
Assignment 4

Structs and Arrays

15-411: Compiler Design
Ruy Ley-Wild (rleywild@cs)

Due: Thursday, October 20, 2008 (1:30 pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.
You may hand in a handwritten solution or a printout of a typeset solution at the beginning of lecture

on Thursday, October 20. Please read the late policy for written assignments on the course web page. If you
decide not to typeset your answers, make sure the text and pictures are legible and clear.

Problem 1

[20 points]

Consider the beloved C struct

struct C {
char cFoo;
int iBar;
double dNaN;
struct D *next;
short sBaz;
char cQux;
long long llRockets;

};

1. Conforming to the x86-64 ABI, describe the layout of the structure by giving the offset of each field,
the total size of the structure, and its alignment requirement.

2. If we violate the ABI by reordering fields, we can give a more space-efficient layout of the structure.
Describe a minimum-space layout that still obeys the x86-64 alignment restrictions.

3. Unlike C, languages such as Java and C# don’t impose a strict ordering requirement on structure
members; the runtime is free to reorder the fields as it sees fit. Give a simple algorithm to compute an
ordering of fields which gives the smallest structure size.

4. Explain whether your algorithm from part (c) work if structures had bitfields (anywhere between 1
and 32 bits).

1



Problem 2

[20 points]

1. Unlike L4 , C allows fixed-size arrays and unions in structs. Give an SML structure implement-
ing the following signature, STRUCT. sizeof should take a field type and return its size in bytes.
field byte offset should take a struct (represented as a list of named fields) and a field identifier
and compute the offset of a field in the struct; assume that any given struct has been checked for du-
plicate field names. Int’s are 4 bytes; the size of a struct {f1:τ1; . . . fn:τn; } is computed by traversing
the fields from left to right, adding padding as necessary so that alignment restrictions on the fields
are satisfied. Int’s are aligned at 0 mod 4; an array of type τ [n] is aligned as τ is aligned; a union is
aligned to ensure all of its fields are aligned; structs are aligned according to their most strictly aligned
field. Padding may need to be added at the end of a struct so that its total size is a multiple of its
most strictly aligned field.

signature STRUCT =
sig
datatype field_type = Int

| Array of field_type * int
| Union of fields
| Struct of fields

withtype fields = (string * field_type) list

val sizeof : field_type -> int
val field_byte_offset : fields -> string -> int

end

2. Suppose we wanted to extend the definition of L4 to permit fixed size arrays and unions so they can
be directly embedded in structs. Describe in detail how to modify the definition as given in the Lab 4
handout to accomodate this extension. This should include, as you find necessary, extended or modified
syntax, static semantics including typing rules, and rules for program execution. You may assume a
C-like unsafe model of execution where the results of certain operations, such as accessing an array out
of bounds, are undefined.

2



Problem 3

[20 points]

1. Although costs for memory are dropping every year, memory consumption is still a problem, especially
in large applications. Choosing the right types for variables can play an important role in performance
in terms of both memory and speed. C provides many integral data types (char, short, int, long,
long long) and floating point types (float, double, long double) but doesn’t give good specifics
on their sizes. In contrast, both C# and Java provide the same types1 including absolute sizes so
it is easier to pick a type that works in multiple environments. GCC and MSVC have extensions to
allow integer structure fields to be sized explicitly in bits (up to 64). Since architectures generally do
not provide instructions for writing arbitrary numbers of bits to arbitrary locations, these compilers
implement writes to and reads from bitfields using shifting and masking.

Consider the following C code:

extern struct {
int x:17;
int y:15;

} s;

int setfield(int a) {
s.y = a;
return s.x;

}

Implement setfield in x86-64 assembly using as few instructions as possible. How would you imple-
ment basic arithmetic operations in general?

2. In C, the volatile keyword can be appended to the type of a declaration to indicate that the value
being declared may change at any point in the program’s execution, for instance, through modification
by another thread or by the hardware. The compiler must carefully avoid applying optimizations that
assume that a volatile variable has a fixed value.

Give a piece of code and an optimization that cannot be applied to the code because a variable involved
in the computation is volatile.

3. Considering the way in which writes and reads involving bitfields are implemented by the compiler,
describe a race condition that may arise in a multi-threaded program in which multiple threads share
access to a struct with volatile bitfields, even when each bitfield has a lock which is always used to
synchronize read and write access to it. As a compiler-writer, how would you address this problem?

1Except for unsigned numbers in Java

3


