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Abstract. In multiagent adversarial domains, team agents should adapt to the
environment and opponent. We introduce a model representation as part of a plan-
ning process for a simulated soccer domain. The planning is centralized, but the
plans are executed in a multi-agent environment, with teammate and opponent
agents. Further, we present a recognition algorithm where the model which most
closely matches the behavior of the opponents can be selected from few obser-
vations of the opponent. Empirical results are presented to verify that important
information is maintained through the abstraction the models provide.

1 Introduction

Multiagent domains can include team and adversarial agents. Our work is driven by
the goal of significantly improving the performance of teams of agents through their
adaptation and effective response to different adversarial teams.

We use the concrete simulated robotic soccer platform, which is a rich multiagent
environment including fully distributed team agents in two different teams of up to
eleven agents. Extensive work has been done on adapting the teammates’ behavior to
their opponents, mainly at the individual low-level of positioning and interactions be-
tween a small number of agents [5]. The procedure for these positioning adaptations
does not change throughout a game, limiting the degree to which the team adapts to the
opponent team’s behaviors.

This paper reports our work on going one additional major step towards the adaptive
response of teammates to the opponent, by gathering and responding to the opponents’
behaviors throughout the game. We specifically focus on responding effectively after
the game is stopped, in what are known as setplay situations. Several preset setplay
plans [5] have been introduced which indeed provide great opportunities to position
the teammates strategically and have been shown to impact the performance of a team.
In this work, we contribute adaptive setplays which change and improve throughout a
game as a function of and in response to the opponent team’s behavior.

We use a “coach” agent with a centralized view of the world, but whose only action
is to communicate with its teammates, but only at occasional times. In the robotic soccer
domain, these times are when the game is stopped for some reason. This type of scenario
is one instance of the Periodic Synchronization Domains [6] where team agents can
periodically synchronize their team strategies.

Our coach agent compiles the necessary overall view of how the opponent team
behaves. The coach communicates to its teammates a team plan which is executed and
monitored in a fully distributed manner. The coach agent is equipped with a number
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of pre-defined opponent models. These models are probabilistic representations of pre-
dicted opponents’ locations. The models can then be matched to observed movements
of the opponent agents. The coach continues to gather observations and when the game
is stopped, e.g., due to an out-of-bound call, the coach rapidly takes advantage of the
short available time to create a team setplay plan that is a function of the matched mod-
eled opponents’ behavior. The plan is generated through a hill-climbing search in plan
space using an evaluation function that embeds the predictions of the opponent model
perceived to be the most likely during the game. The plan generation, in addition to the
recognition of the opponents’ model, notably uses the model to predict the opponent
agents’ behaviors. The coach also observes the execution of the plan generated in order
to update the selection of an appropriate model for the current opponent. This paper
focuses on the structure of an opponent model and the algorithm for recognizing the
best-matching model. A more complete overview of the system can be found in [3] and
more details on the planning can be found in [4].

2 Opponent Models and Model Selection

Conceptually, we want an opponent model to represent how an opponent plays defense
during setplays. We expect that a wide range of decision making systems can be roughly
captured by a small set of models. In order to handle the uncertainty in the environment
and to allow models to represent more information than just a simple predicted location,
we use probabilistic models. Given the recent history of the ball’s movement (from the
start of the set play for example) and the player’s initial location, the model should give,
for each player, a probability distribution over locations on the field.

Let p be the number of players on a team. Let F be the set of positions on the field,
discretized to 1m. We represent the ball movement as a sequence of locations on the
field (an element of F

�
). A location for each player is a sequence of positions on the

field (an element of F p).
An opponent model defines a probability distribution for each player over the end

locations on the field for that player, given the ball movement B
�

F
�

and a set of starting
positions S � F p for all the players. If R is a probability distribution over locations on
the field, an opponent model M is a function:

M : F
��������

ball movement

� F p�������
initial pos.

	 Rp�������
probability distribution for each player

(1)

In particular, for an opponent model M, the probability for player i being at end location

i (Pi � 
 i �B  S � ) is calculated by choosing the ith probability distribution output by the

model and calculating the probability of the location



i according to that distribution.
Notice that each player’s distribution may depend on the starting positions of all the

opponent players. In order to avoid recursive modelling, we do not allow the opponents
distributions to depend on our own player locations. The ball movement B is the planned
ball movement. The starting positions for the players are their current locations. We
have a probability distribution for each player, which is the probabilistic obstacle for
planning.
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Given a set of opponent models, it is still a challenge to decide which model best
describes the opponent. We assume that the opponent has chosen one of our models at
the beginning of the game and is then independently generating observations from that
model. We can then use a naive Bayes classifier.

We maintain a probability distribution over the models. The original distribution
(the prior) is set by hand. Then, whenever a planning stage is entered, the model with
the highest probability is used. Upon observing a plan execution, we use observations
of that execution to update our probability distribution over the models.

What this means is that we start with a probability distribution over the set of models�
M1 ������  Mm � (known as the prior) and then we get an observation. An observation is a

triple of starting locations for all the players S
�

F p, a ball movement B
�

F
�
, and ending

locations for all of the players E � F p. We want to use that observation to calculate a
new probability distribution, the posterior. That distribution then becomes the prior for
the next observation update.

We make the following assumptions, in order to simplify our equations:

1. The players movements are independent. That is, the model may generate a prob-
ability distribution for player x based on everyone’s starting locations. However,
what the actual observation is for player x (assumed to be sampled from this proba-
bility distribution) is independent from the actual observations of the other players.

2. The probability of a particular starting position and ball movement are independent
of the opponent model. This assumption is questionable since the ball movement
(i.e. plan) generated depends on the opponent model.

Consider one updating cycle of getting an observation ω ��� S  B  E � . We want P � Mi � ω � .

P � Mi �ω �	� P � ω � Mi � P � Mi �
P � ω � � P � S  B  E � Mi �

P � ω � P � Mi �
� P � E � S  B  Mi � P � S  B � Mi �
P � ω � P � Mi �

� P � E � S  B  Mi � P � S  B �
P � ω � P � Mi � (assump. 2)

� P � 
 1 � S  B  Mi � P � 
 2 � S  B  Mi ������� P � 
 p � S  B  Mi �� ��� �
what opponent model calculates

P � S  B �
P � ω �� � � �

norm. constant

P � Mi �� � � �
prior

(assump. 1)

The term labeled “norm. constant” is a normalization constant, i.e. it does not de-
pend on which model is being updated, so it does not need to be explicitly calculated.
We calculate the remaining terms and normalize the result to a probability distribution.

3 Empirical Evaluation

In order to verify that the abstracted form of models given here are still sufficient to
reliably capture variation, we implemented several different movement recipes for the
defense. We then implemented models to capture each of these effects. This is a non-
trivial task, both because of the great deal of uncertainty in the environment, and the
abstraction which the models provide over the basic actions. An empirical evaluation
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was necessary to verify that our model implementations match the effects of the players
and that the naive Bayes update can quickly recognize models of this form.

Besides the choice of the models, a decision must be made about how to gener-
ate observations from the stream of data being received about the opponent positions.
Clearly, if an observation triple is generated every cycle we will be violating the in-
dependence assumption of the naive Bayes update, as well as giving the models little
information (in terms of the ball movement) with which to work. For this testing we
decided to create an observation for processing every time the agent who is controlling
the ball changes. An agent is considered to be controlling the ball if (i) the agent is the
closest player to the ball and (ii) the player can kick the ball. A given observation can
cover anywhere from approximately 5 to 50 cycles.

In all of the models used, the distribution of each players final position is repre-
sented by a 2-dimensional Gaussian with equal variance in all directions. The standard
deviation is an affine function of time (since the beginning of the setplay); we tested
with several different slopes. The mean is computed as discussed below. This is likely
not the optimal distributional representation, but it suffices for recognition task here.

We used five models for the empirical evaluation. Naturally, the mean of each
player’s final distribution is computed relative to the initial position as follows:

No Movement At the initial position of the player
All to Ball Moved towards the ball at a constant speed
All Defensive Moved towards the defensive side of the field at a constant speed
All Offensive Moved towards the offensive end of the field at a constant speed
One to Ball This model is slightly different from the others. The ball’s movement is

broken down into cycles. At each cycle, whichever player is closest to the ball is
moved slightly closer. Note that since the ball can move faster than the players,
which player is closest to the ball can change several times during the ball’s move-
ment. The final positions of the players are the means of the distributions.

Before looking at how well each model can be recognized out of this set of models,
it is important to understand how “separable” the models are. That is, if two models
make similar predictions in most cases, it will be difficult to recognize one model over
the other. Clearly, getting more observations should improve the recognition accuracy.

We will develop the concept of separability in three stages. First we will consider the
separability of two distributions, then the separability of multiple sets of distributions,
and finally define empirically the separability of a set of models.

Start with two distributions A and B over two dimensions. The question we are
interested in is if we are seeing an observation probabilistically generated from A, what
is the probability that the naive Bayes update (starting with a uniform prior) will return
with A being the most likely distribution? This is equivalent to the probability mass in
A of the area where the probability distribution function (i.e. p.d.f.) of A if greater than
the p.d.f. of B. Of course, we are also interested in the case where B is the distribution
generating observations, and in general these probabilities can be different.

Now consider seeing multiple observations instead of a single one. Once again, we
are interested in the probability that A will have the highest posterior after the naive
Bayes update on all of the observations. This is challenging to solve analytically, but
Monte Carlo simulation can estimate this probability.
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Fig. 1. Separability of the models (Error bars are one standard deviation)

This concept of separability extends naturally to the update over the distributions of
all the players and over all of the models. Given a distribution for each player from each
model, we can use Monte Carlo simulation to compute the probability that the correct
set of distributions will be recognized for any given number of samples.

However, the models are functions from starting positions of the opponents and a
movement of the ball to distribution of the opponents, not simply distributions them-
selves. We use an empirical test to estimate separability of models. For each observation
O1 ������ Ok from real game play, we repeatedly generate a series of artificial observations
� S  B  E1 �	����� � S  B  En � (where n is the number of observations for which we want to es-
timate the probability of correctness). The sequence of ending positions E1 ����� En are
sampled from the distributions output by the correct model (the model for which we
want to estimate the probability of the naive Bayes being correct). For each sequence
of artificial observations, the update is performed. We can then estimate the probability
that the correct model will be the most likely. Averaging over all observations, we can
estimate the probability of a model being correctly recognized, given n observations.

Figure 1 shows, for each model, the probability of that model being recognized
as a function of the number of observations. The three graphs are for three different
choices of the slope of the line controlling the increase in the standard deviation of the
distributions over time. One can see that if the models perfectly capture the opponents,
after only a few updates, the recognition accuracy should be quite high (more than
80%). Also note that since a lower rate of standard deviation increase means less overlap
in the distribution, lower rates give better separability.

The testing of recognition accuracy is much simpler compared to estimating the
separability of the models. For each number of observations n, we examine contiguous
sets of n observations from real game play (where the opponents are using a recipe
which should reflect predictions of the models). For each set, we perform the naive
Bayes update and check whether the correct model has the highest posterior. From this
sequence of binary answers, we estimate the probability of the model being recognized.

Figure 2 summarizes the recognition accuracy of the models for each of the choices
of the standard deviation increase rate. With standard deviation rate of 0.3 or 0.5, an
accuracy of 94% is obtained with just four observations. The fact that the recognition is
much lower for a standard deviation increase rate of 0.1 suggests that the true standard
deviation of the players’ positions is higher than predicted by the model.
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Fig. 2. Summary of Recognition Accuracy

4 Discussion

Similar work is by Intille and Bobick[2], who give a framework for recognizing plays
in American football. The plays are given in terms for goals for the agents and limited
temporal constraints between actions. Further, similar to Charniak and Goldman [1],
they use Bayesian style networks to incorporate observed information.

One important difference between ATAC and other plan and behavior recognition
work is that we use the recognized information for purposes for predicting and adapting
to future behavior. We assume that the opponents will behave similarly to how they
performed in the past, and use that information to develop a plan.

We fully implemented this system for RoboCup2000, and it was evident that our
team benefited from adaptive setplays. We hope to explore automated learning of the
models and providing more flexibility to take advantage of unpredicted opportunities.
We plan to continue to explore the area of generating and using opponent models further
exhibit adaptive, intelligent responses in our agents.
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