
A BÉZIER-BASED APPROACH TO UNSTRUCTURED
MOVING MESHES∗

David Cardoze† Alexandre Cunha‡ Gary L. Miller† Todd Phillips§

Noel Walkington§

We present a new framework for maintaining the qual-
ity of two dimensional triangular moving meshes. The use
of curved elements is the key idea that allows us to avoid
excessive refinement and still obtain good quality meshes
consisting of a low number of well shaped elements. We
use B-splines curves to model object boundaries, and ob-
jects are meshed with second order Bézier triangles. As the
mesh evolves according to a non-uniform flow velocity field,
we keep track of object boundaries and, if needed, carefully
modify the mesh to keep it well shaped by applying a com-
bination of vertex insertion and deletion, edge flipping, and
edge smoothing operations at each time step. Our algo-
rithms for these tasks are extensions of known algorithms
for meshes built of straight–sided elements and are designed
for any fixed-order Bézier elements and B-splines. Although
in this work we have concentrated on quadratic elements,
most of the operations are valid for elements of any order
and they generalize well to higher dimensions. We present
results of our scheme for a set of objects mimicking red blood
cells subject to a precomputed flow velocity field.
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B-splines, finite element method, moving meshes

1. INTRODUCTION
The goal of this paper is to describe our development of

geometric algorithms and software for the efficient simula-
tion of deforming soft tissues. Of particular interest is the
simulation of red blood cells at the scale of individual cells
that are being transported in a fluid. This is the focus of the
Sangria project at CMU [20], whose goal is to develop par-
allel geometric and numerical algorithms for the simulation
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of complex flows with dynamic interfaces. Our target ap-
plication is the simulation of blood flow at the microscopic
level where individual cell deformations and their interac-
tions with the surrounding fluid have to be accounted. Due
to the complexities involved in the simulation of thousands
of individual cells, no simulations of blood flow at this scale
exists. However they are crucial to the development of arti-
ficial organs, and better models of macroscopic blood flow.
We must maintain the deforming interfaces with a geomet-
ric object such as a mesh and develop efficient geometric
algorithms to update the underlying mesh as time evolves.
In this paper we concentrate on such geometric algorithms.
Our ultimate goal is to simulate blood flow in three dimen-
sions, here we focus first on two-dimensional simulations,
utilizing many procedures which generalize well to higher
dimensions.

Our approach is to explicitly represent interfaces and bound-
aries by moving the mesh with their movement. More gen-
erally the mesh will move with the fluid and tissues as well.
Thus an edge in our mesh represents a portion of the tissue
so even if the edge is initially straight it will in general move
to a curve with time.

Our moving mesh algorithms support the Lagrangian for-
mulation of fluid mechanics. In the Lagrangian paradigm
for simulating fluid flows, domain boundaries and object in-
terfaces are continuous parts of the fluid they are embedded
in and as such they inherit the same motion experienced by
the fluid. Mesh vertices, representing both fluid particles
and the embedded objects, move subject to the same veloc-
ity field, which makes it easy to deform and track dynamic
object interfaces. A challenging aspect of this approach is to
make sure that the moving meshes remain acceptable and
of good quality at all times during the progression of the
physical simulation.

Severe motion of the vertices from one time step to the
next may produce tangled or poorly shaped elements which
in turn may lead to unrecoverable errors in the numerical
solver. It is well known that the presence of such bad ele-
ments in the mesh may prevent a simulation to advance and
yield meaningful results. Therefore, maintaining the good
quality of an evolving mesh is of crucial importance in the
Lagrangian paradigm.

The work we present here is a step towards the broader ac-
ceptance and application of the Lagrangian formulation for
simulating time dependent problems. Our goal is to improve
the development of simulations by addressing the geometric
aspects of moving meshes. Contrary to other methods, we
do not resort to a complete remeshing from scratch at each



time step to achieve good quality. When mesh elements
deform beyond acceptable limits, we restore good quality
by applying a set of local topological and geometrical op-
erations which are extensions of known algorithms used in
linear meshes.

We present four basic accomplishments in this work:

• A new framework for moving curved meshes based on
existing algorithms for linear meshes.

• A new metric for analyzing the quality of curved ele-
ments.

• An implementation of the meshing methods discussed.

• Some experimental results verifying the quality of these
simulation methods.

The rest of this paper is organized as follows. In Sections 2
and 3 we discuss or motivations and related work. In section
4 we describe Bézier curves, Bézier triangles, B-splines and
explain the reasons why we opted to use them as geomet-
ric building blocks of our simulation process. In Section 5,
we present the basic operations we use to modify evolving
meshes and the algorithmic methods we use to ensure mesh
quality. In Section 6 we describe how all the respective pro-
cedures fit together in our simulation process. In Section7
we describe our prototype. In Section 8, we present some
experimental results. Finally, in Section 9, we discuss future
work.

2. MOTIVATION
Previous curved meshing methods have been primarily

concerned with respecting the curved nature of the domain
boundary. Our approach is new, in that curves are allowed
and indeed do exist everywhere in the mesh. There are sev-
eral reasons motivating this design choice. The first is soft-
ware design. From the perspective of the implementation,
once one has implemented the ability to handle curvilinear
elements on or near the boundary, it is relatively straight-
forward to extend this notion to the entire mesh.

The second and most important concern in moving meshes
is the accuracy of the deformation. A linear moving mesh
has only one of two options when deforming. A linear ap-
proximation to the deformation can be made, or the mesh
can be pushed forward in a nonlinear way and then projected
back onto a linear mesh. The first option is unwanted, as we
desire a high degree of accuracy in our deformation proce-
dure. The second option is also unwanted, since it requires
a rather costly projection everywhere in the mesh. Perform-
ing such a projection not only requires more computation
time, but also introduces re-interpolation error everywhere
in the mesh.

As such, we find that using a curved moving mesh is ex-
actly suited to our needs. We take a high-order approxi-
mation to the deformation (same degree as the mesh), and
encounter no re-interpolation error. We must be wary, how-
ever, since allowing the curves of the mesh to continually
deform arbitrarily can (and will) result in such severe cur-
vature that our meshing methods will fail, since they are
based on linear methods and expect the curves to be near
linear. Still, our methods for reducing the severity of curves
are localized, and therefore introduce less re-interpolation
error than methods which force the entire mesh to be lin-
ear.

3. RELATED WORK
The main body of related work consists of work with

curved meshing methods and with moving mesh methods.
To the best of our knowledge, there exists no other work in
dealing with curved moving meshes.

A good deal of work with curved meshes has been done by
Luo, Shephard, et al. [15]. They describe methods to obtain
a mesh with curved elements starting from a straight mesh.
They also describe the use of Bézier polynomials to define
the shapes of their elements. The work makes use of meshing
operations that have proved well in practice, mainly edge
splits and edge collapses. This work also discuss examining
the Jacobian of Bézier elements for shape validity. Another
important work in the field of curved meshing was done by
Boiven and Ollivier-Gooch [3] who presented an algorithm
extending Delaunay refinement to mesh a static domain with
a curved boundary.

In the area of moving linear meshes, two major ideas have
prevailed. One is to completely remesh the domain at every
time step, simply preserving the mesh values at the vertices.
The other idea is to make only local mesh modifications as
necessary. We have chosen the later approach, since the
former is ill-suited for higher order meshes. We are unwill-
ing to remesh, since it would involve discarding (or at the
very least downgrading) all of the mesh nodes not located
at vertices.

Antaki et al. [1] motivated by the microstructural blood
flow problem developed a two-dimensional parallel dynamic
mesh Lagrangian method for flows with dynamic interfaces.
They took the first approach described above, that is to
remesh the domain at each time step. One drawback of their
work was the inability to coarsen the mesh. Using the second
approach described for moving linear meshes Kuprat et al.
[11] describe a three-dimensional system for moving meshes,
X3D. Their system modifies the mesh topology to maintain
the Delaunay property as the mesh moves. It also provides
mesh smoothing to optimize mesh quality, and mesh refine-
ment by means of point insertions. Other work in moving
linear meshes with local modifications is described in [23, 2].

In the case when their is no flow such as simulating a
shock wave one may coarsen and refine a non-moving mesh.
A nice example appears in [14].

4. MESH AND ELEMENT TYPES
For our mesh elements, we have chosen to use Bézier trian-

gles, along with B-Splines to represent boundary geometry.
In addition we have a mesh hierarchy consisting of three
levels. In this section we discuss these concepts.

4.1 Bézier curves and B-Splines
Bézier curves and triangles were selected for defining mesh

elements for two main reasons. Firstly, using curved instead
of linear elements allows us to use meshes with far fewer
elements both for representing geometry and for obtaining
accurate numeric solutions. Secondly, Bézier curves and tri-
angles have a number of mathematical properties leading to
elegant algorithms.

Bézier curves are completely defined by their control points
which form the control polygon. Similarly Bézier triangles
are completely defined by their control points which form
a control net. See Figure 1. For more information about
Bézier curves and triangles see [8, 10] among others.



Figure 1: A quadratic Bézier triangle: The bound-
ary of the quadratic triangle is shown in bold. The
control net consists of six vertices and four straight
triangles.

B-splines are a convenient way for us to represent C1

continuous curves. First, they allow us to represent ob-
ject boundaries when we want to enforce C1 continuity.
Quadratic B-splines are made of a sequence of quadratic
Bézier curves connected in such a way that the overall curve
is C1 continuous everywhere. They are completely deter-
mined by a control polygon or de Boor polygon, and a knot
sequence. See Figure 2. For more information regarding
B-splines the reader can refer to [8, 10].

Figure 2: A quadratic B-spline and corresponding
control polygon. The black points are the values
the curve takes at the knots. The white points are
the internal points of the control polygon.

4.2 Mesh Hierarchy
In our meshing methods we consider three different level

of meshes: the Bézier mesh, the control mesh, and the logi-
cal mesh. The distinction between these three meshes is very
useful in describing and defining mesh improvement meth-
ods for curved elements, although all three meshes need not
be distinctly represented in the implementation. The curved
mesh is of course the highest level mesh. This is a mesh of
the domain, and it is on this mesh that functions are defined.
The logical (or linear) mesh is the straight mesh formed by
connecting the vertices of the curved mesh and maintaining
the same topology. If the curved mesh is not very curved,
we expect in will inherit most of the properties of the logical
mesh. This is the crux of many of the meshing methods pre-
sented herein. The control mesh is obtained from the Bézier
mesh by replacing every curved triangle by four straight tri-
angles. The vertices of these triangles are the vertices and
control points of the curved triangle. By controlling the va-
lidity and quality of this control mesh, we hope to control
the validity and quality of our curved elements. Figure 3
shows a Bézier mesh and its logical and control meshes.

5. MESH AND ELEMENT OPERATIONS

Figure 3: A Bézier mesh (left), its control
mesh(center), and logical mesh(right)

When utilizing curved meshes, many basic topological and
geometric functions of the mesh must be handled in a del-
icate fashion. In Section 5.2, we describe implementations
of some basic geometric procedures for Bézier elements. In
5.3, we use these primitives to implement a standard set of
operations for a dynamic mesh.

5.1 Definitions
We consider a mesh as a set of elements K, and we assume

that for each k ∈ K, there is a geometric mapping χk(ξ)

which maps K̂ to K, where K̂ is defined to be the unit right
triangle, parameterized in barycentric coordinates ξ. The k

subscripts may be omitted where obvious.
We also consider the existence of uk for each k ∈ K, where
uk is a mapping from K̂ to Rn, representing an n-dimensional
function defined on k.

5.2 Mesh Modification Operations
In this section we discuss the primitive topological mod-

ifications that are allowed on the mesh. These routines are
deliberately simple, so that their generalizations to higher
order elements and higher dimensional meshes can be under-
stood. We subsequently will use these operations as building
blocks for mesh improvement algorithms.

5.2.1 Insert-Point
Insert-Point is a routine which takes an element k and an

interior barycentric coordinate ξ and subdivides the triangle
into three new triangles (see Figure 4 ). The geometric posi-
tion of p := χ(ξ) and the control points of the new edges are
determined by evaluation using the de Casteljau algorithm.
Control values for the function carried by the mesh are also
determined by running the de Casteljau algorithm on u(k).

Quite often one desires to insert a point p into a given ele-
ment without foreknowledge of it’s Bézier coordinates. The
problem of finding the Bézier coordinates is simply that of
finding a root to the equation χ(ξ)−p = 0. Using the multi-
dimensional form of Newton’s method for this root-finding
works extremely well in practice. An alternative method
known as “Bézier Clipping” (similar to interval bisection)
is discussed in [18]. We note that when inserting points,
inserting the exact geometric point specified is not crucial
to any of our methods. In the case where Newton’s root
finding is converging to a point very near the boundary of
our Bézier triangle (i.e. one of the barycentric coordinates
is zero) then we may give up on the approximate solution
and return a nearby point on the boundary of the triangle.

The Insert-Point routine as described above is valid for
any dimension and for Bézier triangles of any degree.
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Figure 4: Point insertion through element subdivi-
sion.

5.2.2 Remove Point
Remove point is a simple routine that takes a vertex v of

degree three and removes it from the mesh (see Figure 7).
Since v is of degree three, the three triangles adjacent to v

are discarded and a new triangle is created from the edges
of those triangles not adjacent to v. Since we must maintain
continuity of the mesh both geometrically and with respect
to u, the function carried by the mesh, the edges of the new
triangle contain exactly the same control information as be-
fore. Any control values that are internal to the new triangle
must be determined by some projection from functions de-
fined on the three old triangles to a function defined on the
new triangle. The L2 projection is most often desired, and
can be approximated easily in a least-squares fashion. Note
that in the case of quadratic elements, there are no inter-
nal control points, hence no such projection is needed. This
method for point removal generalizes to higher dimensions,
however the respective constraints on input vertices to this
operation are more difficult to achieve. That is to say, it
is more difficult to force vertices into degree four in three
dimensions (see section 5.3.3). We also note that this oper-
ation is special cased for boundary vertices in the obvious
way.

5.2.3 Edge Flipping
One procedure used heavily in linear mesh improvement

algorithms is the bistellar edge flip. This operation has a
valuable extension to Bézier triangles.

If we view the control nets of the two adjacent Bézier tri-
angles in question, then the flipping operation can be viewed
as the flipping of four edges in the control nets (Figure 5).
This viewpoint has the advantage that it can be immedi-
ately generalized to higher order Bézier elements. In 3 di-
mensions the various categories of bistellar flips correspond
to the same categories of bistellar flips in the control mesh.

After flipping the topology, we must choose new control
values for the internal control points to attempt to preserve
the function u carried by the mesh. A projection (normally
L2 approximation) is determined from functions defined on
the old triangles to functions defined on the new triangles.
This procedure is straightforward in any dimension with any
degree Bézier simplices.

5.2.4 Edge Smooth
Since all of the preceding operations are merely exten-

sions of known linear operations on meshes, it becomes nec-
essary to introduce a mesh modification operation which
works only on the curved properties of the mesh. The oper-
ation smooth edge does just that. It takes as input an edge

Figure 5: (a) The dashed edge is flipped in the
curved mesh. (b) The corresponding dashed edges
are flipped in the control mesh.

Figure 6: (a) An edge to be smoothed is identified
based on it’s quality. (b) The control mesh (c) Iso-
late the star of the control point to be move (d)
Move control point based on linear mesh improve-
ment techniques (e) Update the control mesh (f)
better quality elements

of the mesh to be modified. New positions for the internal
control points of the edge are determined which will alter
the geometry of the curve without affecting the any topo-
logical properties of the mesh. This procedure is illustrated
by Figure 6. Choosing a new geometric position for control
points is discussed in Section 5.3.4.
Once a new geometric position for the control points has
been determined, new control values must be chosen to main-
tain the function u being carried by the mesh. As before, a
least-squares approximation is implemented.

5.3 Mesh Improvement Methods
As the mesh domain moves and deforms, it becomes nec-

essary to modify the mesh in order to maintain certain qual-
ity guarantees. We describe several procedures for ensuring
the quality of the curved mesh. These procedures are built
from the operations of the previous section for reasons al-
ready described. The algorithms we have chosen to use for
mesh improvement are all based on linear mesh improvement
techniques. The reason for this decision is twofold.

Firstly, the analysis of these techniques for linear meshes
in two dimensions is extremely well understood, and various
quality guarantees exist. Our hope is that by implementing
similar algorithms for curved meshes we will see good results
in practice.

Secondly, there is no well-established definition of what it
means to be a quality curved mesh. Intuitive notions sug-
gest that curved elements that are close in shape to linear
elements are of roughly the same quality as the linear ele-
ment. This idea is based on standard quality guarantees for
high order functions defined on linear elements. To take ad-
vantage of this intuition, we strive to make curved elements
close to their linear counterparts whenever necessary. Some
mathematics (see Section 5.3.4) also suggests that the lin-



ear quality of the control mesh of a Bézier triangle affects its
quality as an element. It is certainly true that the validity
of a Bézier element relies on the validity of its control mesh
([22, 15]).

5.3.1 Delaunay Logical Mesh
Recall that the logical mesh is the linear mesh underlying

our curved mesh by connecting the vertices. After the mesh
is distorted, the logical mesh may contain many triangles of
poor aspect ratio. We therefore use traditional incremental
Delaunay algorithms to enforce the Delaunay property on
the logical mesh. This can be accomplished using solely the
edge flip operation, thus localizing any mesh modifications
to those areas where distortion occurs.

5.3.2 Mesh Refinement
As the mesh is distorted, elements may be stretched too

large to capture the desired properties of the simulation, or
elements may develop a poor aspect ratio that cannot be
cured by edge flipping. In this case, we choose to refine
the mesh. We select elements for removal from the mesh
for two reasons. First, if a curved element has an area that
is too large (as dictated by the numerics of the simulation
concerned) then the element must be refined. Second, if the
logical triangle underlying an element develops too poor of
an aspect ratio, then the element must be removed.

For both cases, we use the method of inserting circumcen-
ters as in [19]. Their are two issues that arrive for curved
meshes when using this method. The first is point location
of the circumcenter to be inserted into the mesh.

The standard topological walk through the linear mesh is
generally viable, but may fail due to overly curved elements.
Our method is this: once the point has been located in the
linear mesh, we attempt to find it’s Bézier coordinates in
that element (as in section 5.2.1). If these Bézier coordi-
nates are valid, i.e. all positive, then we have located the
point. Otherwise we attempt to locate the point in a neigh-
boring element. The direction of search can be determined
by which Bézier coordinates are negative. For any set of ele-
ments whose curvature is bounded, the number of attempts
is extremely small (rarely more than 2).

The other issue that arises when implementing Delaunay
refinement on a curved mesh is that of boundary protec-
tion. Encroachment of boundaries is determined by protec-
tive lenses around the boundary curves. The size for these
lenses is determined by an extension of the normal diametral
circle. This extension for Bézier curves is defined in [17].

5.3.3 Mesh Coarsening
When the mesh is distorted, many elements may be con-

densed to sizes much smaller than are necessary for numer-
ical accuracy. Mesh coarsening is then required to keep the
mesh from becoming too large. We perform mesh coarsen-
ing by means of the Douglas-Peucker algorithm [7] and the
function-based coarsening paradigm of Talmor et al. [16,
21].

The main idea of the function-based coarsening paradigm
is as follows. First a sizing function for the mesh is obtained.
The sizing function may come from the numerics of the sim-
ulation, and may also be relative to the geometric necessities
of the domain. In either case, the sizing function is assumed
to be approximately Lipschitz, and the resulting mesh after
coarsening will approximately be at least as well-graded.

Figure 7: The star of a point to be deleted (left).
The configuration after all new Delaunay ears have
been obtained but before the vertex is removed
(middle). The mesh with the vertex removed (right)

At every vertex of the mesh a scaled version of the sizing
function is used to define the radius of a sphere centered
at that point. A maximal subset of the mesh vertices is
selected so that none of the corresponding spheres intersect.
The selected vertices are kept and the others are slated for
removal.

This basic approach must be modified when there are
boundaries that must be maintained, as in our case. We
run the Douglas-Peucker algorithm on the control polygon
of our B-spline boundaries to determine a subset of the con-
trol points that must be kept to maintain the geometry of
the boundary. These points will be present in the coarsened
mesh. The rest of the points, interior or boundary points,
are chosen to be in the coarsened mesh according to the
sizing function as described above.

Once we have determined a subset of vertices to be re-
moved from the mesh, we incrementally remove each vertex.
This localizes the changes to the mesh into only the areas
where coarsening is necessary.

The procedure to remove a vertex v from the mesh is based
on the algorithm of Deviller [6] that deletes a vertex of the
Delaunay triangulation and retriangulates the resulting cav-
ity to obtain a new Delaunay triangulation. The algorithm
iteratively identifies an ’ear’ of the cavity that should be
contained in the Delaunay triangulation of the cavity upon
removal. This ear is then added to the mesh by way of an
edge flip. At the end of this process the neighborhood of
v has the form shown in figure 7 that is required for the
point remove operation. Deviller’s algorithm generalizes to
three-dimensions, but the implementation is more involved
[6]. We also note that our procedure is special cased for the
deletion of boundary vertices in the obvious way.

5.3.4 Curve Smoothing
All of our previous mesh improvement methods have in-

volved only the linear properties of the mesh, ensuring the
quality of the underlying linear mesh. In order to attempt
to transfer these quality guarantees to the curved mesh, we
now implement the curve smoothing procedure. The first
step is for us to identify those elements that are considered
to be “too curved”. To identify these elements, we propose
the metric:

∫

k

|J |
A

where k is the element being considered, A is the area of
this curved element, and J is the Jacobian of the geometric
mapping χk. This metric represents the distortion of the
curved triangle from it’s underlying linear triangle. This



metric for determining overly curved triangles is selected for
several reasons.
Firstly, this metric is always equal to one for any linear tri-
angle. This means that the deviation of this metric from one
measures the ’curvature’ of a Bézier triangle independent of
the shape of its underlying linear triangle, thus isolating the
curved properties from the linear properties of the trian-
gle, since the linear properties have already been addressed
by the preceding methods. Secondly, this metric is easy to
bound for Bézier triangles. The area of a Bézier triangle
can be quickly evaluated as a fixed linear combination of
the geometric control points (see [8]). The Jacobian is the
derivative of the Bézier function χ, and so is itself a Bézier
function, and can be bounded by the convex hull of it’s con-
trol points. And so any triangles for which this metric is
too far from one (as determined by the problem), will have
their edges smoothed. To select new geometric positions for
control points, any linear mesh improvement methods for
locally repositioning vertices may be applied to the control
mesh. In the next two subsections, we describe the mesh im-
provement method we selected and examine the Jacobian of
a Bézier triangle to justify the choice of this class of methods
for repositioning the control points.

5.4 Jacobian of a B́ezier Triangle
Algorithms and estimators for the Jacobian J(ξ) of the

function χ(ξ) are critical to our approach. In 2D the Ja-
cobian is the 2 by 2 matrix of partial derivatives. In this
section we show how to compute J(ξ) using a generalization
of de Casteljau’s algorithm given the control mesh. Using
this method we then show how to bound |J(ξ)| from below
for all ξ in the triangle. The positivity of the determinant
will be used to determine the validity of a curved element
as in [15]. A similar formulation for the Jacobian of Bézier
simplices was independently presented by Vavasis [22].

When using Bézier elements, there is an important corre-
spondence between the conditioning of J and the geometric
shape of the control net for an element. This has motivated
our geometric presentation of the Jacobian. We only discuss
the quadratic Bézier triangle case, but the methods general-
ize for higher order Bézier elements and Bézier tetrahedra.
When using the Bernstein polynomial basis for quadratic
Bézier triangles, J may be computed directly and can be
expressed as a linear Bézier triangle whose control points
are the vector pairs A′ and B′, where A = 2A′ is the x-
partial derivative of the Bézier triangle at the control point,
and B = 2B′ is the y-partial derivative. See Figure 8(b).
We have that:

J(ξ) =
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We are also concerned with the determinant |J | of the
Jacobian matrix, which in this case may be expressed as
its own scalar-valued quadratic Bézier polynomial in two
variables. If we define the scalar value Cij = Ai ×Bj , then
convex combinations of these cross products are the control
points for |J |. The layout of these control points for |J | is
shown in Figure 8(c).

Using the convex hull property of polynomials in Bézier
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Figure 8: (a)Bézier control net for an element shown
with the relevant vectors. (b) The Jacobian is a lin-
ear combination of the A-B pairs of vectors. (c) The
determinant of the Jacobian as a Bézier polynomial

form, |J | for this element can be bounded by the maximum
and minimum of the Cij ’s.

In this light, it becomes necessary to maintain the linear
quality of the triangles in the control mesh, since their aspect
ratio bounds the normalized cross-products which in turn
bounds the normalized conditioning of the Jacobian. This
motivates the use of linear mesh improvement techniques
on the control mesh in order to improve the curved mesh.
Figure 6 provides an illustration of improvement methods
applied to the control mesh.

5.5 Smoothing control points
The positioning of an internal control point belonging to

a curved edge may sometimes require extra caution. This
happens in two situations. First, if the new position due to
the motion of an internal control point results in a tangled
control mesh, it needs to be modified to produce a valid
mesh. This is rather a procedure to validate the mesh than
to help improve its quality. In the second situation, when
a quadratic edge has a high curvature resulting in very dis-
torted but still valid elements, the internal point is relocated
increasing the quality of the triangles incident to it and con-
sequently lowering the edge curvature (see Figure 6). Note
that in the former case we might decide improving the mesh
quality after validating it. In both situations, only internal
control points are repositioned.

To perform point relocation, we turn our attention to
smoothing methods. Our goal here is not to improve current
smoothing methods but rather use them to help us solve our
immediate prototyping needs.

Smoothing is modeled as an unconstrained optimization
problem, where a single internal control point is repositioned
at a time, while all others are maintained fixed. This is a
common approach adopted in many works, including [5, 9].



Each smoothing call solves

max
x∈K

min
i∈M

{qi(x)} (1)

where M is the index set of the triangles incident to the
control point located at x, and qi gives the quality value of
triangle i in M . Provided that

Φ(x) = min
i∈M

{qi(x)}

is a semi-convex function for all x in the feasible region K,
we are safe on adopting an unconstrained optimization ap-
proach.

To fix tangled elements, we use the triangle area Ai as the
quality measure in (1). In this case, Φ is a convex function
everywhere, and the optimizer is able to find a valid position
for the violating control point, no matter where it is initially
located, producing untangled elements. Since the exclusive
goal here is to form a valid mesh, convergence tolerance
of the numerical solution is not relevant and we halt the
optimizer as soon as a valid position is found.

When smoothing is not used to untangle elements but to
actually increase the quality of valid triangles, the quality
metric applied is

τ =
4
√

3A

l1
2 + l2

2 + l3
2
,

where li is the length of the i–th edge of the triangle, τ ∈
(0, 1] for valid triangles, τ = 1 for an equilateral triangle,
and τ approaches zero for flat triangles with small or large
angles. A negative τ (A < 0) indicates an invalid triangle
that needs to be fixed. The control point is allowed to move
only in the kernel of its surrounding star–shaped polygon.

Figure 9 shows the level sets of Φ when qi = Ai and
qi = τi. Note that when smoothing with τ, points outside
the polygon would have a chance to drift away from the
desired solution because there Φ is not convex.

Figure 9: Level curves of Φ for area (left) and quality
metric τ. Note in the right figure the sinks outside
the polygon.

In our prototype, we adopted CFSQP [12] to solve nu-
merically the optimization problem. It is very stable and
it has demonstrated to be efficient enough for our current
goals. CFSQP is a C implementation of the nonlinear pro-
gramming algorithm FSQP (Feasible Sequential Quadratic
Programming), a variation on the standard SQP scheme
generating feasible iterates [13]. CFSQP is capable of solv-
ing minimax problems of a set of smooth objective func-
tions with linear and nonlinear equality and inequality con-
straints. When solving problems with many sequentially

related objective functions, such is our smoothing case, CF-
SQP gives the option to use an algorithm specially designed
for this type of problems. This algorithm considerable re-
duces the computation time by selecting a small subset of
the objective functions for inclusion in the quadratic pro-
gramming subproblems.

6. THE SIMULATION PROCESS
All of our methods are designed around doing finite el-

ement computations with a curved moving mesh. In this
setup, a field function u must be carried on the mesh, and
the mesh must evolve over each discrete time step. We work
in the class of so-called “isoparametric” finite element solu-
tions, wherein the solution to the finite element problem is
computed in the same basis as the geometric basis of the
mesh, i.e. uk for an element k is determined by control
values at the control points of χk.

Our basic simulation is the same for any problem be-
ing solved. Input for a simulation is given as a topologi-
cal cell complex representing the boundary, whose edges are
B-splines, which may be closed loops. The initial points
along each boundary edge are taken to be the knots of the
B-spline, so that each corresponding edge in the mesh is a
single quadratic segment.

At each time step the process proceeds in three stages.
First, a finite element solution is computed for the given
time step. Since this solution was computed in the basis of
the mesh, we now have control values associated with every
control point of the mesh.

Next, we push the mesh forward. To do this, we need
a velocity field defined on the mesh itself. Obtaining such
a field is discussed in section 6.1. Once we have obtained
a velocity field in the basis of the mesh, we simply push
each control point forward with a linear displacement (∆x =
v∆t), unless we have a closed-form solution for the flow field,
in which case we employ a Runge-Kutta scheme.

Lastly, we apply the mesh improvement methods of sec-
tion 5. We apply them in the order presented in this work,
i.e. we enforce the Delaunay property, refine the mesh as
necessary, coarsen the mesh as necessary, and then apply
edge smoothing. The staging of this type of mesh improve-
ment for moving meshes is not necessarily specific. One
might wonder if coarsening before refinement would yield
better results. Different approaches to the staging for linear
moving meshes have been proposed in [23] and [2]. A simul-
taneous refinement-coarsening scheme (non-moving mesh) is
discussed in [14].

6.1 Simulations Implemented
We have implemented the ability to process two distinct

types of simulations with curved moving meshes. The first
type of simulation implemented is for Convection-Diffusion
problems. In this problem setup, a velocity field is given a
priori defined on the relevant area of R2. A concentration
(representing temperature or some other continuum) is de-
fined on the mesh. At each time step, the mesh domain is
to move and the concentration is to diffuse according to the
finite element solution to the scalar diffusion equation. To
project the velocity field from R2 onto the mesh, we sim-
ply take the projection that interpolates the velocity field at
each of the control points.

In the second setup, we simulate an incompressible Navier-
Stokes fluid. A three-dimensional field function is defined on



the mesh, representing velocity in two dimensions and pres-
sure. The mesh is to move forward according to this velocity,
and then a new field function is calculated as the solution to
the finite element computation. In this setup, no projection
of the velocity field is necessary, as it is computed by the
solver, and so is already defined in the mesh basis.

7. PROTOTYPE
The current implementation of these methods is written

using the object oriented scripting language Ruby, and ex-
tensions for Petsc, OpenGL and GLUT. As such this is not
a performance impelmentation by any mean, but is none
the less robust and useful for testing the practicality of the
methods we have described.

Our base topological classes are based around the Cell-
Complex approach of Brisson [4]. An object of this class
is a collection of objects of class Cell which can have arbi-
trary dimension. A CellComplex object stores adjacency
information among these cells. We use this class in two
ways, the representation of an input, and as a represen-
tation of the final mesh itself. By associating geometric
information with each Cell, we derive two base classes, a
BoundaryComplex and a Bézier Mesh.

The BoundaryComplex associates with each of its edges
a B-Spline, which has a series of control points. The Bézier
Mesh class associates a Bézier Triangle with each of its
two dimensional Cells and a Bézier Edge with each of its
one-dimensional Cells. Every triangle in this mesh has a
pointer (generally just a small integer) referring to it’s con-
taining face in the BoundaryComplex. Similarly, every
boundary edge in the mesh contains a reference to the B-
Spline containing it, as well as it’s parametric coordinates
on that containing B-Spline. These references greatly ease
the partioning of the mesh and enforcing of boundary con-
ditions as needed by a finite-element solver.

Every Bézier Triangle, Bézier Edge, and vertex of the
mesh has associated with it the appropriate number of con-
trol points, depending on degree of Bézier polynomials de-
sired. For the case of quadratic Bézier functions, every ver-
tex has one control point, edges have three, and triangles
have six. Continuity between dimensions is created by us-
ing references to common control points. That is to say, a
Bézier Triangle has pointers to the control points on its
boundary, and the Bézier Edges that bound this triangle
have pointers to the same control points.

If we are to carry an n-dimensional function on our mesh,
then each control point has associated with it an (n+2)-
dimensional control value (generally denoted as u). The
first two dimensions of this control value represent the geo-
metric position of the control point, the rest represent the
control values of the function in the basis of the mesh. This
is consistent with the isoparametric approach to the finite
element method as described in section 6.

8. EXPERIMENTAL RESULTS
We have performed several simulations to test our curved

moving mesh implementation. These simulations have been
designed to exercise the various features of the mesher, as
well as to develop interaction between the mesher and a
solver. Several simulations were run with prescribed ve-
locity fields in order to test severe distortions of the mesh
domain. We show screenshots from these in Figures 10 and

12. The first figure mimics three blood cells distorting and
wrapping around an obstacle, the second figure mimics a
single cell body being squeezed through an orifice. These
are pure convection simulations that track the positions and
deformations of the cells as they move in a velocity field.

We have also conducted experiments while interfacing with
a finite element solver. The incrompressible Navier-Stokes
model for a fluid is solved at every time step as the mesh
evolves over time. Our unique approach allows us to track
the interface between various bodies in the fluid, and to
prescribe discontinuous viscosities within the mesh domain.
Snapshots of such a simulation are shown in Figure 11.

Figure 10: Three cells are considered as a mesh
domain. A velocity field moves them from left to
right, while an obstacle impedes the path of the
cells. A quality mesh is dynamically maintained as
the boundaries undergo severe distortion. Smooth
boundaries are maintained.

9. FUTURE WORK
We have presented a framework and an implementation

of a simulation system for curved moving meshes for La-
grangian methods. While the majority of the methods de-



Figure 11: Several bodies flow through a tube with velocities and pressures governed by solutions to Navier-
Stokes equations. Discontinuous viscosities are shown with shading. The darker bodies are more viscous,
while the lighter bodies are less viscous.

scribed are trivially extended to higher-order Bézier trian-
gles, the implementation as it stands is based on quadratic
triangles. A more generic code for handling higher order
Bézier triangles and the associated caveats is in the plan-
ning phase. Obviously, the principal extension of this work
would be into three dimensions. We have chosen our basic
mesh modification operations so that they have clear three
dimensional analogues. The main difficulty lies in the algo-
rithmic mesh improvement methods. We based our curved
methods on very well-understood linear methods in two di-
mensions, however the analogous methods in three dimen-
sions are not all well-understood, and in some cases do not
exist. Overall, the geometric concerns of mesh improvement
in three dimensions must be better understood before they
can be extended to curved moving meshes.
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Figure 12: A cell body is pushed from left to right
through a slit by the flow field. The body is com-
pressed through the slit, and the mesh must be re-
fined. As the body exits the slit, the mesh is coars-
ened.


