. CIDE displays de-
tected errors like standard Java errors directly at their lo-
cation (e.g., underlining a method invocation), and pro-
vides suggestions for fixing them. Our framework can be
extended with plug-ins for specific languages. Each plug-
in is responsible for determining which reachability condi-
tions to check in a given language; for example, it looks
up method invocations and corresponding method decla-
rations. It is even possible check reachability conditions
between elements of different languages (inter-language
typing).

Currently, we provide the following type-checking
plug-ins for CIDE:

• Featherweight Java. We implemented the CFJ type
system in CIDE, including a metaexpression exten-
sion for alternative features (see Sec. 6.2). Specifi-
cally, Rosenthal [2009] implemented the entire type
system natively without reusing an existing imple-
mentation.

• Java. For Java, we implemented all checks from
Featherweight Java and several additional checks
regarding local variables, interfaces, generics, im-
ports, abstract classes, abstract methods, and oth-
ers. This type system was implemented on top of
Eclipse’s type checks for Java, that is, we reused



existing lookup mechanisms and added only reach-
ability checks on top. To be precise, we could not
reuse all lookup mechanisms, but had to slightly
adapt those that are equivalent to mtype and over-
ride in Section 5.5.2. Although our implementation
is probably not complete (a guarantee is difficult to
provide for full Java), we believe that we have cov-
ered the most important causes of type errors and
that our implementation is useful in practice.

The product-line–aware extension for Java is built
on top of Eclipse’s standard Java compiler. Thanks
to backward compatibility, the existing syntax-
and type checking mechanisms, the internal Java
model, and the background compilation process of
Eclipse remain untouched. Therefore, Eclipse pro-
vides tool support such as syntax highlighting, code
completion, and code navigation; and Eclipse al-
ready detects all type errors of standard Java, we
only add reachability checks on top.

• Bali. Bali is a grammar specification language in the
AHEAD tool suite [Batory et al., 2004], for which we
added reachability checks between references to
and declarations of productions and tokens. In this
language, looking up pairs is straightforward with
a simple name table. Still, the entire mechanism to
check reachability in the context of a feature models



is reused and shared with the other languages.

• OSGi Manifest + Java. As a demonstration of inter-
language typing, we implemented a plug-in that
looks up package references between a manifest
file of an OSGi bundle [OSGi Alliance, 2009] and
the bundle’s implementation with Java. It again
checks that the implementation is reachable from
the according declaration in all variants, so that, in
this case, no variant of an OSGi bundle can de-
clare to export a package that it does not contain.
So far, we implemented only checks for the Export-
Package declaration as a proof of concept, but this
can be extended easily to other checks between an
OSGi manifest and Java or inter-language checks
between other languages.

Together with an industrial partner, we are currently also
implementing a product-line–aware type system for C that
is largely backward compatible to the C preprocessor.
This type system is developed outside CIDE, but follows
the same mechanisms.

Finally, the mechanism to actually reason about
feature models and annotations (to determine whether
AT (a) → AT (b) holds for all valid variants) also is ab-
stracted behind an interface so that different reasoning
mechanisms can be plugged in. Currently, we have im-
plemented two mechanisms: a very simple one based on



set relations (which however supports only very simple
feature models that can only express dependencies in the
form of parent-child relationships in a tree, but no alter-
natives) and one for full feature models, originally devel-
oped for FeatureIDE [Leich et al., 2005; Kästner et al.,
2009c]. In the latter, which we use by default, reason-
ing is performed by transforming the feature model and
reachability conditions into Boolean satisfiability problems
as described by Batory [2005]; we subsequently solve the
problem with the off-the-shelf SAT solver SAT4J.

To summarize, the formalization of CFJ is tailored to
Featherweight Java, but the underlying mechanisms are
general and can be transferred to other languages. Cur-
rently, the additional reachability checks for every lan-
guage (and combination of languages in case of inter-
language typing) are be provided manually using plug-ins.
Whether these plug-ins can be generated automatically
(e.g., from attribute grammars) is an open research ques-
tion. Regarding inter-language typing, further research
is needed to find the right abstractions (e.g., [Apel and
Hutchins, 2010]) or a suitable polylingual type system
(e.g., [Grechanik et al., 2004]). From a tool perspective,
recent advances in inter-language refactorings in Eclipse
can be used as possible starting point [Fuhrer et al.,
2007].



8 Evaluation

In the previous sections, we have designed, formalized,
and implemented a product-line–aware type system. To
demonstrate its practicality, we performed a series of case
studies to evaluate whether we can actually find type er-
rors in existing product lines. Specifically, we want to an-
swer the following questions:

• What are typical shapes of annotations?

• Does type checking detect relevant errors in soft-
ware product lines?

• What performance can we expect from type
checking a software product line (especially since
Boolean satisfiability problems are involved)?

We applied our type checking approach to four case
studies. As case studies, we selected Java programs that
implement variability using some form of preprocessor.
Since Java does not have a build in preprocessor, there
are not as many projects as in C or C++, but, interest-
ingly, providing variability is essential in the domain of soft-
ware for mobile phones, so we found some open source
projects that use the Java ME preprocessor Antenna.15

15Antenna (http://antenna.sourceforge.net/) uses #ifdef di-
rectives very similar to the C preprocessor; however, Antenna’s direc-



We selected the following software product lines (see also
Table 1):

1. MobileMedia. MobileMedia is a Java ME applica-
tion to manipulate photo, music, and video files on
mobile devices. It has been developed at Lancaster
University as a product line and has been used in
several studies on comparing conditional compila-
tion with aspect-oriented mechanisms [Figueiredo
et al., 2008; Conejero et al., 2009]. The product
line has several optional features implemented with
#ifdef directives, such as support for photos, mu-
sic, video, SMS transfer, or favorites. We selected
this product line because the code is peer re-
viewed [Figueiredo et al., 2008] and because the
development is well documented in several incre-
mental releases (each added one or more fea-
tures), which allowed us to analyze simple as well
as more complex versions. Specifically, we look at
two releases: Release 6 with nine features and the
latest Release 8 with 14 features (cf. [Figueiredo
et al., 2008]).16

tives are written in comments. When running Antenna with a given fea-
ture set, it comments out all code of unselected features. The prepro-
cessor is integrated in Java ME extensions of IDEs like Eclipse and Net-
Beans, in the latter even with additional syntax highlighting.

16The source code is available online at http://mobilemedia.
cvs.sf.net/viewvc/mobilemedia/, of both releases, we used the



Software product line LOC #FEA #ANN Features

MobileMedia (Rel. 6) 4 600 9 88 PHOTO, MUSIC, SMS, SORTING, COPY-
MEDIA, FAVORITES, 128X149, 132X176,
and 176X205

MobileMedia (Rel. 8) 5 700 14 164 PHOTO, MUSIC, VIDEO, SMS, SORT-
ING, COPYMEDIA, FAVORITES, PRI-
VACY, CAPTUREPHOTO, CAPTUREVIDEO,
PLAYVIDEO, 128X149, 132X176, and
176X205

Mobile RSS Reader 20 000 14 1 050 MIDP10, MIDP20, JSR75, JSR238,
CLDC11, SMALLMEM, ITUNES, LOGGING,
TEST, TESTUI, 4×COMPATIBILITY

Lampiro 45 000 11 108 MOTOROLA, TLS, COMPRESSION,
BXMPP, SCREENSAVER, UI, GLIDER,
BLUDENO, TIMING, SENDDEBUG, and
PLAINSOCKET

Berkeley DB 70 000 42 1 825 TRANSACTIONS, STATISTICS, DELETEDB-
OPERATION, ENVIRONMENTLOCK, FILE-
HANDLECACHE, . . . (see [Kästner et al.,
2007] for a comprehensive list)

LOC: lines of code (approximated); #FEA: number of features; #ANN: number of annotated code fragments

Table 1: Size and features of our case studies

2. Mobile RSS Reader. Mobile RSS Reader is an
open source project to implement a portable RSS
reader for mobile phones on the Java ME plat-
form.17 Variability is crucial to support different de-
vices, therefore typical features refer to Java ME li-
braries: MIDP 1.0, MIDP 2.0, CLDC 1.1, JSR 75
(file system), and JSR 238 (internationalization).

code revision from July 9th, 2009.
17http://code.google.com/p/mobile-rss-reader/; Mobile

RSS Reader under continuous development, we used revision
1596 (May 21st, 2009) available at http://mobile-rss-reader.
googlecode.com/svn/!svn/bc/1596/trunk/.



Additional features include support for devices with
small memory capacity, logging and testing fea-
tures, and several compatibility features for different
RSS formats.

3. Lampiro. Lampiro is an instant-messaging Java ME
client for the XMPP protocol developed by Bluendo
s.r.l., released as open source.18 Several features,
such as COMPRESSION, ENCRYPTION (TLS), PRO-
FILING and DEBUGGING, or SCREENSAVER, are im-
plemented using #ifdef directives.

4. Berkeley DB. Finally, Oracle’s Berkeley DB is
an open-source database engine written in Java,
which we decomposed into features in prior
work [Kästner et al., 2007, 2008].19 Berkeley DB is
different from the case studies above in two ways.
First, it was not originally developed as a product
line, but we later refactored it into features, such as
TRANSACTIONS, STATISTICS, ENVIRONMENTLOCK,
or DELETEDBOPERATION. Second, we annotated
the code base with CIDE after having implemented

18http://lampiro.bluendo.com/; Lampiro is still under devel-
opment, we used version 9.6.0 (June 19th, 2009) available at http:
//lampiro.googlecode.com/svn/!svn/bc/30/trunk/.

19Specifically, we used Berkeley DB version 2.1.30 available at
http://www.oracle.com/technology/software/products/
berkeley-db/je/index.html.



an initial version of our type system. This gives a
different perspective on our type system regarding
the development of a new product line by decom-
posing a legacy application.

8.1 Shape of annotations

In all case studies, annotations are used often at a fine
granularity. While also entire classes and methods are
annotated, most annotations are on statement level. In
Mobile RSS Reader and Berkeley DB, even parameters
in method declarations and method invocations were an-
notated. This fine granularity is where annotations play
to their strength, compared to contemporary modulariza-
tion techniques such as components or aspects [Kästner
et al., 2008], but also where it is difficult to enforce reach-
ability conditions manually due to their high number.

Most annotations were simple and consisted only of
a single feature (#ifdef X) or a negated feature (#ifndef
X); however, nesting was quite common (up to level 4 in
Mobile RSS Reader). Beyond single features and nesting,
only MobileMedia used some pattern like A∧B or A∨B
(the most complex annotation we found was ‘(MUSIC ∧
PHOTO)∨ (MUSIC ∧ VIDEO)∨ (VIDEO ∧ PHOTO)’ in Mo-
bileMedia Release 8). Usually it is quite easy to reason
about reachability manually and thus interpret the errors
reported by the type system. Nevertheless, automatically



checking reachability constraints in a type system is help-
ful due to the sheer number of reachability constraints (up
to 72 534 in Lampiro, cf. Tab. 2).

In all software product lines that were developed with
#ifdef directives originally, we found alternative features
or alternative implementations depending on whether a
feature is selected. Alternatives generally occurred on the
level of statements or for setting initial values of constants.
In Mobile RSS Reader, also alternative superclasses were
used, so that a class inherits from different classes de-
pending on whether feature TESTUI is selected. To avoid
complexity, we forbid alternative superclasses (see dis-
cussion in Sec. 6.1) and rewrote the corresponding imple-
mentation. In general, we found 3 alternative code frag-
ments in MobileMedia Release 6, 8 in MobileMedia Re-
lease 8, 70 in Mobile RSS Reader, and 10 in Lampiro.

8.2 Detecting Errors

To our surprise, we found inconsistencies or type errors
in all case studies except Berkeley DB. Berkeley DB is
not relevant in this context, because it was already devel-
oped with CIDE and an early version of our type system;
thus, we already eliminated all type errors in Berkeley DB
during development. In all other case studies that were
developed without a product-line–aware type system, we
checked existing annotations in released source code.



In MobileMedia Release 6 (and Release 8), we found
that a variant with SMS but without PHOTO would not
compile. On closer inspection, we found that feature SMS
actually depends on PHOTO, it is only meant to send
photos, not music or video. This dependency was nei-
ther shown in the simplified feature model published in
[Figueiredo et al., 2008], nor in a feature model provided
by the authors on request, nor was any description about
the relationship of features shipped with the source code.
After adding this dependency to the feature model, CIDE
indicates that all variants are well-typed. Detecting such
mismatch between feature model and implementation is
a typical example of the strength of product-line–aware
type systems.

In Release 8, MobileMedia has five additional fea-
tures, and annotations are more complex. CIDE initially
indicated several type errors, because we inferred an in-
correct feature model from the source code; we could eas-
ily fix this when we received a complete feature model
from the authors and added the constraint between SMS
and PHOTO as discussed above. Still, there were two re-
maining type errors caused by incorrectly annotated im-
port statements (import statements are not part of the CFJ
or the FJ calculus but are checked in CIDE). While the
target class and its references were correctly annotated,
two corresponding import statements were not annotated.
This causes a Java type error in several variants when a



removed class is imported (e.g., in variants with SMS but
without CAPTUREPHOTO and without VIDEO, or in variants
with COPYMEDIA but without PHOTO). The type system in
CIDE can point out even such seemingly insignificant er-
rors.

Also in Mobile RSS Reader, our type system found
inconsistencies: Variants with both MIDP20 and SMALL-
MEM and variants with TESTUI but without MIDP10 con-
tain type errors. Our domain knowledge is not sufficient
to judge whether these are undocumented constraints
or incorrect implementations. As an easy fix, adding the
constraints ‘¬(MIDP20 ∧ SMALLMEM)’ and ‘TESTUI ⇒
MIDP10’ reduces the number of possible variants, but
then all variants are well-typed. It is up to the developers
and domain experts to either change the implementation
or the feature model.

Additionally, we found some fragments in Mobile RSS
Reader that are never included in any variant (called dead
feature code or zombie features [Tartler et al., 2009]). To
include these code fragments, their annotations would re-
quire a feature selection that is not allowed by the feature
model. Although, such dead-feature-code analysis is not
part of the type system (dead feature code is always well-
typed regarding reachability constraints), we can easily
add a warning to our implementation to point out dead
feature code.

Finally, in Lampiro, we already had difficulties to cre-



ate a single Java version of the source code with all
features (for backward compatibility). We found that fea-
ture SCREENSAVER is dead (since the first revision in the
project’s repository) and must never be selected: Its im-
plementation calls methods that do not exist, introduces
duplicate methods, contains both missing and duplicate
import declarations. Similarly, feature GLIDER is dead; it is
obvious from code fragments as shown in Figure 13 that it
makes no sense selecting this feature. Since GLIDER was
only introduced in the last revision in the repository; we
assume that it is an incomplete part of an upcoming fea-
ture. Our type system in CIDE points to these problems
immediately. It forces developers to document in the fea-
ture model that certain features are incomplete and must
not be selected.

All in all, we did not expect to find many errors, be-
cause all product lines released their code, and because
the number of features is still manageable small. We
were surprised to find small inconsistencies or type er-
rors in every product line that was annotated with #ifdef
directives. In all cases these were only minor problems
(undocumented dependencies, forgotten annotation on
an import statement, dead feature code), nothing signif-
icant and all easy to fix. Nevertheless, this shows how
easy subtle errors can be introduced into well-developed
product lines and how product-line–aware type systems
can help to maintain consistency and fully document all



79 // #ifndef GLIDER
80 setTitle("Lampiro");
81 Image logo =

Image.createImage("/icons/lampiro_icon.png");
82 UILabel ul = new UILabel("Loading Lampiro...");
83 // #endif
84 UILabel up = new UILabel(logo);
85 up.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
86 uvl.insert(up, 1, logo.getHeight()+10,

UILayout.CONSTRAINT_PIXELS);
87
88 ul.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
89 uvl.insert(ul, 2, UIConfig.font_body.getHeight(),

UILayout.CONSTRAINT_PIXELS);

Figure 13: Code excerpt from Lampiro (Splash-
Screen.java) with type errors when accessing local
variables logo and ul in lines 84, 86, and 89 in variants
with GLIDER.



Software product line tVar (sec) tSPL (sec) #Variants #Checks #SATP #USATP

MobileMedia (rel. 6) 0.2 1.3 144 5 714 1 924 39
MobileMedia (rel. 8) 0.3 1.8 2 784 7 359 3 569 111
Mobile RSS Reader 0.6 8.3 2 048 35 094 10 684 127
Lampiro 2.0 19.0 2 048 72 534 780 26
Berkeley DB 2.6 21.0 3.6 billion 70 316 19 517 324

tVar: time to compile a single variant; tSPL: time to evaluate all reachability checks; #Variants: approxi-
mate number of potential variants; #Checks: number of performed reachability checks; #SATP: number
of SAT problems solved; #USATP: number of unique SAT problems solved

Table 2: Performance statistics of our case studies

implementation-relevant dependencies between features.
In Berkeley DB, our type system helped to achieve con-
sistency across the entire development process.

8.3 Performance

Finally, to provide some intuition about the complexity and
performance of type checking a software product line, we
measured the time to compile a single variant (tVar) and
the time to check all reachability constraints in the soft-
ware product line (tSPL).20 Additionally, we estimated the
number of variants to illustrate what it would mean to
check every variant in isolation. Our current implemen-
tation of the type system is about ten times slower than
Eclipse’s industrial-strength compiler, that means type
checking the entire product line takes as long as type

20We measured all times on a standard 2.66 GHz lab PC with 4 GB
RAM, Windows Vista, Sun Java VM 1.6.0.03, and Eclipse 3.5.



checking ten variants (a fraction of the number of possible
variants). Detailed results for all case studies are shown
in Table 2.

The slowdown is mostly caused by our algorithm to
locate the pairs for reachability checks for method invoca-
tion, field access, type reference, and others, as described
in the calculus. There are up to such 72 534 pairs in our
case studies as shown in Table 2. To enable quick in-
cremental type checking on changes to the source code,
to annotations, or to the feature model, we also store all
checks for future reevaluation. We assume that an opti-
mized implementation can significantly speed up this pro-
cess. In contrast, the time needed to actually solve SAT
problems is marginal. Many checks (60–98 %) can be
skipped without consulting an SAT solver either (a) be-
cause neither code element is annotated or (b) because
both are annotated with the identical feature expression.
For the remaining checks, the results for unique feature
combinations can be cached, so that, in our case studies,
only some hundred unique SAT problems remain to be
solved. Solving all SAT problems requires less than 50 ms
for each product line.

This shows that, although reachability checks are re-
quired in all typing judgments, they can be executed
with reasonable performance that is acceptable for practi-
cal development. Our current implementation slows down
type checking by a factor of ten, which means that for ev-



ery product line with more than ten potential variants, it is
faster to check the entire product line during domain en-
gineering than to check every variant in isolation during
application engineering. Type checking is still reasonably
fast that it can be executed in the background during de-
velopment to find errors as early as possible.



9 Related Work

Type checking product lines

The idea of type checking an entire software product lines
(instead of individual variants) emerged from research on
generative programming.

First, in an influential approach, Huang et al. [2005]
ensure that Java code generated by their tool SafeGen
is well-typed. Though their tool is used for metaprogram-
ming in general, not as product-line technology, the basic
idea is similar to our theorem generation preserves typ-
ing. Since there is no need for backward compatibility, al-
ternative features are supported natively. Using first-order
logics and theorem provers, they check whether genera-
tors written in their confined metalanguage (with selection
and iteration operators) produce well-typed output for ar-
bitrary Java input. However, checks cover only some of
Java’s typing rules, i.e., there is no guarantee that the
output is well-typed. In recent work, they introduced a
newer metaprogramming language MorphJ with similar
constructs that supports modular type checking and has
been proven type sound [Huang and Smaragdakis, 2010].

The work on checking the generation mechanism in-
stead of individual input programs in SafeGen influenced
Czarnecki and Pietroszek [2006] to check an entire prod-
uct line instead of individual variants. Specifically, they tar-



get product lines of UML models in their tool fmp2rsm
and guarantee well-formedness for all variants. In ear-
lier work, Czarnecki and Antkiewicz [2005] implemented
a tool environment to develop a product line of UML mod-
els, very similar to CIDE: they extended an existing UML
editor such that a user can annotate presence conditions
to UML elements like classes or associations; a variant
of the UML model is generated by removing elements
of which the annotation evaluates to false for a feature
selection. In this environment, also backward compati-
bility to the existing UML editor was implicit. Czarnecki
and Pietroszek [2006] then describe a mechanism for this
tool environment to check that all variants conform to cer-
tain well-formedness rules of UML – e.g., ‘an association
in UML class diagrams connects exactly two elements’.
These well-formedness rules are similar to typing rules
in programming languages and can be specified in UML’s
metamodel formally (and machine readable) using con-
straints written in the Object Constraint Language (OCL).
Their tool transforms presence conditions, the feature
model, and OCL constraints into a propositional formula,
which can be solved by an off-the-shelf SAT solver in a
single step. Error messages are reconstructed from the
SAT solver’s result. Well-formedness can only be guaran-
teed against those constraints that have been specified
(machine-readable) with OCL. For UML those must be
first inferred from the informal, textual UML specification,



which is similar to how Java’s typing rules must be inferred
from the textual Java Language Specification. The authors
do not discuss completeness of their inferred OCL con-
straints. The metaexpression solution for alternative fea-
tures was first described for their tool [Czarnecki and An-
tkiewicz, 2005]; however, metaexpressions have not (yet)
been considered in their well-formedness checks [Czar-
necki and Pietroszek, 2006].

Beyond annotations on existing languages, there have
been approaches to type check product lines written in
specialized architectures or with specialized languages
using constructs such as aspects, class refinements, or
mixins. These approaches generate variants by compos-
ing code modules. In some sense, feature annotations
and feature composition are two sides of the same coin:
one removes code from a common base (sometimes
called negative variability), the other merges already sep-
arated code (positive variability) [Kästner et al., 2008].
Both approaches can be used (also in combination) to im-
plement product lines. Refactoring between implementa-
tions based on annotations and based on composition is
usually possible [Kästner et al., 2009a]; hence, within the
boundaries caused by alternative features, it is also possi-
ble to use a composition-based type system indirectly for
annotation-based implementations and vice versa.

Some compositional approaches can check feature
modules in isolation, so only their combination into vari-



ants need to be checked; separate checking is possible
for architectures with separately compiled components or
plug-ins, as well as for several specialized languages,
e.g., [Ossher and Tarr, 2000; McDirmid et al., 2001; Warth
et al., 2006; Chae and Blume, 2008; Hutchins, 2009;
Bettini et al., 2010; Apel and Hutchins, 2010]. In some
scenarios, architectures are possible, in which all fea-
tures are independent plug-ins that can be combined with-
out type conflicts [Chae and Blume, 2008]. In many lan-
guages, by analyzing module interfaces, we could derive
dependencies that describe which modules can be com-
bined together; we could either use such dependencies
to extract an (implementation-specific) feature model [She
et al., 2011] or consider these dependencies themselves
as feature model. Nevertheless, in the product-line com-
munity, feature models often describe domain knowledge
beyond just implementation dependencies. Thus, we typi-
cally need an extra step to checking actual variability in the
implementation against the intended variability described
in the feature model [Metzger et al., 2007; Thaker et al.,
2007].

The first approach of type checking all valid variants
(intended variability) of a product line implemented by fea-
ture composition was safe composition by Thaker et al.
[2007]. They analyze language semantics of Jak [Batory
et al., 2004], a Java dialect that supports mixin-style class
refinements (including native support for alternative fea-



tures). To check types, they identify six constraints that
need to be satisfied, which their tool maps to propositional
formulas and checks with an SAT solver. One constraint
deals with references to fields and methods (roughly cor-
responding to T-FIELD and T-INVK), two deal with abstract
classes and interfaces (no correspondence in Feather-
weight Java), and three deal with specific constructs of
the Jak composition mechanism (no correspondence in
Featherweight Java). Their checks are not claimed or
even proved complete, and in fact – compared to CFJ
– checks that ensure the presence of types uses in sig-
natures are missing, e.g., (M.1), (M.3). In recent work,
an extension of safe composition was eventually also for-
malized and proved type-sound with a machine-checked
model by providing an algorithm to reduce it to Lightweight
Java [Delaware et al., 2009].

In a parallel line of research, we have formalized
a calculus Feature Featherweight Java (FFJ) for class
refinement and module composition [Apel et al., 2008]
and extended it toward checking entire product lines as
FFJPL [Apel et al., 2010]. In this work, we entirely drop
backward compatibility since the host language with its
composition semantics is already incompatible to Java
and there is no sophisticated tool support, yet. Instead,
we aimed at flexibility so that even alternative classes
with different supertypes, or alternative fields with differ-
ent types and alternative methods with different return



types are possible. Compared to CFJ the formalization is
much more complex, because a term in the product line
may have different types and even the subtype relation
may change in different variants depending on the fea-
ture selection. In the worst case, type checking has ex-
ponential complexity. CFJ and FFJ tackle type checking
software product lines for different implementation mech-
anisms and from different perspectives: CFJ targets at an-
notations and tool support focusing on developers while
FFJ targets module composition and explores maximum
flexibility.

Conditional language constructs

Independent of product-line research, the programming
language community developed several type systems that
support type conditions on methods or other language
constructs. So, invoking a conditional method is only well-
typed when the condition is satisfied in the context of
the invocation. Conditional language constructs are dis-
cussed in the context of parametric polymorphism. For
example, in a collection class, such as List, clients should
only be allowed to invoke a method print if the class is
parametrized with a type that can be printed; a collec-
tion should only implement the interface Printable if the
type parameter implements this interface as well. Condi-
tional language constructs have been explored in object-



oriented languages at least since CLU [Liskov et al., 1981]
and have been studied, for example, in extensions to Ce-
cil [Litvinov, 1998], Java [Myers et al., 1997; Huang et al.,
2007], and C# [Emir et al., 2006]. In all these languages,
type constraints are structural constraints (parameter X
contains method Y ) or subtyping constraints (parameter
X is a subtype/supertype of Y ).

Conditional methods with type constraints and CFJ
are related, because both restrict the access to methods
in some variants (#ifdef vs. condition on type parameter)
and both statically ensure that all variants are well-typed.
So, in some sense, we could replace #ifdef directives on
statements by conditions on type parameters and instead
of generating a variant by removing code, we could instan-
tiate the program with a suitable type parameter. However,
there are four important differences:

· Code removal vs. multiple instances. Our work ad-
dresses conditional compilation in the context of prod-
uct lines, such that code is actually removed in a gen-
eration step. In contrast, all languages with conditional
methods we are aware of do not generate variants but
check that a present method is never called when the
condition on the type parameter evaluates to false. Type
conditions have the benefit that different instances of a
class with different configurations may be used in the
same program, but they does not remove code and



thus does not reduce binary size as sometimes desired
in product-line development, especially for embedded
systems [Beuche et al., 1999; Lohmann et al., 2006;
Rosenmüller et al., 2009].

· Expressiveness of conditions. Compared to a full fea-
ture model, the expressiveness of type conditions is re-
stricted. In languages with structural constraints, they
can express part-of relationships; in language with sub-
typing constraints, they can express simple parent-child
relationships (similar to our initial ‘set relations’ imple-
mentation, see Sec. 7). Most type conditions have the
benefit that reasoning can be performed without a SAT
solver; however, more expressive feature constraints
are needed in product-line practice (see Sec. 8), such
as alternative features, negated features (¬A), or propo-
sitional expressions (e.g., A∨¬B∧C).

· Granularity. Annotations and type conditions provide dif-
ferent levels of granularity. In contemporary languages
with type conditions, typically conditions can only be
placed on methods (and sometimes fields and super-
types); type conditions aim primarily at providing flexible
libraries. In contrast, #ifdef directives and annotations in
CFJ and CIDE are more flexible and can annotate entire
classes, individual statements, or even method parame-
ters, which is typically not needed in libraries. Our work
targets at variability in applications and product lines,



in which also the behavior of an individual method may
change depending on the feature selection. Of the four
examples in Section 3, only the first can be implemented
and checked with type conditions of contemporary lan-
guages.

· Backward compatibility. Finally, to add type conditions
to Cecil, Java, or C#, all approaches introduce new lan-
guage constructs. In contrast, we aim explicitly at back-
ward compatibility to reuse the existing tool infrastruc-
ture.

These differences are mostly design decisions for a spe-
cific language. It is possible to develop conditional lan-
guage constructs that are similar to CFJ (backward com-
patible, at finer granularity, with more expressive con-
ditions) or product-line–aware type systems with char-
acteristics of conditional language constructs. However,
so far the product-line community and the programming
language community pursued different goals (product-
line development by code removal, backward compat-
ibility, flexible annotations, and alternative implementa-
tions vs. expressive type system for libraries and multi-
ple instances), which lead to different design decisions.
With contemporary conditional compilation constructs,
our case studies would be very difficult to implement. We
argue that both approaches are complementary and may
eventually converge. In this context, we contribute a differ-



ent perspective with different design decisions and their
trade-offs for conditional language constructs.



10 Conclusion

We have formally discussed a type system for an entire
software product line that is implemented with annotations
on a common code base. Instead of checking all – possi-
bly millions – of variants that can be generated from a
product line in isolation, we check the product line itself
and guarantee that all variants generated from a well-
typed product line are well-typed. We have shown that
CFJ can be modeled in a backward compatible fashion
on top of FJ, extending only the typing rules and auxiliary
functions with local checks on annotations.

The formalization was motivated by our product-line
tool CIDE for Java and other languages. Though, CFJ (or
FJ) covers only a small excerpt from the Java specifica-
tion, the formalization provides several insights on how
to design a product-line–aware type system, such as the
concept of reachability conditions, the theorem genera-
tion preserves typing, and the design decision of back-
ward compatibility. With the small scope it also allowed
to explore the implementation of alternative features with
metaexpressions in detail.

In four case studies, we have shown that type check-
ing an entire software product line is feasible, useful, and
reasonably fast. With our implementation in CIDE, we
even found inconsistencies (undocumented dependen-
cies, forgotten annotations on an import statements, dead



feature code) in all analyzed product lines that were de-
veloped with #ifdef directives. With a product-line–aware
type system, we detect such problems already early dur-
ing product-line development, instead of late when prob-
lematic variant with a specific feature combination is even-
tually compiled. Although these product lines contain hun-
dreds of annotations, sometimes with at a fine level of
granularity or with complex or nested feature expressions,
we can efficiently automate reachability checking.

In future work, we intend to explore paths toward ex-
tensions for other code and non-code languages and their
interactions (inter-language typing). Furthermore, we in-
tend to apply verification and validation tools to entire
product lines to find also semantic errors. Our long term
goal is to provide a language-independent product-line
tool that counteracts the inherent complexity of product
lines by detecting possible errors as early as possible.
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