
Assignment 1

Instruction Selection and Register Allocation

15-411: Compiler Design
Miguel Silva (miguels@andrew)

Due: Tuesday, September 9, 2008 (1:30 pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.
You may hand in a handwritten solution or a printout of a typeset solution at the beginning of lecture

on Tuesday, September 9. Please read the late policy for written assignments on the course web page. If
you decide not to typeset your answers, make sure the text and pictures are legible and clear.

Problem 1 (20 points)

(a) Construct an abstract syntax tree (AST) corresponding to the following expressions. For example, the
AST for the expression

{ 1 - 2 + 3; }

would be

PLUS(MINUS(CONST(1),CONST(2)),CONST(3))

Here we use a term notation for trees where the node is the constructor and the subtrees are arguments.
Use the names PLUS, MINUS, TIMES, and DIV for the constructors.

(i) { (1 + 2) *3; }

(ii) { 7 - (1 - 2 *3)); }

(iii) { 7 + 10 + (1/2 *3); }

(b) Translate the AST from problem 1(a)(c) into linear three-address form by applying maximal munch
using the patterns in the table below. Subtrees should be translated left-to-right. Temporaries should
be called t0, t1, ..., tn. A wildcard “_” in the pattern matches an arbitrary subtree.

Pattern IR
CONST(c) ti <- c

DIV(_,CONST(c)) tj <- ti / c

DIV(_,_) tj <- ti / tk
PLUS(_,_) ti <- tj + tk
MINUS(_,_) ti <- tj - tk
TIMES(_,_) ti <- tj * tk

1

For example, the AST from part (a) would be translated to

t0 <- 1
t1 <- 2
t2 <- t0 - t1
t3 <- 3
t4 <- t2 + t3

Problem 2 (20 points)

(a) Compute the live variables after each statement in the following programs (assuming some more com-
plex instructions than before):

(i) t1 <- 2
t2 <- 3
a <- t1 + t2
t3 <- a
t4 <- t2 - t1
t5 <- t4 + a + t3

(ii) t1 <- 2
b <- 5
t2 <- 3
a <- 3 + b
a <- a + t2
t3 <- a
a <- 2 * a
b <- a * 3
t4 <- b + t1 + t3

(b) Construct the interference graph for both programs. Are they chordal? Justify your answers1

(c) Consider the following program

t1 <- 3
t2 <- 2
t3 <- 1
t4 <- t3 + 1
t5 <- t2 * 3
t6 <- t1 - 10

(i) Use the algorithm from Lecture 3 to allocate registers for the program above.

(ii) Does your allocation use the minimum number of registers for this interference graph?

(iii) Is it possible to reorder the statements so that the program gives the same result, but there is
less interference (i.e., fewer registers are needed)? How many register do we need now?

1Refer to the lecture notes for Lecture 3 at http://www.cs.cmu.edu/~fp/courses/15411-f09/lectures/03-regalloc.pdf.

2

Problem 3 (20 points)

For this section, we are going to use the following assembly language:

ri register i, 0 ≤ i < 3
rr register that holds a function’s return value
ADD r1 r2 r3 r3 ← r1 + r2

SUB r1 r2 r3 r3 ← r1 − r2

MUL r1 r2 r3 r3 ← r1 ∗ r2

DIV r1 r2 r3 r3 ← r1/r2

MOVE r1 r2 r2 ← r1

LOADi c r1 r1 ← c, where c is a constant
Label : identifies a program point
JUMP label The execution of the program jumps to label

JUMPZERO ri label
If r0 is zero, the execution jumps to label. Oth-
erwise, it resumes right after the JUMPZERO in-
struction

(a) Translate the following program into assembly, selecting instructions and allocating the registers.

a = 3;
b = 5;
return (a+b)*(a-b)*3;

(b) Using Jump and JumpZero, handwrite assembly code for a = e1 && e2 and a = e1 || e2, where
e1 and e2 are expressions. Assume that the variable a has been assigned register ra, that E1 and E2

stand for the assembly code corresponding to e1 and e2 respectively, and that both these expressions
store their results in register re.

e1 && e2

If e1 is FALSE, then the result is FALSE (e2 is
not evaluated). Otherwise, the result is the result
of e2

e1 || e2

If e1 is TRUE, then the result is the value of e1

(e2 is not evaluated). Otherwise, the result is the
result of e2

FALSE The constant 0
TRUE Any non-zero value

3

